forked from dmis-lab/covidAsk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
post.py
431 lines (359 loc) · 18.4 KB
/
post.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import collections
import json
import logging
import os
import shutil
import torch
import math
import pandas as pd
import numpy as np
import six
from scipy.sparse import csr_matrix, save_npz, hstack, vstack
from termcolor import colored, cprint
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from eval_utils import normalize_answer, f1_score, exact_match_score
import h5py
from time import time
from multiprocessing import Queue, Process
from multiprocessing.pool import ThreadPool
from threading import Thread
from tqdm import tqdm as tqdm_
from decimal import *
import tokenization
QuestionResult = collections.namedtuple("QuestionResult",
['qas_id', 'start', 'end', 'sparse', 'input_ids'])
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
def tqdm(*args, mininterval=5.0, **kwargs):
return tqdm_(*args, mininterval=mininterval, **kwargs)
def get_metadata(id2example, features, results, max_answer_length, do_lower_case, verbose_logging):
start = np.concatenate([result.start[1:len(feature.tokens) - 1] for feature, result in zip(features, results)],
axis=0)
end = np.concatenate([result.end[1:len(feature.tokens) - 1] for feature, result in zip(features, results)], axis=0)
input_ids = None
sparse_map = None
sparse_bi_map = None
len_per_para = []
if results[0].start_sp is not None:
input_ids = np.concatenate([f.input_ids[1:len(f.tokens) - 1] for f in features], axis=0)
sparse_features = None # uni
sparse_bi_features = None
if '1' in results[0].start_sp:
sparse_features = [result.start_sp['1'][1:len(feature.tokens)-1, 1:len(feature.tokens)-1]
for feature, result in zip(features, results)]
if '2' in results[0].start_sp:
sparse_bi_features = [result.start_sp['2'][1:len(feature.tokens)-1, 1:len(feature.tokens)-1]
for feature, result in zip(features, results)]
map_size = max([k.shape[0] for k in sparse_features])
sparse_map = np.zeros((input_ids.shape[0], map_size), dtype=np.float32)
if sparse_bi_features is not None:
sparse_bi_map = np.zeros((input_ids.shape[0], map_size), dtype=np.float32)
curr_size = 0
for sidx, sparse_feature in enumerate(sparse_features):
sparse_map[curr_size:curr_size + sparse_feature.shape[0],:sparse_feature.shape[1]] += sparse_feature
if sparse_bi_features is not None:
assert sparse_bi_features[sidx].shape == sparse_feature.shape
sparse_bi_map[curr_size:curr_size+sparse_bi_features[sidx].shape[0],:sparse_bi_features[sidx].shape[1]] += \
sparse_bi_features[sidx]
curr_size += sparse_feature.shape[0]
len_per_para.append(sparse_feature.shape[0])
assert input_ids.shape[0] == start.shape[0] and curr_size == sparse_map.shape[0]
fs = np.concatenate([result.filter_start_logits[1:len(feature.tokens) - 1]
for feature, result in zip(features, results)],
axis=0)
fe = np.concatenate([result.filter_end_logits[1:len(feature.tokens) - 1]
for feature, result in zip(features, results)],
axis=0)
span_logits = np.zeros([np.shape(start)[0], max_answer_length], dtype=start.dtype)
start2end = -1 * np.ones([np.shape(start)[0], max_answer_length], dtype=np.int32)
idx = 0
for feature, result in zip(features, results):
for i in range(1, len(feature.tokens) - 1):
for j in range(i, min(i + max_answer_length, len(feature.tokens) - 1)):
span_logits[idx, j - i] = result.span_logits[i, j]
start2end[idx, j - i] = idx + j - i
idx += 1
word2char_start = np.zeros([start.shape[0]], dtype=np.int32)
word2char_end = np.zeros([start.shape[0]], dtype=np.int32)
sep = ' [PAR] '
full_text = ""
prev_example = None
word_pos = 0
for feature in features:
example = id2example[feature.unique_id]
if prev_example is not None and feature.doc_span_index == 0:
full_text = full_text + ' '.join(prev_example.doc_words) + sep
for i in range(1, len(feature.tokens) - 1):
_, start_pos, _ = get_final_text_(example, feature, i, min(len(feature.tokens) - 2, i + 1), do_lower_case,
verbose_logging)
_, _, end_pos = get_final_text_(example, feature, max(1, i - 1), i, do_lower_case,
verbose_logging)
start_pos += len(full_text)
end_pos += len(full_text)
word2char_start[word_pos] = start_pos
word2char_end[word_pos] = end_pos
word_pos += 1
prev_example = example
full_text = full_text + ' '.join(prev_example.doc_words)
metadata = {'did': prev_example.doc_idx, 'context': full_text, 'title': prev_example.title,
'start': start, 'end': end, 'span_logits': span_logits,
'start2end': start2end,
'word2char_start': word2char_start, 'word2char_end': word2char_end,
'filter_start': fs, 'filter_end': fe, 'input_ids': input_ids,
'sparse': sparse_map, 'sparse_bi': sparse_bi_map,
'len_per_para': len_per_para}
return metadata
def filter_metadata(metadata, threshold):
start_idxs, = np.where(metadata['filter_start'] > threshold)
end_idxs, = np.where(metadata['filter_end'] > threshold)
end_long2short = {long: short for short, long in enumerate(end_idxs)}
metadata['start'] = metadata['start'][start_idxs]
metadata['end'] = metadata['end'][end_idxs]
metadata['sparse'] = metadata['sparse'][start_idxs]
if metadata['sparse_bi'] is not None:
metadata['sparse_bi'] = metadata['sparse_bi'][start_idxs]
metadata['f2o_start'] = start_idxs
metadata['f2o_end'] = end_idxs
metadata['span_logits'] = metadata['span_logits'][start_idxs]
metadata['start2end'] = metadata['start2end'][start_idxs]
for i, each in enumerate(metadata['start2end']):
for j, long in enumerate(each.tolist()):
metadata['start2end'][i, j] = end_long2short[long] if long in end_long2short else -1
return metadata
def compress_metadata(metadata, dense_offset, dense_scale, sparse_offset, sparse_scale):
for key in ['start', 'end']:
if key in metadata:
metadata[key] = float_to_int8(metadata[key], dense_offset, dense_scale)
for key in ['sparse', 'sparse_bi']:
if key in metadata and metadata[key] is not None:
metadata[key] = float_to_int8(metadata[key], sparse_offset, sparse_scale)
return metadata
def pool_func(item):
metadata_ = get_metadata(*item[:-1])
metadata_ = filter_metadata(metadata_, item[-1])
return metadata_
def write_hdf5(all_examples, all_features, all_results,
max_answer_length, do_lower_case, hdf5_path, filter_threshold, verbose_logging,
dense_offset=None, dense_scale=None, sparse_offset=None, sparse_scale=None, use_sparse=False):
assert len(all_examples) > 0
id2feature = {feature.unique_id: feature for feature in all_features}
id2example = {id_: all_examples[id2feature[id_].example_index] for id_ in id2feature}
def add(inqueue_, outqueue_):
for item in iter(inqueue_.get, None):
args = list(item[:3]) + [max_answer_length, do_lower_case, verbose_logging, filter_threshold]
out = pool_func(args)
outqueue_.put(out)
outqueue_.put(None)
def write(outqueue_):
with h5py.File(hdf5_path) as f:
while True:
metadata = outqueue_.get()
if metadata:
did = str(metadata['did'])
if did in f:
logger.info('%s exists; replacing' % did)
del f[did]
dg = f.create_group(did)
dg.attrs['context'] = metadata['context']
dg.attrs['title'] = metadata['title']
if dense_offset is not None:
metadata = compress_metadata(metadata, dense_offset, dense_scale, sparse_offset, sparse_scale)
dg.attrs['offset'] = dense_offset
dg.attrs['scale'] = dense_scale
dg.attrs['sparse_offset'] = sparse_offset
dg.attrs['sparse_scale'] = sparse_scale
dg.create_dataset('start', data=metadata['start'])
dg.create_dataset('end', data=metadata['end'])
if metadata['sparse'] is not None:
dg.create_dataset('sparse', data=metadata['sparse'])
if metadata['sparse_bi'] is not None:
dg.create_dataset('sparse_bi', data=metadata['sparse_bi'])
