-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPoint_cloud_classification.py
379 lines (312 loc) · 12.6 KB
/
Point_cloud_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 30 13:25:55 2021
@author: M
"""
import os
import torch
import json
import h5py
from glob import glob
import numpy as np
import torch.utils.data as data
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from gtda.homology import VietorisRipsPersistence
from gtda.diagrams import PersistenceEntropy, Amplitude
from scipy.spatial import Delaunay
from scipy.spatial.qhull import QhullError
import itertools
import networkx as nx
import openml
from gtda.plotting import plot_point_cloud
from sklearn.neural_network import MLPClassifier
from karateclub import FeatherGraph
from tqdm import tqdm
from mapper import Mappe
shapenetpart_seg_num = [4, 2, 2, 4, 4, 3, 3, 2, 4, 2, 6, 2, 3, 3, 3, 3]
shapenetpart_seg_start_index = [0, 4, 6, 8, 12, 16, 19, 22, 24, 28, 30, 36, 38, 41, 44, 47]
def translate_pointcloud(pointcloud):
xyz1 = np.random.uniform(low=2./3., high=3./2., size=[3])
xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3])
translated_pointcloud = np.add(np.multiply(pointcloud, xyz1), xyz2).astype('float32')
return translated_pointcloud
def jitter_pointcloud(pointcloud, sigma=0.01, clip=0.02):
N, C = pointcloud.shape
pointcloud += np.clip(sigma * np.random.randn(N, C), -1*clip, clip)
return pointcloud
def rotate_pointcloud(pointcloud):
theta = np.pi*2 * np.random.rand()
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta)],[np.sin(theta), np.cos(theta)]])
pointcloud[:,[0,2]] = pointcloud[:,[0,2]].dot(rotation_matrix) # random rotation (x,z)
return pointcloud
class Dataset(data.Dataset):
def __init__(self, root, dataset_name='modelnet40', class_choice=None,
num_points=2048, split='train', load_name=True, load_file=True,
segmentation=False, random_rotate=False, random_jitter=False,
random_translate=False):
assert dataset_name.lower() in ['shapenetcorev2', 'shapenetpart',
'modelnet10', 'modelnet40', 'shapenetpartpart']
assert num_points <= 2048
if dataset_name in ['shapenetcorev2', 'shapenetpart', 'shapenetpartpart']:
assert split.lower() in ['train', 'test', 'val', 'trainval', 'all']
else:
assert split.lower() in ['train', 'test', 'all']
if dataset_name not in ['shapenetcorev2', 'shapenetpart'] and segmentation == True:
raise AssertionError
self.root = os.path.join(root, dataset_name + '_' + '*hdf5_2048')
self.dataset_name = dataset_name
self.class_choice = class_choice
self.num_points = num_points
self.split = split
self.load_name = load_name
self.load_file = load_file
self.segmentation = segmentation
self.random_rotate = random_rotate
self.random_jitter = random_jitter
self.random_translate = random_translate
self.path_h5py_all = []
self.path_name_all = []
self.path_file_all = []
if self.split in ['train','trainval','all']:
self.get_path('train')
if self.dataset_name in ['shapenetcorev2', 'shapenetpart', 'shapenetpartpart']:
if self.split in ['val','trainval','all']:
self.get_path('val')
if self.split in ['test', 'all']:
self.get_path('test')
self.path_h5py_all.sort()
data, label, seg = self.load_h5py(self.path_h5py_all)
