-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslides.tex
251 lines (229 loc) · 9.47 KB
/
slides.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
\documentclass{beamer}
\usetheme{default}
\usepackage{amsmath, amsfonts, amssymb, graphics}
\usepackage{hyperref}
\newcommand{\nextslide}{$\dagger$}
\newcommand{\nextslides}{$\ddagger$}
\newcommand{\fuzzy}{\parallel}
\newcommand{\nfuzzy}{\nparallel}
\renewcommand{\star}{\mathord{*}}
\newcommand{\up}{\mathord{\uparrow}}
\newcommand{\doubleup}{\mathord{\Uparrow}}
\newcommand{\down}{\mathord{\downarrow}}
\newcommand{\doubledown}{\mathord{\Downarrow}}
\usepackage{xcolor}
\definecolor{HRed}{RGB}{204,51,51}
\usepackage{tikzit}
\input{hackenbush.tikzstyles}
\usetikzlibrary{decorations.pathreplacing}
\usetikzlibrary{arrows}
\usetikzlibrary{shapes.symbols}
\tikzset{
invisible/.style={opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}} % \pgfkeysalso doesn't change the path
},
}
\newcommand{\cut}[1]{#1}
\title{Combinatorial Game Theory\\\& The Fuzzy Consequences}
\author{Isaac Beh}
\date{}
\begin{document}
\begin{frame}
\maketitle
\end{frame}
\begin{frame}{Introduction to Hackenbush}
\centering
\tikzfig{HackenbushPositions/InitialBush}
\end{frame}
\begin{frame}[noframenumbering]{Introduction to Hackenbush}
\centering
\onslide<12>{\textcolor{HRed}{Red Wins\\}}
\tikzfig{HackenbushPositions/InitialSpread}
\end{frame}
\begin{frame}{Basic Strategy \& Intuition}
\centering
\tikzfig{HackenbushPositions/Example1}
\end{frame}
\begin{frame}{The Integers}
\centering
\tikzfig{HackenbushPositions/Integers}\\
\bigskip
{\huge$\alt<1>{1}{\alt<2>{2}{\alt<3>{5}{\alt<4>{4}{3}}}}$}\\
\medskip
\visible<6>{$3>0$ so Blue wins}
\end{frame}
\begin{frame}{A Non-Integer Value}
\centering
\tikzfig{HackenbushPositions/Half}\\
\bigskip
{\huge$\alt<1>{a}{\alt<2>{-1+a}{-1+a+a}}$}\\
\medskip
\alt<1>{Blue wins, so $a>0$}{\alt<2>{Red wins, so $-1+a<0$ and $a<1$}{Second player wins, so $-1+a+a=0$ and $a=\frac{1}{2}$}}
\end{frame}
\begin{frame}{Tweedle-Dum Tweedle-Dee}
\centering
\tikzfig{HackenbushPositions/NegativeHalf}
\end{frame}
\begin{frame}[noframenumbering]{Tweedle-Dum Tweedle-Dee}
\centering
\only<1-7>{
\onslide<7>{Second Player Wins\\}
\tikzfig{HackenbushPositions/Flowers}
}
\only<8>{\Huge$$-x + x = 0$$}
\end{frame}
\begin{frame}{The Reals}
\centering
\tikzfig{HackenbushPositions/Values}
\end{frame}
\begin{frame}[noframenumbering]{The Reals}
\centering
\tikzfig{HackenbushPositions/Decimal1} \quad {$\frac{5}{16}$}\\
\bigskip
\pause
\tikzfig{HackenbushPositions/Decimal2} \quad {$2+\frac{1}{4} = \frac{9}{4}$}\\
\bigskip
\pause
\tikzfig{HackenbushPositions/Decimal3} \quad {$\frac{1}{3}$}
\end{frame}
\begin{frame}[noframenumbering]{The Reals}
\centering
\scalebox{0.8}{\tikzfig{HackenbushPositions/RationalNumberLine}}
\end{frame}
\begin{frame}{Raising the Temperature \& Getting Fuzzy}
\centering
\tikzfig{HackenbushPositions/GreenEdge}\\
\bigskip
