forked from LLM-Course/LLM-course.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
690 lines (606 loc) · 26.6 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<!-- Tab icon and title -->
<title>CSC 6203 Large Language Models</title>
<!-- bootstrap template -->
<link rel="stylesheet" href="./css/bootstrap.min.css">
<link rel="stylesheet" href="./css/bootstrap-theme.min.css">
<!-- Google fonts -->
<link href="./css/font.css" rel="stylesheet" type="text/css">
<link rel="stylesheet" type="text/css" href="./css/style.css">
</head>
<body>
<div id="header">
<h1 style="color:brown;">CSC 6203 Large Language Models</h1>
<!-- <h1>CSC 6203 Large Language Models </h1> -->
<div class="text-center">
<h4>Teaching Complex B201, Friday 13:30-16:20, Sep. 4th - Dec. 13, 2024</h4>
<h4>Autumn 2024</h4>
</div>
</div>
<div class="sechighlight">
<div class="container sec">
<div id="coursedesc">
This course offers a comprehensive study of Large Language Models (LLMs). We'll explore architecture
engineering, training techniques, efficiency enhancements, and prompt engineering. Students will gain
insights into the application of LLMs in various domains, tools integration, privacy and bias issues, as
well as their limitations and alignment. The curriculum includes guest lectures on advanced topics and
in-class presentations to stimulate practical understanding. This course is ideal for anyone seeking to
master the use of LLMs in their field.
<br>
本课程提供对大语言模型(LLM)的全面学习。 我们将探索大模型的架构工程、提示工程、训练技术、效率提升。 学生将深入了解大语言模型在各个领域的应用、工具集成、隐私和偏见问题及其局限性和对齐。
该课程包括高级主题的客座讲座和课堂演示,以激发实践理解。 本课程对于任何想要掌握大语言模型在其领域的使用的人来说都是理想的选择。
</div>
</div>
</div>
<div class="container sec">
<div class="row">
<h2><b>Teaching team</b></h2>
<hr>
<div>
<div class="instructor">
<div class="instructorphoto"><img src="https://llm-course.github.io/imgs/wby.png"></div>
<div>Instructor <br> <a href="https://wabyking.github.io/old.html" target="_blank">Benyou Wang</a>
</div>
</div>
</div>
<div id="coursedesc">
<br>
<p> Benyou Wang is an assistant professor in the School of Data Science, The Chinese University of Hong
Kong, Shenzhen. He has achieved several notable awards, including the Best Paper Nomination Award in
SIGIR 2017, Best Explainable NLP Paper in NAACL 2019, Best Paper in NLPCC 2022, Marie Curie
Fellowship, Huawei Spark Award. His primary focus is on large language models.
</p>
</div>
<div class="col-md-2">
<div class="instructor">
<div class="instructorphoto"><img
src="https://freedomintelligence.github.io/assets/img/junyingchen.jpeg"></div>
<div>TA <br><a href="https://jymchen.github.io/" target="_blank">Junying Chen</a></div>
</div>
</div>
<div class="col-md-2">
<div class="instructor">
<div class="instructorphoto"><img src="https://llm-course.github.io/imgs/jike.png"></div>
<div>TA <br><a href="https://1ke-ji.github.io/" target="_blank">Ke Ji</a></div>
</div>
</div>
</div>
</div>
<div class="sechighlight">
<div class="container sec">
<h2><b>Previous offerings</b></h2>
<hr>
<div id="coursedesc">
<p> Below you can find course websites from previous years. <b>
<font color="darkred">Our course content and assignments will change from year to year; please
do not do assignments from previous years.</font>
</b> </p>
<ul>
<li><b>2024 course: </b> <a href="https://llm-course.github.io/" target="_blank">CSC 6203</a> (<span
style="color: orange;">★</span> Current) </li>
<li><b>2023 course: </b> <a href="https://llm-course.github.io/2023" target="_blank">CSC 6201/CIE
6021</a> </li>
</ul>
</div>
</div>
</div>
<!-- 先不考虑 poster吧 -->
<!-- <div class="sechighlight">
<div class="container sec">
<h2><b>Poster Session</b></h2>
<hr />
<div id="coursedesc">
<p> A final project poster session is planned by the end of the course (tentatively Dec. 15th 2023). This
is to provide students the opportunities to present their wonderful work.
