-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsparse_autoencoder.py
268 lines (223 loc) · 8.89 KB
/
sparse_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from utils import *
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data
import numpy as np
import torch
from part_a.item_response import dict_to_sparse
import matplotlib.pyplot as plt
from starter_code.utils import load_train_sparse, load_valid_csv, \
load_public_test_csv
device = torch.device('cpu')
def load_data(base_path="../data"):
""" Load the data in PyTorch Tensor.
:return: (zero_train_matrix, train_data, valid_data, test_data)
WHERE:
zero_train_matrix: 2D sparse matrix where missing entries are
filled with 0.
train_data: 2D sparse matrix
valid_data: A dictionary {user_id: list,
user_id: list, is_correct: list}
test_data: A dictionary {user_id: list,
user_id: list, is_correct: list}
"""
train_matrix = load_train_sparse(base_path).toarray()
valid_data = load_valid_csv(base_path)
test_data = load_public_test_csv(base_path)
zero_train_matrix = train_matrix.copy()
# Fill in the missing entries to 0.
zero_train_matrix[np.isnan(train_matrix)] = 0
# Change to Float Tensor for PyTorch.
zero_train_matrix = torch.FloatTensor(zero_train_matrix)
train_matrix = torch.FloatTensor(train_matrix)
return zero_train_matrix, train_matrix, valid_data, test_data
class SparseAutoEncoder(nn.Module):
def __init__(self, num_question, k1, k2, k3):
""" Initialize a class SparseAutoEncoder.
:param num_question: int
:param k1: int
:param k2: int
:param k3: int
"""
super(SparseAutoEncoder, self).__init__()
# Define linear functions.
self.g = nn.Linear(num_question, k1)
self.h1 = nn.Linear(k1, k2)
self.h2 = nn.Linear(k2, k3)
self.h = nn.Linear(k3, num_question)
def get_weight_norm(self):
""" Return ||W^1|| + ||W^2|| + ||W^3|| + ||W^4||.
:return: float
"""
g_w_norm = torch.norm(self.g.weight, 1)
h1_w_norm = torch.norm(self.h1.weight, 1)
h2_w_norm = torch.norm(self.h2.weight, 1)
h_w_norm = torch.norm(self.h.weight, 1)
return g_w_norm + h_w_norm + h1_w_norm + h2_w_norm
def forward(self, inputs):
""" Return a forward pass given inputs.
:param inputs: user vector.
:return: user vector.
"""
#####################################################################
# TODO: #
# Implement the function as described in the docstring. #
# Use sigmoid activations for f and g. #
#####################################################################
out_1 = torch.relu(self.g(inputs))
out_2 = torch.relu(self.h1(out_1))
out_3 = torch.relu(self.h2(out_2))
out = torch.relu(self.h(out_3))
#####################################################################
# END OF YOUR CODE #
#####################################################################
return out
def train(model, lr, lamb, train_data, zero_train_data, valid_data, num_epoch):
""" Train the neural network, where the objective also includes
a regularizer.
:param model: Module
:param lr: float
:param lamb: float
:param train_data: 2D FloatTensor
:param zero_train_data: 2D FloatTensor
:param valid_data: Dict
:param num_epoch: int
:return: None
"""
# TODO: Add a regularizer to the cost function.
global device
# Tell PyTorch you are training the model.
model.train()
# Define optimizers and loss function.
optimizer = optim.SGD(model.parameters(), lr=lr)
num_student = train_data.shape[0]
val_sparse = dict_to_sparse(valid_data, num_student, train_data.shape[1])
val_sparse = torch.FloatTensor(val_sparse.toarray())
train_loss_lst = []
val_loss_lst = []
for epoch in range(0, num_epoch):
train_loss = 0.
val_loss = 0.
