-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist.py
40 lines (32 loc) · 1015 Bytes
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import tensorflow as tf
from codecarbon import track_emissions
def reduntant():
i = 100
while(i>0):
i=i-1
@track_emissions()
def train_model():
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential(
[
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10),
]
)
reduntant()
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])
model.fit(x_train, y_train, epochs=55)
return model
if __name__ == "__main__":
lst = ['ayush','yogesh','pavan','syam']
for i in lst:
t = len(lst)
model = train_model()
for i in range(1000):
if(i%100==0):
print(i)