-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_glue.py
328 lines (284 loc) · 12.9 KB
/
train_glue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import json
import logging
import os
import math
import gc
import torch
from ml_swissknife import utils
from transformers import HfArgumentParser, MODEL_WITH_LM_HEAD_MAPPING, set_seed
from transformers.models.gpt2 import GPT2Tokenizer
from transformers.optimization import get_linear_schedule_with_warmup
from fastDP import PrivacyEngine
from DiceSGD.optimizers_utils import PrivacyEngine_Dice
from DiceSGD.compiled_args import (DataTrainingArguments, ModelArguments, PrivacyArguments,
TrainingArguments)
from DiceSGD.misc import get_all_datasets, get_prompt_dataset
from DiceSGD.trainer import Trainer
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def main():
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, TrainingArguments, PrivacyArguments)
)
model_args, data_args, training_args, privacy_args = parser.parse_args_into_dataclasses()
model_args: ModelArguments
data_args: DataTrainingArguments
training_args: TrainingArguments
privacy_args: PrivacyArguments
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
"Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
"or remove the --do_eval argument."
)
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use "
f"--overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(training_args.seed)
# Debug mode
if training_args.debug:
import warnings
warnings.filterwarnings("error")
# Low rank models need special models!
from transformers.models.gpt2 import GPT2Config, GPT2LMHeadModel
# Config.
config = GPT2Config.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
config.return_dict = True
config.tie_word_embeddings = False
# Tokenizer; `bos_token` and `eos_token` is the same for GPT2; both are 50256.
tokenizer = GPT2Tokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
# Model.
gpt2 = GPT2LMHeadModel.from_pretrained(
model_args.model_name_or_path,
config=config,
cache_dir=model_args.cache_dir,
)
print(f'base gpt2 model: {model_args.model_name_or_path}')
print(gpt2)
# Clone the embedding into the lm_head for better initialization.
lm_head = gpt2.get_output_embeddings()
embedding = gpt2.get_input_embeddings()
lm_head.weight.data.copy_(embedding.weight.data)
print(f'Cloning initial embedding into lm_head, '
f'checking norms... \n'
f'\tlm_head: {lm_head.weight.norm()}, embedding: {embedding.weight.norm()}')
torch.testing.assert_allclose(lm_head.weight, embedding.weight)
del lm_head, embedding
if data_args.block_size <= 0:
data_args.block_size = tokenizer.model_max_length
else:
data_args.block_size = min(data_args.block_size, tokenizer.model_max_length)
# Adjust tokenizer and model embeddings.
print('adapt tokenizer to include [PAD]')
print(f'before len(tokenizer) = {len(tokenizer)}')
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
print(f'after len(tokenizer) = {len(tokenizer)}')
print('tokenizer.eos_token:', tokenizer.eos_token, tokenizer.eos_token_id)
print('tokenizer.bos_token:', tokenizer.bos_token, tokenizer.bos_token_id)
print('adapt the size of lm_head and input_embeddings to include [PAD]')
print('use avg-based initialization')
input_embeddings_before = gpt2.get_input_embeddings().weight
lm_head_before = gpt2.get_output_embeddings().weight
gpt2.resize_token_embeddings(len(tokenizer))
input_embeddings_after = gpt2.get_input_embeddings().weight
lm_head_after = gpt2.get_output_embeddings().weight
print(
f'before lm_head.weight.size() = {lm_head_before.size()}, '
f'input_embeddings_before.size() = {input_embeddings_before.size()}'
)
print(
f'after lm_head.weight.size() = {lm_head_after.size()}, '
f'after input_embeddings_after.size() = {input_embeddings_after.size()}'
)
torch.testing.assert_allclose(lm_head_before, lm_head_after[:-1])
print('pre-chunk equal for lm_head')
torch.testing.assert_allclose(input_embeddings_before, input_embeddings_after[:-1])
print('pre-chunk equal for input_embeddings')
lm_head_after.data[-1] = lm_head_before.mean(dim=0)
input_embeddings_after.data[-1] = input_embeddings_before.mean(dim=0)
print('double check: ')
print('embedding size', gpt2.get_input_embeddings().weight.size())
print('lm_head size', gpt2.get_output_embeddings().weight.size())
model = gpt2
train_dataset, val_dataset, eval_dataset, data_collator = get_all_datasets(
config=config,
tokenizer=tokenizer,
data_args=data_args,
training_args=training_args,
model_args=model_args,
)
# Materialize the prompts.
generation_stuff = dict(
train_prompts=get_prompt_dataset(file_path=data_args.train_prompt_file, tokenizer=tokenizer),
val_prompts=get_prompt_dataset(file_path=data_args.val_prompt_file, tokenizer=tokenizer),
eval_prompts=get_prompt_dataset(file_path=data_args.eval_prompt_file, tokenizer=tokenizer),
)
trainer = Trainer(
model=model,
tokenizer=tokenizer,
args=training_args,
model_args=model_args,
data_args=data_args,
privacy_args=privacy_args,
train_dataset=train_dataset,
val_dataset=val_dataset,
eval_dataset=eval_dataset,
data_collator=data_collator,
generation_stuff=generation_stuff,
)