for user_id in range(num_student):
inputs = Variable(zero_train_data[user_id]).unsqueeze(0).to(device)
target = inputs.clone().to(device)
optimizer.zero_grad()
output = model(inputs)
# Mask the target to only compute the gradient of valid entries.
nan_mask = np.isnan(train_data[user_id].unsqueeze(0).numpy())
target[0][nan_mask] = output[0][nan_mask]
nan_mask_val = np.isnan(val_sparse[user_id].unsqueeze(0).numpy())
val_target = inputs.clone().to(device)
val_target[0][nan_mask_val] = output[0][nan_mask_val]
loss = torch.sum((output - target) ** 2.) + (
(lamb / 2) * model.get_weight_norm())
loss.backward()
train_loss += loss.item()
optimizer.step()
val_loss_internal = torch.sum((output - val_target) ** 2.) + (
(lamb / 2) * model.get_weight_norm())
val_loss += val_loss_internal.item()
valid_acc = evaluate(model, zero_train_data, valid_data)
print("Epoch: {} \tTraining Cost: {:.6f}\t "
"Valid Acc: {}".format(epoch, train_loss, valid_acc))
train_loss_lst.append(train_loss)
val_loss_lst.append(val_loss)
plt.plot(train_loss_lst, label="Train")
plt.plot(val_loss_lst, label="Validation")
plt.legend()
plt.savefig("plots/nn/nn.png")
#####################################################################
# END OF YOUR CODE #
#####################################################################
def evaluate(model, train_data, valid_data):
""" Evaluate the valid_data on the current model.
:param model: Module
:param train_data: 2D FloatTensor
:param valid_data: A dictionary {user_id: list,
question_id: list, is_correct: list}
:return: float
"""
# Tell PyTorch you are evaluating the model.
model.eval()
total = 0
correct = 0
for i, u in enumerate(valid_data["user_id"]):
inputs = Variable(train_data[u]).unsqueeze(0)
output = model(inputs)
guess = output[0][valid_data["question_id"][i]].item() >= 0.5
if guess == valid_data["is_correct"][i]:
correct += 1
total += 1
return correct / float(total)
def main():
global device
zero_train_matrix, train_matrix, valid_data, test_data = load_data()
if torch.cuda.is_available():
device = torch.device('cuda')
#####################################################################
# TODO: #
# Try out 5 different k and select the best k using the #
# validation set. #
#####################################################################
# Set model hyperparameters.
k_lst = [10, 50, 100, 200, 500]
# for k in k_lst:
# parser = argparse.ArgumentParser()
# parser.add_argument("--k", required=False,
# help="Index for k in [10, 50, 100, 200, 500]")
# parser.add_argument("--lr", required=False, help="Learning rate")
# parser.add_argument("--num-epoch", required=False, help="Num of epochs")
# parser.add_argument("--lamb", required=False, help="Lambda regularization")
# args = vars(parser.parse_args())
# if args['k']:
# k = k_lst[int(args['k'])]
# Set optimization hyperparameters.
configs = [
{
'k': k_lst[0],
'lr': 0.01,
'num_epochs': 20,
'lamb': 0
},
{
'k': k_lst[1],
'lr': 0.01,
'num_epochs': 5,
'lamb': 0
},
{
'k': k_lst[2],
'lr': 0.01,
'num_epochs': 1000,
'lamb': 0
},
{
'k': k_lst[3],
'lr': 0.01,
'num_epochs': 1000,
'lamb': 0
},
{
'k': k_lst[4],
'lr': 0.01,
'num_epochs': 1000,
'lamb': 0
}
]
for i, config in enumerate(configs[:1]):
print(f'Configuration: {config}')
k = config['k']
lr = config['lr']
num_epochs = config['num_epochs']
lamb = config['lamb']
model = SparseAutoEncoder(train_matrix.shape[1], 50, 10, 50).to(device=device)
train(model, lr, lamb, train_matrix, zero_train_matrix,
valid_data, num_epochs)
torch.save(model.state_dict(), f"models/nn_{i+1}")
#####################################################################
# END OF YOUR CODE #
#####################################################################
if __name__ == "__main__":
main()