Skip to content

Latest commit

 

History

History
10 lines (6 loc) · 725 Bytes

README.md

File metadata and controls

10 lines (6 loc) · 725 Bytes

RL-Maze

Reinforcement Learning Maze

Reinforcement Learning Maze with Q-Learning, Sarsa, Sarsa(λ) and Deep-Q-Network by using pygame, numpy, pandas and tensorflow2.1-gpu

本项目为基于强化学习的走迷宫设计与实现,使用pygame创建强化学习的迷宫环境,实现经典强化学习算法:Q-learning、Sarsa、Sarsa(λ),并在此基础上实现基于神经网络的深度强化学习DQN(Deep-Q-Network)算法。

项目中使用numpy、pandas进行数据处理,使用tensorflow2.1.1-gpu版创建DQN算法神经网络,对应CUDA2.0版本。

实现以上算法后,通过算法在随机迷宫地形中的寻路效率和路径优劣,对比不同算法在迷宫寻路问题中的差异。