-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathstartup.py
574 lines (486 loc) · 17.3 KB
/
startup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import sys
import asyncio
import multiprocessing as mp
from multiprocessing import Process, Queue
import argparse
from configs import (logger, LOG_PATH,FSCHAT_CONTROLLER,FSCHAT_OPENAI_API_6B,FSCHAT_OPENAI_API_130B
,LLM_MODEL_6B,LLM_MODEL_130B,API_SERVER,WEBUI_SERVER)
from server.utils import (FastAPI,MakeFastAPIOffline,set_httpx_timeout,fschat_controller_address,
get_model_worker_config,fschat_model_worker_address)
from typing import Tuple, List, Dict
import subprocess
# 命令行参数设置用
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"-a",
"--all-model",
action="store_true",
help="运行所有模型",
dest="all_model",
)
parser.add_argument(
"-q",
"--quiet",
action="store_true",
help="减少fastchat服务log信息",
dest="quiet",
)
parser.add_argument(
"-c",
"--controller",
type=str,
help="specify controller address the worker is registered to. default is server_config.FSCHAT_CONTROLLER",
dest="controller_address")
args = parser.parse_args()
args.model_name_6b=LLM_MODEL_6B
args.model_name_130b = LLM_MODEL_130B
return args, parser
def create_controller_app(
dispatch_method: str,
log_level: str = "INFO",
) -> FastAPI:
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.controller import app, Controller, logger
logger.setLevel(log_level)
controller = Controller(dispatch_method)
sys.modules["fastchat.serve.controller"].controller = controller
MakeFastAPIOffline(app)
app.title = "FastChat Controller"
app._controller = controller
return app
def run_controller(q: Queue, run_seq: int = 1, log_level: str = "INFO", e: mp.Event = None):
import uvicorn
app = create_controller_app(
dispatch_method=FSCHAT_CONTROLLER.get("dispatch_method"),
log_level=log_level,
)
#
_set_app_seq(app, q, run_seq)
#同步多线程
@app.on_event("startup")
def on_startup():
if e is not None:
e.set()
host = FSCHAT_CONTROLLER["host"]
port = FSCHAT_CONTROLLER["port"]
if log_level == "ERROR":
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
uvicorn.run(app, host=host, port=port, log_level=log_level.lower())
def run_openai_6b_api(q: Queue, run_seq: int = 3, log_level: str = "INFO"):
'''
生成6b的openai部分
:param q: 多线程列表
:param run_seq: 多线程序号
:param log_level: 日记等级
:return:
'''
import uvicorn
controller_addr = fschat_controller_address()
app = create_openai_api_app(controller_addr, log_level=log_level,model_name="6b")
_set_app_seq(app, q, run_seq)
if log_level == "ERROR":
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
host = FSCHAT_OPENAI_API_6B["host"]
port = FSCHAT_OPENAI_API_6B["port"]
uvicorn.run(app, host=host, port=port)
def run_openai_130b_api(q: Queue, run_seq: int = 3, log_level: str = "INFO"):
'''
生成130b的openai部分
:param q: 多线程列表
:param run_seq: 多线程序号
:param log_level: 日记等级
:return:
'''
import uvicorn
controller_addr = fschat_controller_address()
app = create_openai_api_app(controller_addr, log_level=log_level,model_name="130b")
_set_app_seq(app, q, run_seq)
if log_level == "ERROR":
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
host = FSCHAT_OPENAI_API_130B["host"]
port = FSCHAT_OPENAI_API_130B["port"]
uvicorn.run(app, host=host, port=port)
def create_openai_api_app(
controller_address: str,
api_keys: List = [],
log_level: str = "INFO",
model_name:str = "6b"
) -> FastAPI:
'''
生成openai api用
:return:
'''
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.openai_api_server import app, CORSMiddleware, app_settings
from fastchat.utils import build_logger
logger = build_logger(f"openai_{model_name}_api", f"openai_{model_name}_api.log")
logger.setLevel(log_level)
app.add_middleware(
CORSMiddleware,
allow_credentials=True,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
# sys.modules["fastchat.serve.openai_api_server"].logger = logger
app_settings.controller_address = controller_address
app_settings.api_keys = api_keys
MakeFastAPIOffline(app)
app.title = f"FastChat OpeanAI API {model_name} Server"
return app
def run_model_worker(
model_name: str,
controller_address: str = "",
q: Queue = None,
run_seq: int = 2,
log_level: str = "INFO",
):
'''
设置模型相关配置,并设置模型运行对象
'''
import uvicorn
kwargs = get_model_worker_config(model_name)
host = kwargs.pop("host")
port = kwargs.pop("port")
# print(port)
# print("*"*100)
kwargs["model_names"] = [model_name]
kwargs["controller_address"] = controller_address or fschat_controller_address()
kwargs["worker_address"] = fschat_model_worker_address(model_name)
#模型存放地址
model_path = kwargs.get("local_model_path", "")
kwargs["model_path"] = model_path
'''print(kwargs)
{'device': 'cpu', 'api_base_url': 'http://127.0.0.1:7777/v1',
'api_key': None, 'provider': 'ChatGLMWorker',
'version': 'chatglm_pro', 'online_api': True,
