-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathautotask_final.py
239 lines (191 loc) · 8.16 KB
/
autotask_final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import sys
import os
import argparse
from multiprocessing import Process, Queue
from typing import List, Dict
import subprocess
import mmcv
parser = argparse.ArgumentParser()
parser.add_argument("--gpus", "-g", type=str, required=True,
help="space delimited GPU id list (global id in nvidia-smi, "
"not considering CUDA_VISIBLE_DEVICES)")
parser.add_argument('--eval', action='store_true', default=False,
help='evaluation mode (run the render_imgs script)')
parser.add_argument('--configname', default='baseline',
help='a.k.a config in subfloer ./configs/batchtest/<configname>.txt ')
parser.add_argument("--importance_include", type=float, default=0.6,
help='fully vector quantize the full model')
parser.add_argument("--importance_prune", type=float, default=0.999,
help='fully vector quantize the full model')
parser.add_argument("--codebook_size", type=int, default=4096,
help='fully vector quantize the full model')
parser.add_argument("--dump_images", action='store_true', default=False,
help='fully vector quantize the full model')
parser.add_argument('--dataset', type=str, default='syn', choices=['syn', 'llff', 'tnt', 'nsvf'])
args = parser.parse_args()
PSNR_FILE_NAME = 'test_psnr.txt'
def run_exp(env, config, datadir, expname, basedir):
psnr_file_threestep_path = os.path.join(basedir, expname,'render_test_vq_last','mean.txt' )
psnr_file_path = os.path.join(basedir, expname,'render_test_fine_last','mean.txt' )
cfg = mmcv.Config.fromfile(config)
cfg.expname = expname
cfg.data.datadir = datadir
cfg.basedir = basedir
cfg.vq_model_and_render.codebook_size = args.codebook_size
auto_config_path = f'./configs/auto/{expname}.py'
cfg.dump(auto_config_path)
print('********************************************')
base_cmd = ['python', 'run_final.py', '--config', auto_config_path, '--eval_ssim','--eval_lpips_vgg',
'--eval_lpips_alex' , '--render_test', '--fully_vq --render_fine ',
f'--importance_prune {args.importance_prune}' ,f'--importance_include {args.importance_include}']
if os.path.isfile(psnr_file_path) or os.path.isfile(psnr_file_threestep_path):
base_cmd.append('--render_only')
# pass
if args.dump_images:
base_cmd.append('--dump_images')
opt_cmd = ' '.join(base_cmd)
print(opt_cmd, "on ", env["CUDA_VISIBLE_DEVICES"])
opt_ret = subprocess.check_output(opt_cmd, shell=True, env=env).decode(
sys.stdout.encoding)
def process_main(device, queue):
# Set CUDA_VISIBLE_DEVICES programmatically
env = os.environ.copy()
env["CUDA_VISIBLE_DEVICES"] = str(device)
while True:
task = queue.get()
if len(task) == 0:
break
run_exp(env, **task)
DatasetSetting={
"syn": {
"data": "./data/nerf_synthetic",
"cfg": f"./configs/batch_test/{args.configname}.py",
"basedir":f"./logs/{args.configname}",
"scene_list":['chair', 'drums', 'ficus', 'hotdog', 'lego', 'materials', 'mic', 'ship']
},
"tnt":{
"data": "./data/TanksAndTemple",
"cfg": f"./configs/batch_test/{args.configname}.py",
"basedir":f"./logs/{args.configname}",
"scene_list":['Barn', 'Caterpillar', 'Family', 'Ignatius', 'Truck']
},
"nsvf":{
"data": "./data/Synthetic_NSVF",
"cfg": f"./configs/batch_test/{args.configname}.py",
"basedir":f"./logs/{args.configname}",
"scene_list":['Bike', 'Lifestyle', 'Palace', 'Robot', 'Spaceship', 'Steamtrain', 'Toad', 'Wineholder',]
}
}
datasetting = DatasetSetting[args.dataset]
all_tasks = []
for scene in datasetting["scene_list"]:
task: Dict = {}
task['datadir'] = f'{datasetting["data"]}/{scene}'
task['expname'] = f'{args.configname}_{scene}'
task["config"] = datasetting['cfg']
task["basedir"] = datasetting["basedir"]
assert os.path.exists(task['datadir']), task['datadir'] + ' does not exist'