# Massage the parameters.
if model_args.attention_only:
model.requires_grad_(False)
for name, param in model.named_parameters():
if 'c_attn.weight' in name:
param.requires_grad_(True)
elif model_args.bias_only:
for name, param in model.named_parameters():
if '.bias' not in name:
param.requires_grad_(False)
if model_args.static_lm_head and hasattr(model, 'lm_head'):
model.lm_head.requires_grad_(False)
else:
model.requires_grad_(True)
if model_args.static_lm_head:
model.get_output_embeddings().requires_grad_(False)
if model_args.static_embedding:
model.get_input_embeddings().requires_grad_(False)
model.transformer.wpe.requires_grad_(False)
print(f"bias_only: {model_args.bias_only} | attention_only: {model_args.attention_only}")
params = tuple(param for param in model.parameters() if param.requires_grad)
names = tuple(name for name, param in model.named_parameters() if param.requires_grad)
num_trainable_params = sum(param.numel() for param in params)
print(f"Number of trainable params: {num_trainable_params / 1e6:.4f} million")
print(f'Number of total params: {sum(param.numel() for param in model.parameters()) / 1e6:.3f} million')
print(json.dumps(names, indent=4))
# TODO: Using a single gigantic parameter group is okay only when `weight_decay` is 0.
# Biases and LM parameters should not be decayed perhaps even with privacy.
optimizer = torch.optim.AdamW(
params=params,
lr=training_args.learning_rate,
betas=(training_args.adam_beta1, training_args.adam_beta2),
eps=training_args.adam_epsilon,
)
trainer.optimizer = optimizer
# Create the lr_scheduler.
num_update_steps_per_epoch = len(trainer.get_train_dataloader()) // trainer.args.gradient_accumulation_steps
num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
t_total = int(num_update_steps_per_epoch * trainer.args.num_train_epochs)
if training_args.lr_decay:
trainer.lr_scheduler = get_linear_schedule_with_warmup(
trainer.optimizer,
num_warmup_steps=training_args.warmup_steps,
num_training_steps=t_total,
)
else:
trainer.lr_scheduler = torch.optim.lr_scheduler.LambdaLR(trainer.optimizer, lambda _: 1.)
# Hacky way to set noise_multiplier.
if privacy_args.non_private:
privacy_args.noise_multiplier = 0.
privacy_args.per_example_max_grad_norm = None
else:
actual_batch_size = training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps
origin_params=None if model_args.bias_only or model_args.attention_only else ['wte','wpe']
if training_args.algo == 'DiceSGD':
privacy_engine = PrivacyEngine_Dice(
module=model,
batch_size=actual_batch_size,
sample_size=len(train_dataset),
epochs=training_args.num_train_epochs * int(math.log(training_args.num_train_epochs)+1) ,
max_grad_norm=privacy_args.per_example_max_grad_norm,
error_max_grad_norm=privacy_args.C2,
noise_multiplier=privacy_args.noise_multiplier,
target_epsilon=privacy_args.target_epsilon,
target_delta=privacy_args.target_delta,
accounting_mode=privacy_args.accounting_mode,
clipping_mode=privacy_args.clipping_mode,
clipping_fn=privacy_args.clipping_fn,
clipping_style=privacy_args.clipping_style,
origin_params=None #origin_params,
)
privacy_engine.attach_dice(optimizer)
else:
privacy_engine = PrivacyEngine(
module=model,
batch_size=actual_batch_size,
sample_size=len(train_dataset),
epochs=training_args.num_train_epochs,
max_grad_norm=privacy_args.per_example_max_grad_norm,
noise_multiplier=privacy_args.noise_multiplier,
target_epsilon=privacy_args.target_epsilon,
target_delta=privacy_args.target_delta,
accounting_mode=privacy_args.accounting_mode,
clipping_mode=privacy_args.clipping_mode,
clipping_fn=privacy_args.clipping_fn,
clipping_style=privacy_args.clipping_style,
origin_params=origin_params,
)
privacy_engine.attach(optimizer)
# Originally, these could have been null.
privacy_args.noise_multiplier = privacy_engine.noise_multiplier
privacy_args.target_delta = privacy_engine.target_delta
print('privacy_args: ')
print(json.dumps(privacy_args.__dict__, indent=4))
# Training.
if training_args.do_train:
all_args = {
**training_args.__dict__,
**data_args.__dict__,
**model_args.__dict__,
**privacy_args.__dict__,
}
utils.jdump(
all_args,
os.path.join(training_args.output_dir, 'argparse.json'),
default=lambda x: str(x),
)
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
logger.info("*** Train ***")
logger.info(
f"Training set size: {len(train_dataset)}, "
f"per_device_train_batch_size: {training_args.per_device_train_batch_size}, "
f"gradient_accumulation_steps: {training_args.gradient_accumulation_steps}"
)
# lxuechen: Especially so for the restored checkpoints. Don't resume...
trainer.train(model_path=None)
if training_args.save_at_last:
trainer.save_model()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
output = trainer.evaluate(log_results=False)
utils.jdump(
output,
os.path.join(training_args.output_dir, "final_results.json"),
)
logger.info("***** Eval results *****")
logger.info(output)
if __name__ == "__main__":
main()