-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.yaml
86 lines (71 loc) · 1.56 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#### Weight & Biases settings
wandb:
name: "CNN - 9 Conv Layers - Test"
resume: False
job_type: "Train-Test"
group: "Exercise 1.2"
project: "University - DLA - Lab 1"
tags:
- "CNN"
- "ResNet"
- "Base"
notes: "First attempt at training a basic CNN and ResNet on CIFAR10 dataset."
#### Experiment settings
config:
# Machine
seed: 1
device: "cuda:0"
cuda_benchmark: True
deterministic: False
# Paths and dirs
data_dir: "../data"
results_dir: "results"
log_file: "log.txt"
# hf_cache_dir: "../hf"
model_type: "CNN"
model:
in_channels: 3
depth: 9
output_size: 10
want_shortcut: False
activation: "ReLU"
fc_activation: "ReLU"
pool_type: "maxpool"
criterion: "CrossEntropyLoss"
dataset:
dataset_type: "Vision"
dataset_name: "CIFAR10"
val_size: 0.2
val_shuffle: True
normalize: True
augment: True
use_sampler: True
dataloader:
num_workers: 8
batch_size: 256
pin_memory: True
persistent_workers: True
optimizer_name: "AdamW" # Lion, Adam, SGD, Adamax, Adadelta, RMSProp ecc. (https://pytorch.org/docs/stable/optim.html)
optimizer:
lr: 0.00005
weight_decay: 0.01
amsgrad: True
scheduler_name: "OneCycleLR" # MultiStepLR
scheduler:
max_lr: 0.0001
pretrain: False
pretest: False
train: True
test: True
test_original: True
training:
n_epochs: 150
eval_interval: 1
checkpoint_every: 1
clip_grads: False
patience: 20
# Goals
problem: null
xai: False
explain_gradients: False
explain_cam: False