-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpic_carver.py
100 lines (88 loc) · 3.13 KB
/
pic_carver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import re
import zlib
import cv2
from scapy.all import *
pictures_directory = "/home"
faces_directory = "/home"
pcap_file = "bhp.pcap"
def get_http_headers(http_payload):
try:
# split the headers off if it is HTTP traffic
headers_raw = http_payload[:http_payload.index("\r\n\r\n")+2]
# break out the headers
headers = dict(re.findall(r"(?P<name>.*?): (?P<value>.*?)\r\n", ¬
headers_raw))
except:
return None
if "Content-Type" not in headers:
return None
return headers
def extract_image(headers,http_payload):
image = None
image_type = None
try:
if "image" in headers['Content-Type']:
# grab the image type and image body
image_type = headers['Content-Type'].split("/")[1]
image = http_payload[http_payload.index("\r\n\r\n")+4:]
# if we detect compression decompress the image
try:
if "Content-Encoding" in headers.keys():
if headers['Content-Encoding'] == "gzip":
image = zlib.decompress(image, 16+zlib.MAX_WBITS)
elif headers['Content-Encoding'] == "deflate":
image = zlib.decompress(image)
except:
pass
except:
return None,None
return image,image_type
def http_assembler(pcap_file):
carved_images = 0
faces_detected = 0
a = rdpcap(pcap_file)
sessions = a.sessions()
for session in sessions:
http_payload = ""
for packet in sessions[session]:
try:
if packet[TCP].dport == 80 or packet[TCP].sport == 80:
# reassemble the stream
http_payload += str(packet[TCP].payload)
except:
pass
headers = get_http_headers(http_payload)
if headers is None:
continue
image,image_type = extract_image(headers,http_payload)
if image is not None and image_type is not None:
# store the image
file_name = "%s-pic_carver_%d.%s" % (pcap_file,carved_images,image_type)
fd = open("%s/%s" % (pictures_directory,file_name),"wb")
fd.write(image)
fd.close()
carved_images += 1
# now attempt face detection
try:
result = face_detect("%s/%s" % (pictures_directory,file_name),file_name)
if result is True:
faces_detected += 1
except:
pass
return carved_images, faces_detected
carved_images, faces_detected = http_assembler(pcap_file)
print "Extracted: %d images" % carved_images
print "Detected: %d faces" % faces_detected
def face_detect(path,file_name):
img = cv2.imread(path)
cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
rects = cascade.detectMultiScale(img, 1.3, 4, cv2.cv.CV_HAAR_¬
SCALE_IMAGE, (20,20))
if len(rects) == 0:
return False
rects[:, 2:] += rects[:, :2]
# highlight the faces in the image
for x1,y1,x2,y2 in rects:
cv2.rectangle(img,(x1,y1),(x2,y2),(127,255,0),2)
cv2.imwrite("%s/%s-%s" % (faces_directory,pcap_file,file_name),img)
return True