if self.load_name or self.class_choice != None:
self.path_name_all.sort()
self.name = self.load_json(self.path_name_all) # load label name
if self.load_file:
self.path_file_all.sort()
self.file = self.load_json(self.path_file_all) # load file name
self.data = np.concatenate(data, axis=0)
self.label = np.concatenate(label, axis=0)
if self.segmentation:
self.seg = np.concatenate(seg, axis=0)
if self.class_choice != None:
indices = (self.name == class_choice).squeeze()
self.data = self.data[indices]
self.label = self.label[indices]
if self.segmentation:
self.seg = self.seg[indices]
self.seg_num_all = shapenetpart_seg_num[id_choice]
self.seg_start_index = shapenetpart_seg_start_index[id_choice]
if self.load_file:
self.file = self.file[indices]
elif self.segmentation:
self.seg_num_all = 50
self.seg_start_index = 0
def get_path(self, type):
path_h5py = os.path.join(self.root, '*%s*.h5'%type)
self.path_h5py_all += glob(path_h5py)
if self.load_name:
path_json = os.path.join(self.root, '%s*_id2name.json'%type)
self.path_name_all += glob(path_json)
if self.load_file:
path_json = os.path.join(self.root, '%s*_id2file.json'%type)
self.path_file_all += glob(path_json)
return
def load_h5py(self, path):
all_data = []
all_label = []
all_seg = []
for h5_name in path:
f = h5py.File(h5_name, 'r+')
data = f['data'][:].astype('float32')
label = f['label'][:].astype('int64')
if self.segmentation:
seg = f['seg'][:].astype('int64')
f.close()
all_data.append(data)
all_label.append(label)
if self.segmentation:
all_seg.append(seg)
return all_data, all_label, all_seg
def load_json(self, path):
all_data = []
for json_name in path:
j = open(json_name, 'r+')
data = json.load(j)
all_data += data
return all_data
def __getitem__(self, item):
point_set = self.data[item][:self.num_points]
label = self.label[item]
if self.load_name:
name = self.name[item] # get label name
if self.load_file:
file = self.file[item] # get file name
if self.random_rotate:
point_set = rotate_pointcloud(point_set)
if self.random_jitter:
point_set = jitter_pointcloud(point_set)
if self.random_translate:
point_set = translate_pointcloud(point_set)
# convert numpy array to pytorch Tensor
point_set = torch.from_numpy(point_set)
label = torch.from_numpy(np.array([label]).astype(np.int64))
label = label.squeeze(0)
if self.segmentation:
seg = self.seg[item]
seg = torch.from_numpy(seg)
return point_set, label, seg, name, file
else:
return point_set, label, name, file
def __len__(self):
return self.data.shape[0]
def delaunay_triangulate(P: np.ndarray):
"""
Perform delaunay triangulation on point set P.
:param P: point set
:return: adjacency matrix A
"""
n = P.shape[0]
if n < 3:
A = fully_connect(P)
else:
try:
d = Delaunay(P)
#assert d.coplanar.size == 0, 'Delaunay triangulation omits points.'
A = np.zeros((n, n))
for simplex in d.simplices:
for pair in itertools.permutations(simplex, 2):
A[pair] = 1
except QhullError as err:
print('Delaunay triangulation error detected. Return fully-connected graph.')
print('Traceback:')
print(err)
A = fully_connect(P)
return A
def fully_connect(P: np.ndarray, thre=None):
"""
Fully connect a graph.