</p>
<p>Anyone interested in LLMs are welcome to join. More
details will be provided when it is close to the event. Feel free to reach out!</p>
<!-- <br>
<br> -->
<!-- <p>Here is the <a href="https://mp.weixin.qq.com/s/S6pJjM_aBnRFvR40IdAsmA">review</a> of the poster session event, with invited talks from industry.</p> -->
</div>
</div>
</div> -->
<div class="container sec">
<h2><b>Logistics</b></h2>
<hr>
<div id="coursedesc">
<p>
</p>
<ul>
<li> <b>Lectures:</b> Teaching Complex B201, Friday 13:30 - 16:30, Sep. 4th - Dec. 13, 2024. </li>
<li> <b>Office hours</b> </li>
<ul>
<li> <b>Benyou Wang</b>: Fridays 4:30 PM - 6:00 PM at Daoyuan Building 504A. (Email: <a
href="mailto:[email protected]">[email protected]</a>)</li>
<li> <b>Junying Chen</b>: Mondays 4:00 PM - 5:00 PM at TD 412, Seat-126. (Email: <a
href="mailto:[email protected]">[email protected]</a>)</li>
<li> <b>Ke Ji</b>: Wednesdays 7:30 PM - 8:30 PM at TD 412, Seat-116. (Email: <a
href="mailto:[email protected]">[email protected]</a>)</li>
</ul>
<li> <b>Contact:</b> If you have any question, please reach out to us via email, WeChat group, or post
it to BB.</li>
</ul>
<p></p>
</div>
</div>
<div class="sechighlight">
<div class="container sec">
<h2><b>Course Information</b></h2>
<hr />
<div id="coursedesc">
<h3>What is this course about?</h3>
<p>
The course will introduce the key concepts in LLMs in terms of training, deployment, downstream
applications. In the technical level, it covers language model, architecture engineering, prompt
engineering, retrieval, reasoning, multimodality, tools, alignment and evaluations. This course will
form a sound basis for further use of LLMs.
In particular, the topics include:
<ul>
<li> Introduction to Large Language Models (LLMs) - User's perspective </li>
<li> Language models and beyond</li>
<li> Architecture engineering and scaling law - Transformer and beyond </li>
<li> Training LLMs from scratch - Pre-training, SFT, learning LLMs with human feedback </li>
<li> Efficiency in LLMs </li>
<li> Prompt engineering </li>
<li> Knowledge and reasoning </li>
<li> Multimodal LLMs </li>
<li> LLMs in vertical domains</li>
<li> Tools and large language models</li>
<li> Privacy, bias, fairness, toxicity and holistic evaluation</li>
<li> Alignment and limitations</li>
</ul>
</p>
</div>
<h3>Prerequisites</h3>
<ul>
<li><b>Proficiency in LaTex: </b> All the reports need to be written by using LaTex. A template will be
provided. If you are not familiar with LaTex, please learn from the <a
href="https://www.overleaf.com/learn/latex/Tutorials" target="_blank">tutorial</a> in advance.
</li>
<li><b>Proficiency in GitHub: </b> All the source codes need to be submitted in GitHub. </li>
<li><b>Proficiency in Python:</b> All the assignments will be in Python (using Numpy and <a
href="https://pytorch.org/" target="_blank">PyTorch</a>). </li>
<li><b>Basic machine learning knowledge: </b> It is possible to take this course without any machine
learning knowledge, however, the course will be easier if you have foundations of machine learning.
