-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_setup.R
230 lines (214 loc) · 6.03 KB
/
_setup.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# setup.R
base.dir <- "" # SET WORKING DIRECTORY
if (getwd() != base.dir) { setwd(base.dir) }
source(".Rprofile")
knitr::opts_chunk$set(
echo = FALSE,
warning = FALSE,
message = FALSE,
dpi = 300
)
source("_packages_and_sources.R")
theme_set(theme_cowplot())
my.theme <- theme_update(
legend.position = "top",
legend.box.just = "left",
legend.text = element_text(size = 8),
legend.title = element_text(size = 10),
legend.justification = "left",
legend.key.size = unit(0.7, "line"),
plot.caption = element_text(hjust = 0, size = 8)
)
options(knitr.kable.NA = "")
options(tidymodels.dark = TRUE)
max.save.size <- 10000
to.run <- c("req.first", "tax.alpha", "beta", "lda", "network", "rand.forest")
to.skip <- c()
assign.redo(to.run, state = T)
if (length(to.skip) > 0) { set.redo.false(to.skip) }
taxa.otu.combined.mD.file <- file.path(dirs$mds, "") ### SET APPROPRIATE FILE NAME
func.otu.combined.mD.file <- file.path(dirs$mds, "") ### SET APPROPRIATE FILE NAME
internalID.col.name <- "" # name of internal sample IDs column
externalID.col.name <- "" # name of internal sample IDs column
diagnosis.col.name <- "" # name of PD diagnosis column
wkly.BMs.col.name <- "" # name of number weekly BMs column
flossing.col.name <- "" # name of flossing frequency column
age.col.name <- "" # name of current age column
batchID.col.name <- "" # name of batch ID column
prev.cut <- 0.1
abund.cut <- 0.01 / 100
seed <- 42
sources <- c("saliva", "stool") %>% set_names()
taxon.lvls <- c("Taxon", "Species", "Genus") %>% set_names()
func.lvls <- c("KO", "Module", "Pathway") %>% set_names()
feature.sets <- list(taxon = taxon.lvls, func = func.lvls)
focal.sets <- lapply(feature.sets, `[`, 1)
alphas <- c("Chao1", "InvSimpson") %>% set_names()
betas <- c("Sorensen", "Bray-Curtis") %>% set_names()
pd.statuses <- c("Control", "PD case") %>% set_names()
cmb.methods <- c("split", "lumped") %>% set_names()
agg.methods <- list(Taxon.Species = taxon.lvls[1:2], Taxon.Species.Genus = taxon.lvls)
if (file.exists(files$ctrl_vars)) {
ctrl.vars <- readRDS(files$ctrl_vars)
} else {
rlang::inform(
paste(
"File", files$ctrl_vars, "doesn't exist; make sure to run analysis file 01_required_first.R before proceeding with other analyses"
)
)
}
para.cores <- 50
na.color <- "grey50"
age.binwd <- 5
create.scale <- function(
type = c("color", "fill"),
palette.source = c("brewer", "sjplot", "manual"),
...
) {
switch(
type,
color = switch(
palette.source,
brewer = scale_color_brewer(...),
sjplot = scale_color_sjplot(...),
manual = scale_color_manual(...)
),
fill = switch(
palette.source,
brewer = scale_fill_brewer(...),
sjplot = scale_fill_sjplot(...),
manual = scale_fill_manual(...)
)
)
}
color.scales <- lapply(
setNames(c("color", "fill"), c("color", "fill")),
function(scale.type) {
list(
Diagnosis = create.scale(
type = scale.type,
palette.source = "manual",
name = "PD diagnosis",
values = c("#0072B2", "#CC79A7"),
na.value = na.color
),
Floss_freq = create.scale(
type = scale.type,
palette.source = "sjplot",
name = "Floss teeth freq.",
palette = "ipsum",
na.value = na.color
),
Bristol_stool_type_4 = create.scale(
type = scale.type,
palette.source = "brewer",
name = "Bristol score 4 freq.",
palette = "Set2",
na.value = na.color
),
Bristol_stool_type_6 = create.scale(
type = scale.type,
palette.source = "brewer",
name = "Bristol score 6 freq.",
palette = "Dark2",
na.value = na.color
),
Number_weekly_BMs = create.scale(
type = scale.type,
palette.source = "sjplot",
name = "Num. BMs weekly",
palette = "system",
na.value = na.color
),
Laxative_past_month = create.scale(
type = scale.type,
palette.source = "manual",
name = "Used laxative past month?",
values = brewer.pal(4, name = "Set2")[3:4],
na.value = na.color
),
Age = create.scale(
type = scale.type,
palette.source = "brewer",
name = "Age",
palette = "Set1",
na.value = na.color
)
) %>% return()
})
centr.shapes <- c(3, 4, 8, 2, 6, 0, 5, 1)
plurals <- data.table(
Singular = c(
"Taxon",
"Species",
"Genus",
"KO",
"Module",
"Pathway"
),
Plural = c(
"OTUs",
"Species",
"Genera",
"KOs",
"Modules",
"Pathways"
)
)
setkey(plurals, Singular)
assignments <- readRDS(taxa.otu.combined.mD.file) %>%
get.assignments()
names(assignments) %<>% str_replace("OTU", "Taxon")
families <- sort(unique(assignments$Family))
exclude <- c(
"gray",
"grey",
"white",
"light",
"pale",
"ivory",
"snow",
"azure",
"honeydew",
"cornsilk",
"beige",
"seagreen",
"lemon",
"linen",
"iceblue",
"seashell",
"oldlace"
) %>% paste(collapse = "|")
rand.colors <- grDevices::colors()[
grep(exclude, grDevices::colors(), invert = T)
]
set.seed(seed * 4)
fam.colors <- data.table(
Family = families,
Color = sample(rand.colors, size = length(families), replace = F)
)
setkey(fam.colors, Family)
assignments <- readRDS(func.otu.combined.mD.file) %>%
get.assignments()
pathways <- kegg.dicts$Pathway[sort(unique(assignments$Pathway))]$Path.name
path.colors <- data.table(
Pathway = pathways,
Color = sample(rand.colors, size = length(pathways), replace = F)
)
setkey(path.colors, Pathway)
brite.classes <- sort(unique(kegg.links$ko.class$Brite.class))
set.seed(seed * 6)
brite.class.colors <- data.table(
Class = brite.classes,
Color = sample(rand.colors, size = length(brite.classes), replace = F)
)
setkey(brite.class.colors, Class)
mod.path.classes <- c(kegg.links$mod.class$Class, kegg.links$path.class$Class) %>%
unique() %>%
sort()
set.seed(seed * 7)
class.colors <- data.table(
Class = mod.path.classes,
Color = sample(rand.colors, size = length(mod.path.classes), replace = F)
)
setkey(class.colors, Class)