'worker_class': <class 'server.model_workers.zhipu.ChatGLMWorker'>,
'model_names': ['chatglm-130b-api'],
'controller_address': 'http://127.0.0.1:20001',
'worker_address': 'http://127.0.0.1:20003',
'model_path': ''}
'''
app = create_model_worker_app(log_level=log_level, **kwargs)
_set_app_seq(app, q, run_seq)
if log_level == "ERROR":
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
uvicorn.run(app, host=host, port=port, log_level=log_level.lower())
def create_model_worker_app(log_level: str = "INFO", **kwargs) -> FastAPI:
import fastchat.constants
# 设定日志地址
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.model_worker import app, GptqConfig, AWQConfig, ModelWorker, worker_id, logger
import argparse
import threading
import fastchat.serve.model_worker
logger.setLevel(log_level)
# workaround to make program exit with Ctrl+c
# it should be deleted after pr is merged by fastchat
# 修改fastchat定义的初始化函数,把他修改为守护进程,跟随主进程退出
def _new_init_heart_beat(self):
self.register_to_controller()
self.heart_beat_thread = threading.Thread(
target=fastchat.serve.model_worker.heart_beat_worker, args=(self,), daemon=True,
)
self.heart_beat_thread.start()
ModelWorker.init_heart_beat = _new_init_heart_beat
parser = argparse.ArgumentParser()
args = parser.parse_args([])
# default args. should be deleted after pr is merged by fastchat
args.gpus = None
args.max_gpu_memory = "20GiB"
args.load_8bit = False
args.cpu_offloading = None
args.gptq_ckpt = None
args.gptq_wbits = 16
args.gptq_groupsize = -1
args.gptq_act_order = False
args.awq_ckpt = None
args.awq_wbits = 16
args.awq_groupsize = -1
args.num_gpus = 1
args.model_names = []
args.conv_template = None
args.limit_worker_concurrency = 5
args.stream_interval = 2
args.no_register = False
# 把参数整合起来,有相同会覆盖
for k, v in kwargs.items():
setattr(args, k, v)
if worker_class := kwargs.get("worker_class"):
worker = worker_class(model_names=args.model_names,
controller_addr=args.controller_address,
worker_addr=args.worker_address)
# 本地模型
else:
# workaround to make program exit with Ctrl+c
# it should be deleted after pr is merged by fastchat
# 设置为守护线程
def _new_init_heart_beat(self):
self.register_to_controller()
self.heart_beat_thread = threading.Thread(
target=fastchat.serve.model_worker.heart_beat_worker, args=(self,), daemon=True,
)
self.heart_beat_thread.start()
ModelWorker.init_heart_beat = _new_init_heart_beat
#fastchat的初始化部分
gptq_config = GptqConfig(
ckpt=args.gptq_ckpt or args.model_path,
wbits=args.gptq_wbits,
groupsize=args.gptq_groupsize,
act_order=args.gptq_act_order,
)
awq_config = AWQConfig(
ckpt=args.awq_ckpt or args.model_path,
wbits=args.awq_wbits,
groupsize=args.awq_groupsize,
)
worker = ModelWorker(
controller_addr=args.controller_address,
worker_addr=args.worker_address,
worker_id=worker_id,
model_path=args.model_path,
model_names=args.model_names,
limit_worker_concurrency=args.limit_worker_concurrency,
no_register=args.no_register,
device=args.device,
num_gpus=args.num_gpus,
max_gpu_memory=args.max_gpu_memory,
load_8bit=args.load_8bit,
cpu_offloading=args.cpu_offloading,
gptq_config=gptq_config,
awq_config=awq_config,
stream_interval=args.stream_interval,
conv_template=args.conv_template,
)
sys.modules["fastchat.serve.model_worker"].args = args
sys.modules["fastchat.serve.model_worker"].gptq_config = gptq_config
sys.modules["fastchat.serve.model_worker"].worker = worker
MakeFastAPIOffline(app)
app.title = f"FastChat LLM Server ({args.model_names[0]})"
app._worker = worker
return app
def run_api_server(q: Queue, run_seq: int = 4):
from server.api import create_app
import uvicorn
app = create_app()
# 把app设置为启动时候就触发
_set_app_seq(app, q, run_seq)
host = API_SERVER["host"]
port = API_SERVER["port"]
uvicorn.run(app, host=host, port=port)
def _set_app_seq(app: FastAPI, q: Queue, run_seq: int):
'''
设置超时时间与线程启动顺序
:param app:
:param q:
:param run_seq:
:return:
'''
if q is None or not isinstance(run_seq, int):
return
if run_seq == 1:
@app.on_event("startup")
async def on_startup():
set_httpx_timeout()
q.put(run_seq)
elif run_seq > 1:
@app.on_event("startup")
async def on_startup():
set_httpx_timeout()
while True:
no = q.get()
if no != run_seq - 1:
q.put(no)
else:
break
q.put(run_seq)
def run_webui(q: Queue, run_seq: int = 5):
host = WEBUI_SERVER["host"]
port = WEBUI_SERVER["port"]
if q is not None and isinstance(run_seq, int):
while True:
no = q.get()
if no != run_seq - 1:
q.put(no)
else:
break
q.put(run_seq)
#127.0.0.1:8501,把webui运行到8501端口上
p = subprocess.Popen(["streamlit", "run", "webui.py",
"--server.address", host,
"--server.port", str(port)])
p.wait()
# 运行主体
async def run_main():
import signal
import time
def handler(signalname):
"""
Python 3.9 has `signal.strsignal(signalnum)` so this closure would not be needed.
