From e461dfb85cfc01622ad0bc713c25700005d67410 Mon Sep 17 00:00:00 2001 From: Alluxia-F <1665627261@qq.com> Date: Sat, 15 Jul 2017 13:55:22 -0400 Subject: [PATCH] Put it all together --- Chapter 6/4. Backpropagation in Code.ipynb | 4 +- Chapter 6/6. Put it all together.ipynb | 135 +++++++++++++++++++++ 2 files changed, 138 insertions(+), 1 deletion(-) create mode 100644 Chapter 6/6. Put it all together.ipynb diff --git a/Chapter 6/4. Backpropagation in Code.ipynb b/Chapter 6/4. Backpropagation in Code.ipynb index 7674769..7fe8520 100644 --- a/Chapter 6/4. Backpropagation in Code.ipynb +++ b/Chapter 6/4. Backpropagation in Code.ipynb @@ -124,7 +124,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [] }, diff --git a/Chapter 6/6. Put it all together.ipynb b/Chapter 6/6. Put it all together.ipynb new file mode 100644 index 0000000..d96656d --- /dev/null +++ b/Chapter 6/6. Put it all together.ipynb @@ -0,0 +1,135 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(3, 4)\n", + "(4, 1)\n" + ] + } + ], + "source": [ + "# Input data \n", + "import numpy as np\n", + "np.random.seed(1)\n", + "streetlights=np.array([[1,0,1],\n", + " [0,1,1],\n", + " [0,0,1],\n", + " [1,1,1]])\n", + "\n", + "walk_vs_stop=np.array([[1,1,0,0]]).T\n", + "\n", + "alpha=0.2\n", + "hidden_size=4\n", + "\n", + "weights_0_1=2*np.random.random((3,hidden_size))-1\n", + "weights_1_2=2*np.random.random((hidden_size,1))-1\n", + "print weights_0_1.shape\n", + "print weights_1_2.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def relu(x):\n", + " return (x>0)\n", + "\n", + "def relu2deriv(output):\n", + " return output>0" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Error: 1.31255512793\n", + "Error: 0.857463601866\n", + "Error: 0.652266842474\n", + "Error: 0.203997142254\n", + "Error: 0.199295859099\n", + "Error: 0.0533385633385\n" + ] + } + ], + "source": [ + "# Train the model\n", + "\n", + "for iteration in xrange(60):\n", + " layer_2_error=0\n", + " for i in xrange(len(streetlights)):\n", + " layer_0=streetlights[i:i+1]\n", + " layer_1=relu(layer_0.dot(weights_0_1))\n", + " layer_2=layer_1.dot(weights_1_2)\n", + " \n", + " layer_2_error+=np.sum((layer_2-walk_vs_stop[i:i+1])**2)\n", + " layer_2_delta=layer_2-walk_vs_stop[i:i+1]\n", + " layer_1_delta=(layer_2_delta.dot(weights_1_2.T))*relu2deriv(layer_1)\n", + " \n", + " weights_1_2-=alpha*layer_1.T.dot(layer_2_delta)\n", + " weights_0_1-=alpha*layer_0.T.dot(layer_1_delta)\n", + " \n", + " if (iteration%10==9):\n", + " print 'Error: '+str(layer_2_error)\n", + " \n", + " \n", + " \n", + " \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda root]", + "language": "python", + "name": "conda-root-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}