diff --git a/README.md b/README.md index b3ca6f7d..21ac6851 100644 --- a/README.md +++ b/README.md @@ -22,8 +22,6 @@ Check out our new tutorial series that walks through AMPL's end-to-end modeling ## Table of contents - [Install](#install) - [Quick Install](#installation-quick-summary) - - [Install with M1 - M3 Chips](#install-with-m1---m3-chips) - - [Quick Install for M1 - M3 Chips](#installation-quick-summary-for-m1---m3-chips) - [Jupyter kernel](#create-jupyter-notebook-kernel-optional) - [Docker](#install-with-docker) - [Uninstall](#uninstall) @@ -44,6 +42,8 @@ Check out our new tutorial series that walks through AMPL's end-to-end modeling ## Install AMPL 1.6 supports Python 3.9 CPU or CUDA-enabled machines using CUDA 11.8 on Linux. All other systems are experimental. For a quick install summary, see [here](#install-summary). We do not support other CUDA versions because there are multiple ML package dependency conflicts that can occur. For more information you can look at [DeepChem](https://deepchem.readthedocs.io/en/latest/get_started/installation.html), [TensorFlow](https://www.tensorflow.org/install/pip), [PyTorch](https://pytorch.org/get-started/locally/), [DGL](https://www.dgl.ai/pages/start.html). +For installation on Apple Silicon M Chips, please see the Docker container instructions. + ### Create pip environment #### 1. Create a virtual env with Python 3.9 @@ -152,107 +152,6 @@ cd .. pip install -e . ``` --- -## Install with M1 - M3 chips -AMPL is built on Linux machines but the instructions below have been tested successfully on several M-chip Macs. This local installation requires a few different steps compared to a Linux installation, including using a Linux emulator ([OrbStack](https://orbstack.dev) is recommended), installing Linux packages and using conda instead of venv to manage the Python version. If you have run into errors or found an even easier method for M chips, please [let us know](https://github.com/ATOMScience-org/AMPL/issues)! - -### Install Orbstack -- Download and install Orbstack - - https://orbstack.dev/download -- Create a Linux machine - - Distribution select: Ubuntu - - Version select: 24.04 LTS (Noble Numbat) - - CPU type: Apple - -### Installing Miniconda3 -- Open Linux terminal in Orbstack -- Install wget - -```bash -sudo apt update -sudo apt install wget -``` -- Install Miniconda3 - -```bash -cd ~ # install miniconda in your Ubuntu home directory -wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh -chmod +x Miniconda3-latest-Linux-aarch64.sh -./Miniconda3-latest-Linux-aarch64.sh -source .bashrc # reload the shell with conda activated -``` - -### Create conda environment with Miniconda3 - -#### 1. Create a conda env with Python 3.9.12 and activate it -Your conda env will need 2.8Gb space. - -```bash -conda create -n atomsci-env python=3.9.12 -conda activate atomsci-env -``` - -#### 4. Clone AMPL repository -```bash -sudo apt install git # install git to Linux terminal -mkdir repos # optional - install repos in a new directory -cd repos # optional -git clone https://github.com/ATOMScience-org/AMPL.git # clones AMPL repository -``` - -#### 5. Install pip requirements -Depending on system performance, creating the environment can take some time. - -- Install these packages onto your Ubuntu machine so that you don't receive h5py wheel build error or gcc error -```bash -sudo apt install pkg-config libhdf5-dev libxrender1 gcc -``` -- Use the MChip installation requirements file: -```bash -pip install pip --upgrade -cd AMPL/pip -pip install -r mchip_requirements.txt -``` - -### Install AMPL -Run the following to build the AMPL modules. This is required. -> ***Note:*** *Should be in the AMPL directory* -```bash -# return to AMPL parent directory -cd .. -./build.sh -pip install -e . -``` - ---- -## Installation Quick Summary for M1 - M3 chips -> ***Note:*** *Should run these commands on Ubuntu terminal through Orbstack* -```bash -sudo apt update -sudo apt install wget # install wget to Linux terminal - -cd ~ # install miniconda in Linux home directory -wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh -chmod +x Miniconda3-latest-Linux-aarch64.sh -./Miniconda3-latest-Linux-aarch64.sh -source .bashrc # reload the shell with conda activated - -conda create -n atomsci-env python=3.9.12 # create environment with Python 3.9.12 -conda activate atomsci-env # activate atomsci-env environment - -sudo apt install git # install git to Linux terminal -git clone https://github.com/ATOMScience-org/AMPL.git # clones AMPL repository - -cd AMPL/pip -sudo apt install pkg-config lixrender1 libhdf5-dev gcc # fix h5py and gcc install errors - -pip install pip --upgrade -pip install -r mchip_requirements.txt # install mchip_requirements.txt - -cd .. # return to AMPL parent directory -./build.sh -pip install -e . -``` ---- ## Create jupyter notebook kernel (optional) To run AMPL from Jupyter Notebook. To setup a new kernel, first activate your environment and then run the following command: