-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlr.py
128 lines (106 loc) · 4.33 KB
/
lr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
from torch.autograd import Variable
import torchvision.transforms as transforms
import torchvision.datasets as dsets
import numpy as np
from torch.optim.optimizer import Optimizer, required
import torch.nn.functional as F
import time
hhh = {}
class SGD(Optimizer):
def __init__(self, params, lr=required, momentum=0, dampening=0,
weight_decay=0, nesterov=False):
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
defaults = dict(lr=lr)
super(SGD, self).__init__(params, defaults)
def __setstate__(self, state):
super(SGD, self).__setstate__(state)
def zero_grad(self):
for group in self.param_groups:
for p in group['params']:
if p.grad is not None:
#print("grad: "+str(type(p.grad))+' p: '+str(type(p)))
#print("data: " + str(type(p.data))+' grad data: '+str(type(p.grad.data)))
p.grad.detach_()
p.grad.zero_()
p.data = hhh[p]
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
d_p = p.grad.data
#print(p.data)
#p.data = torch.from_numpy(np.ones_like(p.data.numpy()))
new_data = p.data.clone().detach()
new_data.add_(-group['lr'], d_p)
hhh[p]=new_data
#p.data.add_(-group['lr'], d_p)
#print(p.data)
return loss
batch_size = 100
n_iters = 3000
input_dim = 784
output_dim = 10
lr_rate = 0.001
train_dataset = dsets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = dsets.MNIST(root='./data', train=False, transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
epochs = n_iters / (len(train_dataset) / batch_size)
class LogisticRegression(torch.nn.Module):
def __init__(self, input_dim, output_dim):
super(LogisticRegression, self).__init__()
self.linear = torch.nn.Linear(input_dim, output_dim)
def forward(self, x):
#outputs = F.softmax(self.linear(x), dim = 1)
outputs = self.linear(x)
return outputs
#model = torch.jit.script(LogisticRegression(input_dim, output_dim))
model = LogisticRegression(input_dim, output_dim)
#torch.jit.save(model,'lr.ndl')
#model = torch.jit.load('lr.ndl')
criterion = torch.nn.CrossEntropyLoss() # computes softmax and then the cross entropy
#criterion = torch.jit.script(torch.nn.CrossEntropyLoss()) # computes softmax and then the cross entropy
optimizer = torch.optim.Adam(model.parameters(), lr=lr_rate)
for param in model.parameters():
print(param.size())
for name, param in model.named_parameters():
print(name)
print(param.size())
iter_num = 0
start_time = time.time()
b = 0
for epoch in range(int(epochs)):
for i, (images, labels) in enumerate(train_loader):
images = Variable(images.view(-1, 28 * 28))
labels = Variable(labels)
optimizer.zero_grad()
a = time.time()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
b += time.time() - a
optimizer.step()
iter_num+=1
if iter_num%500==0:
# calculate Accuracy
print(time.time() - start_time)
print('model: ',b)
start_time = time.time()
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images.view(-1, 28*28))
outputs = model(images)
tmp, predicted = torch.max(outputs.data, 1)
print(tmp,predicted)
total+= labels.size(0)
# for gpu, bring the predicted and labels back to cpu fro python operations to work
correct+= (predicted == labels).sum()
accuracy = 100 * correct/total
print("Iteration: {}. Loss: {}. Accuracy: {}.".format(iter_num, loss.item(), accuracy))