{\huge$\alt<1>{c}{\alt<2>{-1+c}{\alt<3>{-\frac{1}{2^n}+c}{\alt<4>{c+1}{\alt<5>{c+\frac{1}{2^n}}{\alt<6>{c}{\star}}}}}}$}\\
\medskip
\alt<1>{}{\alt<2>{Red wins, so $-1+c<0$ and $c<1$}{\alt<3>{Red wins, so $-\frac{1}{2^n}+c<0$ and $a<\frac{1}{2}$}{\alt<4>{Blue wins, so $c+1>0$ and $-1<c$}{\alt<5>{Blue wins, so $c+\frac{1}{2^n}>0$ and $-\frac{1}{2^n}<c$}{\alt<6>{$-\frac{1}{2^n}<c<\frac{1}{2^n}$ for all $n\in\mathbb{N}$}{$\star\fuzzy0$}}}}}}
\only<7>{}
\end{frame}
\begin{frame}[noframenumbering]{Raising the Temperature \& Getting Fuzzy}
\ctikzfig{HackenbushPositions/FuzzyStarZoomOutNumberline}
\medspace\pause
\begin{table}[]
\begin{tabular}{@{}l|ll@{}}
$A<B$ & $B-A>0$ & or Blue always wins $B-A$ \\
$A=B$ & $B-A=0$ & or the second player wins $B-A$ \\
$A>B$ & $B-A<0$ & or Red always wins $B-A$ \\
$A\fuzzy B$ & $B-A\fuzzy 0$ & or the first player wins $B-A$
\end{tabular}
\end{table}
\end{frame}
\begin{frame}{Deeper into the Fuzz}
\centering
\tikzfig{HackenbushPositions/Upstar}\\
\bigskip
{\huge$\alt<1>{d}{\alt<2>{d+\frac{1}{2^n}}{\alt<3>{-\frac{1}{2^n}+d}{d}}}$}\\
\medskip
\alt<1>{}{\alt<2>{Blue wins, so $d+\frac{1}{2^n}>0$ and $-\frac{1}{2^n}<d$}{\alt<3>{Red wins, so $-\frac{1}{2^n}+d<0$ and $d<\frac{1}{2^n}$}{\alt<4>{$-\frac{1}{2^n}<d<\frac{1}{2^n}$ for all $n\in\mathbb{N}$}{$d\fuzzy 0$}}}}
\only<5>{}
\end{frame}
\begin{frame}[noframenumbering]{Deeper into the Fuzz}
\centering
\tikzfig{HackenbushPositions/TwoUpstars}\\
\bigskip
{\huge$d+d$}\\
\medskip
Blue wins, so $d+d>0$ and thus $d\neq 0$.
\end{frame}
\begin{frame}{The Ups and Downs}
\centering
\tikzfig{HackenbushPositions/Up}\\
\bigskip
{\huge$\alt<1>{f}{\alt<2>{-\frac{1}{2^n}+f}{\alt<3>{f}{\up}}}$}\\
\medskip
\alt<1>{Blue wins, so $f>0$}{\alt<2>{Red wins, so $-\frac{1}{2^n}+f<0$ and $f<\frac{1}{2^n}$}{\alt<3>{$0<f<\frac{1}{2^n}$ for all $n\in\mathbb{N}$}{$0<\up<\frac{1}{2^n}$ for all $n\in\mathbb{N}$}}}
\only<5>{}
\end{frame}
\begin{frame}[noframenumbering]{The Ups and Downs}
\centering
\begin{itemize}
\setlength{\itemsep}{20pt}
\item $\down:=-\up$
\item $\doubleup:=\up+\up$ with $\doubleup - \up = \up > 0$ so $\doubleup > \up$
\item $\doubledown:=\down+\down$
\item $n.\up:=\overbrace{\up+\up+\cdots+\up}^{n\text{ times}}$
\item $n.\down:=\overbrace{\down+\down+\cdots+\down}^{n\text{ times}}.$
\end{itemize}
\pause
\ctikzfig{HackenbushPositions/Numberline}
\end{frame}
\begin{frame}{More Fuzziness with $\up\star$}
\centering
\begin{itemize}
\newcommand{\scalefactor}{0.4}
\setlength{\itemsep}{20pt}
\item $\up\star:=\up+\star = \up-\star = \scalebox{\scalefactor}{\tikzfig{HackenbushPositions/UpSmall}} - \scalebox{\scalefactor}{\tikzfig{HackenbushPositions/StarSmall}} = \scalebox{\scalefactor}{\tikzfig{HackenbushPositions/UpstarSmall}}$
\item $\down\star:=\down+\star$
\item $n.\up\star:=n.\up+\star$
\item $n.\down\star:=n.\down+\star$
\end{itemize}
\end{frame}
\begin{frame}[noframenumbering]{More Fuzziness with $\up\star$}
\centering
\begin{itemize}
\newcommand{\scalefactor}{0.4}
