-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
54 lines (44 loc) · 1.35 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import sys
from ast import literal_eval
import configargparse
sys.path.append("src")
from src.dataset import DataIterativeLoader
from src.trainer import BaseDATrainer, UnlabeledDATrainer, get_trainer
from src.util import arguments_parsing, set_seed, wandb_logger
@wandb_logger(
keys=[
"method",
"source",
"target",
"seed",
"num_iters",
"alpha",
"T",
"update_interval",
"lr",
"warmup",
"note",
]
)
def main(args):
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
set_seed(args.seed)
match args.method.split("_"):
case "muvo", *_:
loaders = DataIterativeLoader(args, strong_transform=True)
case _:
loaders = DataIterativeLoader(args, strong_transform=False)
match args.method.split("_"):
case "base", *label_trick:
trainer = get_trainer(BaseDATrainer, label_trick)(loaders, args)
case ("mme" | "muvo") as unlabeled_method, *label_trick:
trainer = get_trainer(UnlabeledDATrainer, label_trick)(
loaders, args, unlabeled_method=unlabeled_method
)
trainer.train()
if __name__ == "__main__":
args = arguments_parsing("config.yaml")
# replace the configuration
args.dataset = args.dataset_cfg["dataset_cfg"][args.dataset]
main(args)