</li>
<!-- <li><b>Basic Concepts of probability: </b> It will be easier for you to understand some lectures if you know basics of probability. </li> -->
</ul>
<h3>Learning Outcomes</h3>
<ul>
<li> <b>Knowledge</b>: a) Students will understand basic concepts and principles of LLM; b) Students
could effectively use LLMs for daily study, work and research; and c) Students will know which tasks
LLMs are suitable to solve and which are not. </li>
<li> <b>Skills</b>: a) Students could train a toy LLM following a complete pipeline and b) Students
could call ChatGPT API for daily usage in study, work and research. </li>
<li> <b>Valued/Attitude</b>: a) Students will appreciate the importance of data; b) Students will tend
to use data-driven paradigm to solve problems; and c) Students will be aware of the limitations and
risks of using ChatGPT. </li>
</ul>
<!-- <h3>Textbooks</h3>
<p>
Recommended Books:
<ul id="textbooks">
<li> The course is too cutting-edge to have any textbooks, we might write a white paper during teaching this course. See <a href="https://openai.com/blog" target="_blank">OpenAI Blogs</a> for lastest updates.</li>
</ul>
</p> -->
</div>
</div>
<!-- ---- -->
<div class="container sec">
<h2><b>Schedule</b></h2>
<hr>
<font color="darkred">
Please note that the course materials are outdated and will be updated before each class.</font>
<table class="table">
<tbody>
<tr class="active">
<th>Date</th>
<th>Topics</th>
<th>Recommended Reading</th>
<th>Pre-Lecture Questions</th>
<th>Lecture Note</th>
<th>Coding</th>
<th>Events Deadlines</th>
<th>Feedback Administrators</th>
</tr>
<tr class="success">
<td> Sep. 6-17th <a style="color: red;">self-study; do not come to the classroom</a> </td>
<td>Tutorial 0: GitHub, LaTeX, Colab, and ChatGPT API</td>
<td>
<a href=" ">OpenAI's blog</a><br>
<a href="https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes">LaTeX and
Overleaf</a><br>
<a href="https://colab.research.google.com/">Colab</a><br>
<a href="https://docs.github.com/en/get-started/quickstart/hello-world/">GitHub</a><br>
</td>
<td></td>
<td></td>
<td> </td>
<td></td>
<td>Benyou Wang</td>
</tr>
<tr>
<td>Sep. 6th</td>
<td>Lecture 1: Introduction to Large Language Models (LLMs)</td>
<td>
<a href="https://arxiv.org/abs/2108.07258">On the Opportunities and Risks of Foundation
Models</a><br>
<a href="https://arxiv.org/abs/2303.12712">Sparks of Artificial General Intelligence: Early
experiments with GPT-4</a>
</td>
<td>What is ChatGPT and how to use it?</td>
<td> [<a href="materials/2024fall/lecture-1-introduction.pdf">slide</a>]</td>
<td> </td>
<td></td>
<td>Junying Chen</td>
</tr>
<tr>
<td>Sep. 13nd</td>
<td>Lecture 2: Language models and beyond</td>
<td>
<a href="https://dl.acm.org/doi/10.5555/944919.944966">A Neural Probabilistic Language
Model</a><br>
<a href="https://arxiv.org/abs/1810.04805">BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding</a><br>
<a href="https://arxiv.org/abs/2203.02155">Training language models to follow instructions with
human feedback</a>
</td>
<td>What is language model and why is it important?</td>
<td>[<a href="materials/2024fall/Lecture-2-language-model.pdf">slide</a>] </td>
<td> </td>
<td></td>
<td>Ke Ji</td>
</tr>
<tr class="success">
<td>Sep. 13th </td>
<td>Tutorial 1: Prompt Engineering</td>
<td>
<a
href="https://platform.openai.com/docs/guides/prompt-engineering/strategy-give-models-time-to-think">OpenAI's
