-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_sum.py
76 lines (69 loc) · 2.62 KB
/
gen_sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import pandas as pd
import numpy as np
import torch
import transformers
from tqdm import tqdm
import os
import csv
import tqdm
import json
import sys
import random
SEED_VAL = 42 #np.random.randint(0, 60)
MODEL = "meta-llama/Llama-2-70b-chat-hf"
random.seed(SEED_VAL)
SYSTEM_PROMPT = '''<s>[INST] <<SYS>>
You are a helpful physician assistant. You come up with examples from doctor's notes and health records.
<</SYS>>'''
def generate_sequence(prompt):
return pipeline(
prompt,
do_sample=True,
top_k=50,
top_p = 0.95,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
# max_length=200,
max_new_tokens=500,
temperature=.9,
repetition_penalty=1.17,
)
if __name__ == '__main__':
train = pd.read_csv('./data/train.csv')
egsents = []
train['concat'] = train['Assessment'] + '\n'+ train['S'] + '\n' + train['O']
train = train[~(pd.isna(train['Summary']))]
train = train[~(pd.isna(train['concat']))]
train['concat'] = train['concat'].astype(str)
train.reset_index(inplace=True, drop=True)
for i in range(len(train)):
egsents.append((train.loc[i, 'concat'], train.loc[i, 'Summary']))
egsents = [eg for eg in egsents if len(eg[0].split())>=300 and len(eg[0].split())<=500] # limit token length
egsents = random.sample(egsents, 300) # take 300
NLIprompt = """\nThe following are doctor notes and a corresponding summary.
Here are two examples of note / summary pairs:
{summaries}
Write 1 new note and its summary.[/INST]"""
tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL)
pipeline = transformers.pipeline(
"text-generation",
model=MODEL,
torch_dtype=torch.float16,
device_map="auto",
)
llama_params = '70B'
for i in tqdm.tqdm(range(600)):
note_summary = random.sample(egsents, 2)
sents = [str(j+1)+'. Note:\n'+ns[0]+'\n\n'+'Summary:\n'+ns[1] for j, ns in enumerate(note_summary)]
prompt = SYSTEM_PROMPT + NLIprompt.format(summaries='\n\n'.join(sents))
if i == 0:
print(prompt)
print('='*100)
print(len(prompt.split()))
synth_data_unformatted = []
if os.path.exists('./raw_synthetic/SUMM_synthetic'+llama_params+'.json'):
with open('./raw_synthetic/SUMM_synthetic'+llama_params+'.json', 'r') as f:
synth_data_unformatted = json.load(f)
synth_data_unformatted.append(generate_sequence(prompt)[0]['generated_text'])
with open('./raw_synthetic/SUMM_synthetic'+llama_params+'.json', 'w') as f:
json.dump(synth_data_unformatted, f)