dg.create_dataset('input_ids', data=metadata['input_ids'])
dg.create_dataset('len_per_para', data=metadata['len_per_para'])
dg.create_dataset('span_logits', data=metadata['span_logits'])
dg.create_dataset('start2end', data=metadata['start2end'])
dg.create_dataset('word2char_start', data=metadata['word2char_start'])
dg.create_dataset('word2char_end', data=metadata['word2char_end'])
dg.create_dataset('f2o_start', data=metadata['f2o_start'])
dg.create_dataset('f2o_end', data=metadata['f2o_end'])
else:
break
features = []
results = []
inqueue = Queue(maxsize=500)
outqueue = Queue(maxsize=500)
write_p = Thread(target=write, args=(outqueue,))
p = Thread(target=add, args=(inqueue, outqueue))
write_p.start()
p.start()
start_time = time()
for count, result in enumerate(tqdm(all_results, total=len(all_features))):
example = id2example[result.unique_id]
feature = id2feature[result.unique_id]
condition = len(features) > 0 and example.par_idx == 0 and feature.doc_span_index == 0
if condition:
in_ = (id2example, features, results)
logger.info('inqueue size: %d, outqueue size: %d' % (inqueue.qsize(), outqueue.qsize()))
inqueue.put(in_)
# add(id2example, features, results)
features = [feature]
results = [result]
else:
features.append(feature)
results.append(result)
if count % 500 == 0:
logger.info('%d/%d at %.1f' % (count + 1, len(all_features), time() - start_time))
in_ = (id2example, features, results)
inqueue.put(in_)
inqueue.put(None)
p.join()
write_p.join()
def get_question_results(question_examples, query_eval_features, question_dataloader, device, model):
id2feature = {feature.unique_id: feature for feature in query_eval_features}
id2example = {id_: question_examples[id2feature[id_].example_index] for id_ in id2feature}
for (input_ids_, input_mask_, example_indices) in question_dataloader:
input_ids_ = input_ids_.to(device)
input_mask_ = input_mask_.to(device)
with torch.no_grad():
batch_start, batch_end, batch_sps, batch_eps = model(query_ids=input_ids_,
query_mask=input_mask_)
for i, example_index in enumerate(example_indices):
start = batch_start[i].detach().cpu().numpy().astype(np.float16)
end = batch_end[i].detach().cpu().numpy().astype(np.float16)
sparse = None
if len(batch_sps) > 0:
sparse = {ng: bb_ssp[i].detach().cpu().numpy().astype(np.float16) for ng, bb_ssp in batch_sps.items()}
query_eval_feature = query_eval_features[example_index.item()]
unique_id = int(query_eval_feature.unique_id)
qas_id = id2example[unique_id].qas_id
yield QuestionResult(qas_id=qas_id,
start=start,
end=end,
sparse=sparse,
input_ids=query_eval_feature.input_ids[1:len(query_eval_feature.tokens_)-1])
def convert_question_features_to_dataloader(query_eval_features, fp16, local_rank, predict_batch_size):
all_input_ids_ = torch.tensor([f.input_ids for f in query_eval_features], dtype=torch.long)
all_input_mask_ = torch.tensor([f.input_mask for f in query_eval_features], dtype=torch.long)
all_example_index_ = torch.arange(all_input_ids_.size(0), dtype=torch.long)
if fp16:
all_input_ids_, all_input_mask_ = tuple(t.half() for t in (all_input_ids_, all_input_mask_))
question_data = TensorDataset(all_input_ids_, all_input_mask_, all_example_index_)
if local_rank == -1:
question_sampler = SequentialSampler(question_data)
else:
question_sampler = DistributedSampler(question_data)
question_dataloader = DataLoader(question_data, sampler=question_sampler, batch_size=predict_batch_size)
return question_dataloader
def get_final_text_(example, feature, start_index, end_index, do_lower_case, verbose_logging):
tok_tokens = feature.tokens[start_index:(end_index + 1)]
orig_doc_start = feature.token_to_word_map[start_index]
orig_doc_end = feature.token_to_word_map[end_index]
orig_words = example.doc_words[orig_doc_start:(orig_doc_end + 1)]
tok_text = " ".join(tok_tokens)