blog</a><br>
</td>
<td>The Guide to LLM Prompt Engineering</td>
<td> [<a href="materials/Tutorial_1_Prompt_Engineering.pdf">slide</a>] </td>
<td> [<a
href="https://colab.research.google.com/drive/1JFtkSnT_Sik8vIqvAXB8iXDKwMiQrHyf?usp=sharing">Tutorial
Code</a>] [<a
href="Assignments/Assignment1/Assignment_1_Prompt_Engineering.pdf">Assignment1</a>]</td>
<td> <b>Assignment 1 <font color="green">release</font></b> </td>
<td>Junying Chen</td>
</tr>
<tr>
<td>Sep. 20th</td>
<td>Lecture 3: Architecture engineering and scaling law: Transformer and beyond</td>
<td>
<a href="https://arxiv.org/abs/1706.03762">Attention Is All You Need</a><br>
<a href="https://huggingface.co/learn/nlp-course/chapter1/1">HuggingFace's course on
Transformers</a><br>
<a href="https://arxiv.org/abs/2001.08361">Scaling Laws for Neural Language Models</a><br>
<a href="https://lilianweng.github.io/posts/2023-01-27-the-transformer-family-v2/">The
Transformer Family Version 2.0</a><br>
<a href="https://openreview.net/forum?id=onxoVA9FxMw">On Position Embeddings in BERT</a>
</td>
<td>Why does Transformer become the backbone of LLMs?</td>
<td> [<a href="materials/lecture-3-architecture.pdf">slide</a>] </td>
<td> [<a href="https://github.com/karpathy/nanoGPT">nanoGPT</a>] </td>
<td></td>
<td>Junying Chen</td>
</tr>
<tr>
<td>Sep. 27th</td>
<td>Lecture 4: Training LLMs from scratch</td>
<td>
<a href="https://arxiv.org/abs/2203.02155">Training language models to follow instructions with
human feedback</a><br>
<a href="https://arxiv.org/abs/2302.13971">LLaMA: Open and Efficient Foundation Language
Models</a><br>
<a href="https://arxiv.org/abs/2307.09288">Llama 2: Open Foundation and Fine-Tuned Chat
Models</a>
</td>
<td>How to train LLMs from scratch?</td>
<td>[<a href="/materials/2024fall/Lecture-4-Training-LLMs.pdf">slide</a>] </td>
<td>[<a href="https://github.com/FreedomIntelligence/LLMZoo">LLMZoo]</a>,
[<a href="https://github.com/FreedomIntelligence/LLMFactory">LLMFactory</a>] </td>
<td></td>
<td>Ke Ji</td>
</tr>
<!-- <tr class="success">
<td>Sep. 27th </td>
<td>Tutorial 1: Usage of OpenAI API and Assignment 1</td>
<td>
<a href="https://openai.com/blog/chatgpt">OpenAI's blog</a ><br>
</td>
<td>How to automatically use ChatGPT in a batch?</td>
<td> [<a href="/materials/Tutorial1-1-ChatgptAPI.pdf">slide</a >] </td>
<td> [<a href="https://github.com/LLM-Course/LLM-course.github.io/tree/main/Assignments/Assignment1">Using ChatGPT API</a >] </td>
<td> <b>Assignment 1 <font color="green">release</font></b> </td>
<td>Ke Ji</td>
</tr> -->
<tr>
<td>Oct. 11th</td>
<td>Lecture 5: Efficiency in LLMs</td>
<td>
<a href="https://arxiv.org/abs/2009.06732">Efficient Transformers: A Survey</a><br>
<a href="https://arxiv.org/abs/2205.14135">FlashAttention: Fast and Memory-Efficient Exact
Attention with IO-Awareness</a><br>
<a href="https://arxiv.org/abs/2210.17323">GPTQ: Accurate Post-Training Quantization for
Generative Pre-trained Transformers</a><br>
<a href="https://arxiv.org/pdf/2101.03961.pdf">Switch Transformers: Scaling to Trillion
Parameter Models with Simple and Efficient Sparsity</a><br>
<a href="#">Towards a Unified View of Parameter-Efficient Transfer Learning</a>
</td>
<td>How to make LLMs train/inference faster?</td>
<td> [<a href="/materials/2024fall/Lecture-5-Efficiency.pdf">slide</a>] </td>
<td>[<a href="https://github.com/karpathy/llama2.c">llama2.c</a>]</td>
<td></td>
<td>Junying Chen</td>