Also, 3.8 includes `signal.valid_signals()` that can be used to create a mapping for the same purpose.
"""
def f(signal_received, frame):
raise KeyboardInterrupt(f"{signalname} received")
return f
signal.signal(signal.SIGINT, handler("SIGINT"))
signal.signal(signal.SIGTERM, handler("SIGTERM"))
mp.set_start_method("spawn")
manager = mp.Manager()
queue = manager.Queue()
args, parser = parse_args()
if args.all_model:
args.model_130b = True
args.model_6b = True
args.webui = True
args.openai_api = True
args.api = True
# print(args.api_model)
if len(sys.argv) > 1:
logger.info(f"正在启动服务:")
logger.info(f"如需查看 llm_api 日志,请前往 {LOG_PATH}")
# 记录多线程用
processes = {}
controller_started = manager.Event()
def process_count():
return len(processes)
if args.quiet:
log_level = "ERROR"
else:
log_level = "INFO"
# 设置线程启动部分
if args.openai_api:
#"127.0.0.1:20001"
process = Process(
target=run_controller,
name=f"controller",
args=(queue, process_count() + 1, log_level, controller_started),
daemon=True,
)
processes["controller"] = process
#"127.0.0.1:8888"
process = Process(
target=run_openai_6b_api,
name=f"openai_6b_api",
args=(queue, process_count() + 1),
daemon=True,
)
processes["openai_6b_api"] = process
# "127.0.0.1:7777"
process = Process(
target=run_openai_130b_api,
name=f"openai_130b_api",
args=(queue, process_count() + 1),
daemon=True,
)
processes["openai_130b_api"] = process
if args.model_130b:
# "127.0.0.1:20003"
process = Process(
target=run_model_worker,
name=f"model_worker - {args.model_name_130b}",
args=(args.model_name_130b, args.controller_address, queue, process_count() + 1, log_level),
daemon=True,
)
processes["model_130b"] = process
if args.model_6b:
# "127.0.0.1:20002"
process = Process(
target=run_model_worker,
name=f"model_worker - {args.model_name_6b}",
args=(args.model_name_6b, args.controller_address, queue, process_count() + 1, log_level),
daemon=True,
)
processes["model_6b"] = process
if args.api:
# 127.0.0.1:6666
process = Process(
target=run_api_server,
name=f"API Server",
args=(queue, process_count() + 1),
daemon=True,
)
processes["api"] = process
if args.webui:
#127.0.0.1:3333
process = Process(
target=run_webui,
name=f"WEBUI Server",
args=(queue, process_count() + 1),
daemon=True,
)
processes["webui"] = process
# if args.args.webui:
# raise
if process_count() == 0:
parser.print_help()
else:
try:
if p := processes.get("controller"):
p.start()
p.name = f"{p.name} ({p.pid})"
controller_started.wait()
if p := processes.get("openai_6b_api"):
p.start()
p.name = f"{p.name} ({p.pid})"
controller_started.wait()
if p := processes.get("openai_130b_api"):
p.start()
p.name = f"{p.name} ({p.pid})"
controller_started.wait()
if p := processes.get("model_130b"):
p.start()
p.name = f"{p.name} ({p.pid})"
controller_started.wait()
if p := processes.get("model_6b"):
p.start()
p.name = f"{p.name} ({p.pid})"
controller_started.wait()
if p := processes.get("api"):
p.start()
p.name = f"{p.name} ({p.pid})"
controller_started.wait()
while True:
no = queue.get()
if no == process_count():
time.sleep(0.5)
# dump_server_info(after_start=True, args=args)
break
else:
queue.put(no)
except Exception as e:
logger.error(e)
logger.warning("Caught KeyboardInterrupt! Setting stop event...")
finally:
# Send SIGINT if process doesn't exit quickly enough, and kill it as last resort
# .is_alive() also implicitly joins the process (good practice in linux)
# while alive_procs := [p for p in processes.values() if p.is_alive()]:
for p in processes.values():
logger.warning("Sending SIGKILL to %s", p)
# Queues and other inter-process communication primitives can break when
# process is killed, but we don't care here
if isinstance(p, list):
for process in p:
process.kill()
else:
p.kill()
for p in processes.values():
logger.info("Process status: %s", p)
if __name__ == "__main__":
if sys.version_info < (3, 10):
loop = asyncio.get_event_loop()
else:
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# 同步调用协程代码
loop.run_until_complete(run_main())