-
Notifications
You must be signed in to change notification settings - Fork 0
/
multi_language_sentiment.py
151 lines (118 loc) · 5.51 KB
/
multi_language_sentiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""
Sentiment analysis pipeline for texts in multiple languages.
"""
import gc
from collections import defaultdict
from transformers import pipeline
import torch
from lingua import Language, LanguageDetectorBuilder
__version__ = "0.1.0"
if torch.cuda.is_available():
device_tag = 0 # first gpu
else:
device_tag = -1 # cpu
default_models = {
Language.ENGLISH: "lxyuan/distilbert-base-multilingual-cased-sentiments-student",
Language.JAPANESE: "lxyuan/distilbert-base-multilingual-cased-sentiments-student",
Language.ARABIC: "lxyuan/distilbert-base-multilingual-cased-sentiments-student",
Language.GERMAN: "lxyuan/distilbert-base-multilingual-cased-sentiments-student",
Language.SPANISH: "lxyuan/distilbert-base-multilingual-cased-sentiments-student",
Language.FRENCH: "lxyuan/distilbert-base-multilingual-cased-sentiments-student",
Language.CHINESE: "lxyuan/distilbert-base-multilingual-cased-sentiments-student",
Language.INDONESIAN: "lxyuan/distilbert-base-multilingual-cased-sentiments-student",
Language.HINDI: "lxyuan/distilbert-base-multilingual-cased-sentiments-student",
Language.ITALIAN: "lxyuan/distilbert-base-multilingual-cased-sentiments-student",
Language.MALAY: "lxyuan/distilbert-base-multilingual-cased-sentiments-student",
Language.PORTUGUESE: "lxyuan/distilbert-base-multilingual-cased-sentiments-student",
Language.SWEDISH: "KBLab/robust-swedish-sentiment-multiclass",
Language.FINNISH: "fergusq/finbert-finnsentiment",
}
language_detector = LanguageDetectorBuilder.from_all_languages().with_low_accuracy_mode().build()
# Processing a batch:
# Detect languages into a list and map to models
# For each model, make a pipeline, make a list and process
# inject int a list in the original order
def split_message(message, max_length):
""" Split a message into a list of chunks of given maximum size. """
return [message[i: i+max_length] for i in range(0, len(message), max_length)]
def process_messages_in_batches(
messages_with_languages,
models = None,
max_length = 512
):
"""
Process messages in batches, creating only one pipeline at a time, and maintain the original order.
Params:
messages_with_languages: list of tuples, each containing a message and its detected language
models: dict, model paths indexed by Language
Returns:
OrderedDict: containing the index as keys and tuple of (message, sentiment result) as values
"""
if models is None:
models = default_models
else:
models = default_models.copy().update(models)
results = {}
# Group messages by model, preserving original order.
# If language is no detected or a model for that language is not
# provided, add None to results
messages_by_model = defaultdict(list)
for index, (message, language) in enumerate(messages_with_languages):
model_name = models.get(language)
if model_name:
messages_by_model[model_name].append((index, message))
else:
results[index] = {"label": "none", "score": 0}
# Process messages and maintain original order
for model_name, batch in messages_by_model.items():
sentiment_pipeline = pipeline(model=model_name, device=device_tag)
chunks = []
message_map = {}
for idx, message in batch:
message_chunks = split_message(message, max_length)
for chunk in message_chunks:
chunks.append(chunk)
if idx in message_map:
message_map[idx].append(len(chunks) - 1)
else:
message_map[idx] = [len(chunks) - 1]
chunk_sentiments = sentiment_pipeline(chunks)
for idx, chunk_indices in message_map.items():
sum_scores = {"neutral": 0}
for chunk_idx in chunk_indices:
label = chunk_sentiments[chunk_idx]["label"]
score = chunk_sentiments[chunk_idx]["score"]
if label in sum_scores:
sum_scores[label] += score
else:
sum_scores[label] = score
best_sentiment = max(sum_scores, key=sum_scores.get)
score = sum_scores[best_sentiment] / len(chunk_indices)
results[idx] = {"label": best_sentiment, "score": score}
# Force garbage collections to remove the model from memory
del sentiment_pipeline
gc.collect()
# Unify common spellings of the labels
for i in range(len(results)):
results[i]["label"] = results[i]["label"].lower()
results = [results[i] for i in range(len(results))]
return results
def sentiment(messages, models=None):
"""
Estimate the sentiment of a list of messages (strings of text). The
sentences may be in different languages from each other.
We maintain a list of default models for some languages. In addition,
the user can provide a model for a given language in the models
dictionary. The keys for this dictionary are lingua.Language objects
and items HuggingFace model paths.
Params:
messages: list of message strings
models: dict, huggingface model paths indexed by lingua.Language
Returns:
OrderedDict: containing the index as keys and tuple of (message, sentiment result) as values
"""
messages_with_languages = [
(message, language_detector.detect_language_of(message)) for message in messages
]
results = process_messages_in_batches(messages_with_languages, models)
return results