</tr>
<tr class="success">
<td>Oct. 11th</td>
<td>Tutorial 2: train your own LLMs and assignment 2</td>
<td>
</td>
<td>Are you ready to train your own LLMs?</td>
<td>[<a href="materials/Tutorial_2_LLM_training.pdf">slide</a>]</td>
<td>[<a href="https://github.com/FreedomIntelligence/LLMZoo">LLMZoo]</a>, [<a
href="https://github.com/karpathy/nanoGPT">nanoGPT</a>],
[<a href="https://github.com/FreedomIntelligence/LLMFactory">LLMFactory</a>] </td>
<td>
<b>Assignment 2 <font color="green">release</font></b>
</td>
<td>Ke Ji</td>
</tr>
<tr>
<td>Oct. 18th</td>
<td>Lecture 6: Knowledge, Reasoning, and Prompt engineering</td>
<td>
<a href="https://arxiv.org/abs/2303.14725">Natural Language Reasoning, A Survey</a> and
others<br>
<a
href="https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api">Best
practices for prompt engineering with OpenAI API</a><br>
<a href="https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/">prompt
engineering</a>
</td>
<td>Can LLMs reason? how to better prompt LLMs?</td>
<td>[<a href="materials/Lecture-7-Knowledge-and-Reasoning.pdf">slide</a>] </td>
<td></td>
<td><b>Assignment 1 <font color="red">due (Oct. 18, 11:59pm)</font></b> </td>
<td>Ke Ji</td>
</tr>
<tr>
<td>Oct. 25th </td>
<td>Lecture 7: Mid review of final project</td>
<td>N/A</td>
<td>N/A</td>
<td> [<a href="materials/lecture-6-mid-review.pdf">slide</a>] </td>
<td> </td>
<td></td>
<td>Junying Chen</td>
</tr>
<tr>
<td>Nov. 1st</td>
<td>Lecture 8: Multimodal LLMs</td>
<td><a href="https://arxiv.org/pdf/2103.00020.pdf">CLIP</a>, <a
href="https://arxiv.org/abs/2304.10592">MiniGPT-4</a>, <a
href="https://stablediffusionweb.com/">Stable Diffusion</a> and others</td>
<td>Can LLMs see?</td>
<td> [<a href="materials/Lecture 8_ Multimodal_LLMs.pdf">slide</a>] </td>
<td></td>
<td> </td>
<td>Junying Chen</td>
</tr>
<tr>
<td>Nov. 8th</td>
<td>Lecture 9: LLM agent</td>
<td>
<a href="https://github.com/OpenBMB/ToolBench">ToolBench</a><br>
<a href="https://arxiv.org/abs/2308.03688">AgentBench</a><br>
<a href="https://arxiv.org/pdf/2005.11401.pdf">Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks</a><br>
<a href="https://lilianweng.github.io/posts/2023-06-23-agent/">LLM Powered Autonomous Agents</a>
</td>
<td>Can LLMs plan?</td>
<td> [<a href="materials/Lecture-9-LLM-Agents.pdf">slide</a>] </td>
<td></td>
<td><b>Final Project<font color="green"> release</font></b> </td>
<td>Ke Ji</td>
</tr>
<tr class="success">
<td>Nov. 15th</td>
<td>Tutorial 3: Preparing your own project</td>
<td>
</td>
<td>How to improve your LLM applications?</td>
<td> </td>
<td> </td>
<td>
<b>Assignment 2 <font color="red">due (Nov. 15th, 11:59pm)</font></b>
</td>
<td>Junying Chen and Ke Ji</td>
</tr>
<tr>
<td>Nov. 22th</td>
<td>Lecture 10: LLMs in vertical domains</td>
<td><a href="https://arxiv.org/abs/2212.13138">Large Language Models Encode Clinical Knowledge</a>,
<a href="https://arxiv.org/abs/2303.13375">Capabilities of GPT-4 on Medical Challenge
Problems</a>, <a
href="https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000198">Performance
of ChatGPT on USMLE</a>, <a
href="https://github.com/FreedomIntelligence/Medical_NLP">Medical-NLP</a>, ChatLaw
</td>
<td>Can LLMs be mature experts like doctors/lawyers?</td>
<td> [<a href="materials/Lecture-10-Vertical-LLMs.pdf">slide</a>] </td>
<td>[<a href="https://github.com/FreedomIntelligence/HuatuoGPT">HuatuoGPT</a>]</td>
<td></td>
