-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathDBN.py
147 lines (125 loc) · 4.26 KB
/
DBN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import numpy as np
import torch
import random
from tqdm import trange
from RBM import RBM
class DBN:
def __init__(self, input_size, layers, mode='bernoulli', gpu=False, k=5, savefile=None):
self.layers = layers
self.input_size = input_size
self.layer_parameters = [{'W':None, 'hb':None, 'vb':None} for _ in range(len(layers))]
self.k = k
self.mode = mode
self.savefile = savefile
def sample_v(self, y, W, vb):
wy = torch.mm(y, W)
activation = wy + vb
p_v_given_h =torch.sigmoid(activation)
if self.mode == 'bernoulli':
return p_v_given_h, torch.bernoulli(p_v_given_h)
else:
return p_v_given_h, torch.add(p_v_given_h, torch.normal(mean=0, std=1, size=p_v_given_h.shape))
def sample_h(self, x, W, hb):
wx = torch.mm(x, W.t())
activation = wx + hb
p_h_given_v = torch.sigmoid(activation)
if self.mode == 'bernoulli':
return p_h_given_v, torch.bernoulli(p_h_given_v)
else:
return p_h_given_v, torch.add(p_h_given_v, torch.normal(mean=0, std=1, size=p_h_given_v.shape))
def generate_input_for_layer(self, index, x):
if index>0:
x_gen = []
for _ in range(self.k):
x_dash = x.clone()
for i in range(index):
_, x_dash = self.sample_h(x_dash, self.layer_parameters[i]['W'], self.layer_parameters[i]['hb'])
x_gen.append(x_dash)
x_dash = torch.stack(x_gen)
x_dash = torch.mean(x_dash, dim=0)
else:
x_dash = x.clone()
return x_dash
def train_DBN(self, x):
for index, layer in enumerate(self.layers):
if index==0:
vn = self.input_size
else:
vn = self.layers[index-1]
hn = self.layers[index]
rbm = RBM(vn, hn, epochs=100, mode='bernoulli', lr=0.0005, k=10, batch_size=128, gpu=True, optimizer='adam', early_stopping_patience=10)
x_dash = self.generate_input_for_layer(index, x)
rbm.train(x_dash)
self.layer_parameters[index]['W'] = rbm.W.cpu()
self.layer_parameters[index]['hb'] = rbm.hb.cpu()
self.layer_parameters[index]['vb'] = rbm.vb.cpu()
print("Finished Training Layer:", index, "to", index+1)
if self.savefile is not None:
torch.save(self.layer_parameters, self.savefile)
def reconstructor(self, x):
x_gen = []
for _ in range(self.k):
x_dash = x.clone()
for i in range(len(self.layer_parameters)):
_, x_dash = self.sample_h(x_dash, self.layer_parameters[i]['W'], self.layer_parameters[i]['hb'])
x_gen.append(x_dash)
x_dash = torch.stack(x_gen)
x_dash = torch.mean(x_dash, dim=0)
y = x_dash
y_gen = []
for _ in range(self.k):
y_dash = y.clone()
for i in range(len(self.layer_parameters)):
i = len(self.layer_parameters)-1-i
_, y_dash = self.sample_v(y_dash, self.layer_parameters[i]['W'], self.layer_parameters[i]['vb'])
y_gen.append(y_dash)
y_dash = torch.stack(y_gen)
y_dash = torch.mean(y_dash, dim=0)
return y_dash, x_dash
def initialize_model(self):
print("The Last layer will not be activated. The rest are activated using the Sigoid Function")
modules = []
for index, layer in enumerate(self.layer_parameters):
modules.append(torch.nn.Linear(layer['W'].shape[1], layer['W'].shape[0]))
if index < len(self.layer_parameters) - 1:
modules.append(torch.nn.Sigmoid())
model = torch.nn.Sequential(*modules)
for layer_no, layer in enumerate(model):
if layer_no//2 == len(self.layer_parameters)-1:
break
if layer_no%2 == 0:
model[layer_no].weight = torch.nn.Parameter(self.layer_parameters[layer_no//2]['W'])
model[layer_no].bias = torch.nn.Parameter(self.layer_parameters[layer_no//2]['hb'])
return model
def trial_dataset():
dataset = []
for _ in range(1000):
t = []
for _ in range(10):
if random.random()>0.75:
t.append(0)
else:
t.append(1)
dataset.append(t)
for _ in range(1000):
t = []
for _ in range(10):
if random.random()>0.75:
t.append(1)
else:
t.append(0)
dataset.append(t)
dataset = np.array(dataset, dtype=np.float32)
np.random.shuffle(dataset)
dataset = torch.from_numpy(dataset)
return dataset
if __name__ == '__main__':
dataset = trial_dataset()
layers = [7, 5, 2]
dbn = DBN(10, layers)
dbn.train_DBN(dataset)
model = dbn.initialize_model()
y = dbn.reconstructor(dataset)
print('\n\n\n')
print("MAE of an all 0 reconstructor:", torch.mean(dataset).item())
print("MAE between reconstructed and original sample:", torch.mean(torch.abs(y - dataset)).item())