assert os.path.isfile(task['config']), task['config'] + ' does not exist'
all_tasks.append(task)
pqueue = Queue()
for task in all_tasks:
pqueue.put(task)
args.gpus = list(map(int, args.gpus.split()))
print('GPUS:', args.gpus)
for _ in args.gpus:
pqueue.put({})
all_procs = []
for i, gpu in enumerate(args.gpus):
process = Process(target=process_main, args=(gpu, pqueue))
process.daemon = True
process.start()
all_procs.append(process)
for i, gpu in enumerate(args.gpus):
all_procs[i].join()
class AverageMeter(object):
def __init__(self, name=''):
self.name=name
self.reset()
def reset(self):
self.val=0
self.sum=0
self.avg=0
self.count=0
def update(self,val,n=1):
self.val=val
self.sum += val*n
self.count += n
self.avg=self.sum/self.count
def __repr__(self) -> str:
return f'{self.name}: average {self.count}: {self.avg}\n'
from prettytable import PrettyTable
table = PrettyTable(["Scene", "PSNR", "SSIM", "LPIPS_ALEX","LPIPS_VGG", "SIZE"])
table.float_format = '.3'
PSNR=AverageMeter('PSNR')
SSIM=AverageMeter('SSIM')
LPIPS_A=AverageMeter('LPIPS_A')
LPIPS_V=AverageMeter('LPIPS_V')
SIZE=AverageMeter('SIZE')
for scene in datasetting["scene_list"]: #[ 'chair', 'drums', 'ficus', 'hotdog', 'lego', 'mic', 'materials', 'ship' ]:
path = f'./logs/{args.configname}/{args.configname}_{scene}/render_test_vq_last/mean.txt'
with open(path, 'r') as f:
lines = f.readlines()
psnr = float(lines[0].strip())
ssim = float(lines[1].strip())
lpips_a = float(lines[2].strip())
lpips_v = float(lines[3].strip())
PSNR.update(psnr)
SSIM.update(ssim)
LPIPS_A.update(lpips_a)
LPIPS_V.update(lpips_v)
compressed_file = f'./logs/{args.configname}/{args.configname}_{scene}/extreme_saving.zip'
if os.path.exists(compressed_file):
size = os.path.getsize(compressed_file)/(1024*1024)
else:
size = 0
table.add_row([scene, psnr, ssim, lpips_a, lpips_v, size])
SIZE.update(size)
table.add_row(['Mean', PSNR.avg, SSIM.avg, LPIPS_A.avg,LPIPS_V.avg, SIZE.avg])
txt_file = os.path.join(datasetting["basedir"], f'merge_{args.importance_include}_{args.importance_prune}_{args.codebook_size}.txt')
with open(txt_file, 'w') as f:
f.writelines(table.get_string())
csv_file = os.path.join(datasetting["basedir"], f'merge_{args.importance_include}_{args.importance_prune}_{args.codebook_size}.csv')
with open(csv_file, 'w', newline='') as f:
f.writelines(table.get_csv_string())
print('VQ-DVGO:')
print(table)
table = PrettyTable(["Scene", "PSNR", "SSIM", "LPIPS_ALEX","LPIPS_VGG", "SIZE"])
table.float_format = '.3'
PSNR=AverageMeter('PSNR')
SSIM=AverageMeter('SSIM')
LPIPS_A=AverageMeter('LPIPS_A')
LPIPS_V=AverageMeter('LPIPS_V')
SIZE=AverageMeter('SIZE')
for scene in datasetting["scene_list"]: #[ 'chair', 'drums', 'ficus', 'hotdog', 'lego', 'mic', 'materials', 'ship' ]:
path = f'./logs/{args.configname}/{args.configname}_{scene}/render_test_fine_last/mean.txt'
with open(path, 'r') as f:
lines = f.readlines()
psnr = float(lines[0].strip())
ssim = float(lines[1].strip())
lpips_a = float(lines[2].strip())
lpips_v = float(lines[3].strip())
PSNR.update(psnr)
SSIM.update(ssim)
LPIPS_A.update(lpips_a)
LPIPS_V.update(lpips_v)
compressed_file = f'./logs/{args.configname}/{args.configname}_{scene}/fine_model.pth.zip'
if os.path.exists(compressed_file):
size = os.path.getsize(compressed_file)/(1024*1024)
else:
size = 0
table.add_row([scene, psnr, ssim, lpips_a, lpips_v, size])
SIZE.update(size)
table.add_row(['Mean', PSNR.avg, SSIM.avg, LPIPS_A.avg,LPIPS_V.avg, SIZE.avg])
txt_file = os.path.join(datasetting["basedir"], f'merge_fine.txt')
with open(txt_file, 'w') as f:
f.writelines(table.get_string())
csv_file = os.path.join(datasetting["basedir"], f'merge_fine.csv')
with open(csv_file, 'w', newline='') as f:
f.writelines(table.get_csv_string())
print('orginal DVGO:')
print(table)