<td>Junying Chen</td>
</tr>
<tr>
<td>Nov. 29th</td>
<td>Lecture 11: Alignment, Limitations, and broader Impact</td>
<td>
<a href="https://openai.com/blog/introducing-superalignment">Superalignment</a><br>
<a href="https://arxiv.org/abs/2303.10130">GPTs are GPTs: An Early Look at the Labor Market
Impact Potential of Large Language Models</a>
<br>
<a href="https://arxiv.org/abs/2302.02083">Theory of Mind Might Have Spontaneously Emerged in
Large Language Models</a>
<br>
<a href="https://arxiv.org/abs/2202.03629">Survey of Hallucination in Natural Language
Generation</a>
</td>
<td>What are LLMs' limitations?</td>
<td> </td>
<td></td>
<td></td>
<td>Ke Ji</td>
</tr>
<tr class="success">
<td>TBD</td>
<td>Guest lectures</td>
<td>N/A</td>
<td></td>
<td> </td>
<td></td>
<td></td>
<td>Benyou Wang</td>
</tr>
<tr>
<td>Dec. 13</td>
<td>Lecture 12: In-class presentation</td>
<td>N/A</td>
<td>How to solve real-world problems using LLMs</td>
<td> </td>
<td></td>
<td><b>Final Project <font color="red">Presentation</font></b></td>
<td>Junying Chen and Ke Ji</td>
</tr>
</tbody>
</table>
</div>
<!-- ---- -->
<div class="sechighlight">
<div class="container sec">
<h2><b>Grading Policy (CSC 6203)</b></h2>
<hr>
<div id="coursedesc">
<h3></h3>
<h4>Assignments (40%)</h4>
<ul>
<li><b>Assignment 1 (20%)</b>: Using API for testing prompt engineering </li>
<li><b>Assignment 2 (20%)</b>: A toy LLM application</li>
Both assignments need a report and code attachment if it has coding. See the relevant evalution
criterion as the final project.
</ul>
<h4>Final project (55%)</h4>
<p>The final project consists of two parts: <b>Project Presentation (15%)</b> and <b>Project Report
(40%)</b> .</p>
<ul>
<li><b>Project Presentation (15%)</b>: You are required to design your project poster using the
specified <a
href="https://docs.google.com/presentation/d/1pBJuB-wazGyGHTiDNQ6msihS2cyyZDYL71VgE6o3FrE/edit#slide=id.p1">Poster
template</a>. Your poster presentation will be rated by at least 3 experts (TAs and at
least one external professor or scientist from industry). The average rating will be the
final credit.</li>
<ul>
<li><b> Content quality (5%)</b>: Well-presented posters or slides are highly valued.</li>
<li><b> Oral presentation (5%)</b>: Clear and enthusiastic speaking is encouraged. </li>
<li><b> Overall subjective assesment (5%)</b>: Although subjective assesment might be
biased, it happens everywhere! </li>
</ul>
<li><b>Project report (40%)</b>: The project report will be publicly available after the final
poster
session. Please let us know if you don't wish so.</li>
<ul>
<li><b>Technical excitement (15%)</b>: It is encouraged to do something that is either
interesting or useful! </li>
<li><b>Technical soundness (15%)</b>: A) discuss the motivation on
why you work this project and your algorithm or approach. Even you are reproducing a
published
paper, you should have your own motivation. B) Cite existing related work. C) Present
your algorithms or systems for your project. Provide
key information for reviewers to judge whether it is technically correct. D) Provide
reasonable evaluation protocol, it should be detailed to contexualize your results;
E)Report quantitative results and include qualitative evaluation. Analyze and understand
your system by inspecting key outputs and intermediate results. Discuss
how it works, when it succeeds and when it fails, and try to interpret why it works and