\setlength{\itemsep}{20pt}
\item $\up\star - \up = \star \fuzzy 0$, so $\up\star \fuzzy \up$
\item $\up\star - \down = \up + \star + \up = \doubleup\star > 0$, so $\up\star>\down$
\item $\up\star - \doubleup = \star - \up = \down\star \fuzzy 0$, so $\up\star\fuzzy \doubleup$
\item $\up\star - 3.\up = \star - \doubleup = \doubledown\star < 0$, so $\up\star< 3.\up$
\end{itemize}
\pause
\ctikzfig{HackenbushPositions/FuzzyNumberline}
\pause
\ctikzfig{HackenbushPositions/FuzzyStarNumberline}
\pause
\ctikzfig{HackenbushPositions/FuzzyDownStarNumberline}
\end{frame}
\begin{frame}{Other Strange Creatures}
\begin{itemize}
\item Other games must be:
\begin{itemize}
\item 2-player
\item Deterministic
\item No hidden information
\item Finite
\end{itemize}
\newcommand{\scalefactor}{0.4}
\item Games have braket notation like: $$\up\star = \scalebox{\scalefactor}{\tikzfig{HackenbushPositions/UpstarSmall}} = \left\langle \scalebox{\scalefactor}{\tikzfig{HackenbushPositions/EmptySmall}} \middle| \scalebox{\scalefactor}{\tikzfig{HackenbushPositions/StarSmall}}, \scalebox{\scalefactor}{\tikzfig{HackenbushPositions/EmptySmall}} \right\rangle = \left\langle 0 \middle| \star, 0 \right\rangle$$
\item $\star n := \langle\star(n-1),\ldots,\star2,\star|\star(n-1),\ldots,\star2,\star\rangle$ and $\star n + \star m = \star (n\text{ XOR }m)$
\ctikzfig{HackenbushPositions/FuzzyStarnNumberline}
\end{itemize}
\end{frame}
\begin{frame}[noframenumbering]{Other Strange Creatures}
\begin{itemize}
\newcommand{\scalefactor}{0.4}
\item \ctikzfig{HackenbushPositions/FuzzyPmNumberline}
\item Hot games incentivise quick action. The temperature of the game is equal to the advantage of going first and is determined from its thermographs.
\item The hottest components are the most attractive.
\item Multiplication is distributive and commutative.
\item Games are not closed under addition, e.g. \scalebox{\scalefactor}{\tikzfig{HackenbushPositions/UnclosedSmall}}
\item Finite games are closed and form a field.
\item Infinite game results rely upon the set theory axioms.
\item ``Tiny" and ``miny" ($+_G$ and $-_G$) are the smallest possible positive and negative values.
\item Every small valued game has an atomic weight or uppitiness, which is how many $\up$'s it is approximately equal to.
\end{itemize}
\end{frame}
\begin{frame}{Applications}
\begin{itemize}
\setlength{\itemsep}{20pt}
\item Pleasure and aesthetic beauty
\item Go
\item Timetabling?
\end{itemize}
\end{frame}
\begin{frame}{Further Reading/Viewing}
\begin{itemize}
\setlength{\itemsep}{20pt}
\item ``Winning Ways for Your Mathematical Plays" by Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy
\item \href{https://www.youtube.com/watch?v=ZYj4NkeGPdM}{HACKENBUSH: a window to a new world of math} by Owen Maitzen
\item \href{https://www.youtube.com/channel/UCF2fIXCrN_aOfluJ-8zEbeA}{Elwyn Berlekamp's channel}
\item \url{https://hackenbush.xyz/}
\end{itemize}
\end{frame}
\end{document}