# De-tokenize WordPieces that have been split off.
tok_text = tok_text.replace(" ##", "")
tok_text = tok_text.replace("##", "")
# Clean whitespace
tok_text = tok_text.strip()
tok_text = " ".join(tok_text.split())
orig_text = " ".join(orig_words)
full_text = " ".join(example.doc_words)
start_pos, end_pos = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) # TODO: need to check
offset = sum(len(word) + 1 for word in example.doc_words[:orig_doc_start])
return full_text, offset + start_pos, offset + end_pos
def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
"""Project the tokenized prediction back to the original text."""
# When we created the data, we kept track of the alignment between original
# (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
# now `orig_text` contains the span of our original text corresponding to the
# span that we predicted.
#
# However, `orig_text` may contain extra characters that we don't want in
# our prediction.
#
# For example, let's say:
# pred_text = steve smith
# orig_text = Steve Smith's
#
# We don't want to return `orig_text` because it contains the extra "'s".
#
# We don't want to return `pred_text` because it's already been normalized
# (the SQuAD eval script also does punctuation stripping/lower casing but
# our tokenizer does additional normalization like stripping accent
# characters).
#
# What we really want to return is "Steve Smith".
#
# Therefore, we have to apply a semi-complicated alignment heruistic between
# `pred_text` and `orig_text` to get a character-to-charcter alignment. This
# can fail in certain cases in which case we just return `orig_text`.
default_out = 0, len(orig_text)
def _strip_spaces(text):
ns_chars = []
ns_to_s_map = collections.OrderedDict()
for (i, c) in enumerate(text):
if c == " ":
continue
ns_to_s_map[len(ns_chars)] = i
ns_chars.append(c)
ns_text = "".join(ns_chars)
return (ns_text, ns_to_s_map)
# We first tokenize `orig_text`, strip whitespace from the result
# and `pred_text`, and check if they are the same length. If they are
# NOT the same length, the heuristic has failed. If they are the same
# length, we assume the characters are one-to-one aligned.
tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case)
tok_text = " ".join(tokenizer.tokenize(orig_text))
start_position = tok_text.find(pred_text)
if start_position == -1:
if verbose_logging:
logger.info(
"Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
return default_out
end_position = start_position + len(pred_text) - 1
(orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
(tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)
if len(orig_ns_text) != len(tok_ns_text):
if verbose_logging:
logger.info("Length not equal after stripping spaces: '%s' vs '%s'",
orig_ns_text, tok_ns_text)
return default_out
# We then project the characters in `pred_text` back to `orig_text` using
# the character-to-character alignment.
tok_s_to_ns_map = {}
for (i, tok_index) in six.iteritems(tok_ns_to_s_map):
tok_s_to_ns_map[tok_index] = i
orig_start_position = None
if start_position in tok_s_to_ns_map:
ns_start_position = tok_s_to_ns_map[start_position]
if ns_start_position in orig_ns_to_s_map:
orig_start_position = orig_ns_to_s_map[ns_start_position]
if orig_start_position is None:
if verbose_logging:
logger.info("Couldn't map start position")
return default_out
orig_end_position = None
if end_position in tok_s_to_ns_map:
ns_end_position = tok_s_to_ns_map[end_position]
if ns_end_position in orig_ns_to_s_map:
orig_end_position = orig_ns_to_s_map[ns_end_position]
if orig_end_position is None:
if verbose_logging:
logger.info("Couldn't map end position")
return default_out
# output_text = orig_text[orig_start_position:(orig_end_position + 1)]
return orig_start_position, orig_end_position + 1
def float_to_int8(num, offset, factor, keep_zeros=False):
out = (num - offset) * factor
out = out.clip(-128, 127)
if keep_zeros:
out = out * (num != 0.0).astype(np.int8)
out = np.round(out).astype(np.int8)
return out
def int8_to_float(num, offset, factor, keep_zeros=False):
if not keep_zeros:
return num.astype(np.float32) / factor + offset
else:
return (num.astype(np.float32) / factor + offset) * (num != 0.0).astype(np.float32)