-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_mednli.py
59 lines (52 loc) · 2.08 KB
/
gen_mednli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import pandas as pd
import numpy as np
import torch
import transformers
from tqdm import tqdm
import os
import csv
import tqdm
import json
import sys
SEED_VAL = np.random.randint(0, 60)
MODEL = "meta-llama/Llama-2-70b-chat-hf"
SYSTEM_PROMPT = '''<s>[INST] <<SYS>>
You are a helpful physician assistant. You come up with example sentences from doctor's notes and health records.
<</SYS>>'''
def generate_sequence(prompt):
return pipeline(
prompt,
do_sample=True,
top_k=50,
top_p = 0.95,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
# max_length=200,
max_new_tokens=2000,
temperature=.9,
repetition_penalty=1.17,
)
if __name__ == '__main__':
train = pd.read_csv('./data/train.csv')
egsents = []
for i in range(len(train)):
egsents.append(' | '.join([train.loc[i, 'Premise'], train.loc[i, 'Hypothesis'], train.loc[i, 'Relation']]))
NLIprompt = '\nThe following are sentence pairs (Premise and Hypothesis) from doctor notes. Each sentence pair has a relation (entailment, contradiction, neutral). Here is what they should look like:\nPremise | Hypothesis | Relation\n{sents}\nWrite 10 new pairs of sentences for each relation type.[/INST]'
tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL)
pipeline = transformers.pipeline(
"text-generation",
model=MODEL,
torch_dtype=torch.float16,
device_map="auto",
)
llama_params = '70B_20Percent'
for i in tqdm.tqdm(range(0, 2247, 3)): #int(len(egsents)/2)
sents = egsents[i:i+3]
prompt = SYSTEM_PROMPT + NLIprompt.format(sents='\n'.join(sents))
synth_data_unformatted = []
if os.path.exists('medNLI_synthetic'+llama_params+'.json'):
with open('medNLI_synthetic'+llama_params+'.json', 'r') as f:
synth_data_unformatted = json.load(f)
synth_data_unformatted.append(generate_sequence(prompt)[0]['generated_text'])
with open('medNLI_synthetic'+llama_params+'.json', 'w') as f:
json.dump(synth_data_unformatted, f)