:param P: point set
:param thre: edges that are longer than this threshold will be removed
:return: adjacency matrix A
"""
n = P.shape[0]
A = np.ones((n, n)) - np.eye(n)
if thre is not None:
xyz = P[:, :3]
dist = -2 * xyz @ xyz.T
dist += np.sum(xyz ** 2, axis=-1)[:, None]
dist += np.sum(xyz ** 2, axis=-1)[None, :]
PP_dist_flag = dist > (thre**2)
# P_rep = np.expand_dims(P[:, :3], axis=1).repeat(n, axis=1)
# PP_dist_flag = np.sqrt(np.sum(np.square(P_rep - P[None,:, :3]), axis=2)) > thre
A[PP_dist_flag] = 0
# for i in range(n):
# for j in range(i):
# if np.linalg.norm(P[i] - P[j]) > thre:
# A[i, j] = 0
# A[j, i] = 0
return A
if __name__ == '__main__':
root = 'C:\\Users\\M'
# choose dataset name from 'shapenetcorev2', 'shapenetpart', 'modelnet40' and 'modelnet10'
dataset_name = 'modelnet10'
# choose split type from 'train', 'test', 'all', 'trainval' and 'val'
# only shapenetcorev2 and shapenetpart dataset support 'trainval' and 'val'
#split = 'train'
train = Dataset(root=root, dataset_name=dataset_name, num_points=2048//2, split='train')
test = Dataset(root=root, dataset_name=dataset_name, num_points=2048//2, split='test')
N_train , N_test = train.__len__() , test.__len__()
print('train ',N_train,' test ',N_test)
'''
item = np.random.randint(0,3990)
print(item)
ps, lb, n, f = d[item]
print(lb)
ps = ps.detach().numpy()
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.scatter(ps[:,0] , ps[:,1] , ps[: , 2])
plt.show()
'''
train_data , test_data , train_label , test_label = list() , list() , list(), list()
def emb (g):
emd = []
embedder = FeatherGraph()
g = nx.Graph(g)
if nx.is_connected(g):
relabel = { n : i for i,n in enumerate(list(g))}
g = nx.relabel_nodes(g , relabel)
embedder.fit([g])
emd = embedder.get_embedding()[0]
else:
CC = nx.connected_components(g)
embCC = []
for c in list(CC):
relabel = { n : i for i,n in enumerate(c)}
sub = nx.subgraph(g,nbunch = c)
sub = nx.relabel_nodes(sub , relabel)
embedder.fit([sub])
embCC.append(embedder.get_embedding()[0])
embCC = np.array(embCC)
embCC = np.concatenate(tuple(embCC) , axis = 0)
embCC = np.random.choice(embCC, size=500, replace=False)
emd = embCC
return emd
for i in tqdm(range(N_train)):
data = train[i][0].detach().numpy()
#A = delaunay_triangulate(train[i][0].detach().numpy())
#g = nx.from_numpy_matrix(A)
g = Mappe(data , 20)
train_data.append(emb(g))
train_label.append(train[i][1].detach().numpy()[0])
for i in tqdm(range(N_test)):
data = test[i][0].detach().numpy()
#A = delaunay_triangulate(test[i][0].detach().numpy())
#g = nx.from_numpy_matrix(A)
g = Mappe(data , 20)
test_data.append(emb(g))
test_label.append(test[i][1].detach().numpy()[0])
train_data = np.array(train_data)
train_label = np.array(train_label)
test_data = np.array(test_data)
test_label = np.array(test_label)
print(test_data.shape,' ',test_label.shape)
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
model.fit(train_data, train_label)
print('Fitting...')
print('Our ACC of RTrees is:...')
print(model.score(test_data, test_label))
clf = MLPClassifier(random_state=42, max_iter=3000)
clf.fit(train_data, train_label)
print('Fitting...')
print('Our ACC of MLP is:...')
print(clf.score(test_data, test_label))
'''
print('Data finished...!')
VR = VietorisRipsPersistence(homology_dimensions = (0,1,2,3))
diagrams_train = VR.fit_transform(train_data)
print('diagrams_train finished ...')
diagrams_test = VR.fit_transform(test_data)
print('diagrams_test finished...')
PE = PersistenceEntropy()
NP = Amplitude()
F_train = PE.fit_transform(diagrams_train)
N_train = NP.fit_transform(diagrams_train)
F_train = np.concatenate((F_train,N_train) , axis = 1)
print('F_train finished...')
F_test = PE.fit_transform(diagrams_test)
N_test = NP.fit_transform(diagrams_test)
F_test = np.concatenate((F_test , N_test) , axis = 1)
print('F_test finished...')
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
model.fit(F_train, train_label)
print('Fitting...')
print('Our ACC of RTrees is:...')
print(model.score(F_test, test_label))
clf = MLPClassifier(random_state=1, max_iter=1000)
clf.fit(F_train, train_label)
print('Fitting...')
print('Our ACC of MLP is:...')
print(clf.score(F_test, test_label))
'''