why not. </li>
<li><b>Clarity in writing (5%)</b>: The report is written in a precise and concise manner so
the
report can be easily understood. </li>
<li><b>Indivisual contribution (5%)</b>: This is based on individual contribution, probably
on a subjective basis. </li>
</ul>
<li><b>Bonus and penalty</b> Note that the project credit is capped at 55%</li>
<ul>
<li><b>TA favorites (2%)</b>: If one of TAs nominates the project as his/her favorite, the
involved students would get 1% bonus credit. Each TA could nominate one and he or she
could reserve his/her nomination. This credict could only be obtained once. </li>
<li><b>Instructor favorites (1%)</b>: If the instructor nominates the project as his/her
favorite, the involved students would get 1% bonus credit. Instructor could nominate at
most three projects. One could get both TA favorites and Instructor favorites. </li>
<li><b>Project early-bird bonus (2%)</b>: If you submit the project report by the early
submission due date, 2%
bonus credit will be entitled. </li>
<li><b>Code reproducibility bonus (1%)</b>: One could obtain this If TAs think they could
easily reproduce your results based on the provide material.</li>
<li><b>Ethics concerns (-1%)</b>: If there are any serious ethics concerns by the ethics
committee (The instructor and all TAs), the project would get 1% penalty. </li>
</ul>
</ul>
<h4>Participation (5%)</h4>
<p>Here are some ways to earn the participation credit, which is capped at 5%. </p>
<ul>
<li><b>Attending guest lectures</b>: In the second half of the course, we have four invited
speakers. We
encourage students to attend the guest lectures and participate in Q&A. All students get
0.75% per
guest lecture (in total 3%) for either attending in person, or by writing a guest lecture
report if
they attend remotely or watch the recording. </li>
<li><b>Completing feedback surveys</b>: We will send out two feedback surveys during the
semester to
</li>
<li><b>User Study</b>: Students are welcone to conduct user study upon their interest; this is
not mandatory (thus it does not affect final marks).</li>
<li><b>Course and Teaching Evaluation (CTE)</b>: The school will send requests for CTE to all
students.
The CTE is worth 1% credit.</li>
<!-- <li><b>Slack participation</b>: The top 10 contributors (10 from CSC3100 and 10 from MDS6002) to slack will get 1%; others will get credit in propotion to the 10th contributor. </li>
-->
<li><b>Volunteer credit (1%)</b>: TAs/instuctor can nominate students for a volunteer credit for
those
who help the poster session organization, or help answer questions from other students (not
writing
assignments). </li>
</ul>
<h3>Late Policy</h3>
<p>The penalty is 0.5% off the final course grade for each late day.</p>
</div>
</div>
</div>
</div>
<div class="">
<div class="container sec"> </div>
<!-- <hr /> -->
</div>
<!-- jQuery and Boostrap -->
<script src="./js/jquery.min.js"></script>
<script src="./js/bootstrap.min.js"></script>
<div class="container sec">
<h2><b>Acknowledgement</b></h2>
<hr />
<!-- https://github.com/LLM-Course/LLM-course.github.io -->
<p> We borrowed some concepts and the website template from <a
href="https://slpcourse.github.io/">[CSC3160/MDS6002] </a> where Prof. Zhizheng Wu is the instructor.
</p>
<p> Website github repo is <a href="https://github.com/LLM-Course/LLM-course.github.io">[here] </a>.</p>
</div>
</body>
</html>