-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
63 lines (53 loc) · 2.14 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import pickle
from flask import Flask, request, render_template
import numpy as np
# Importing model and scalers
try:
model = pickle.load(open('model.pkl', 'rb'))
sc = pickle.load(open('standscaler.pkl', 'rb'))
ms = pickle.load(open('minmaxscaler.pkl', 'rb'))
except FileNotFoundError as e:
print(f"Error loading model or scalers: {e}")
model, sc, ms = None, None, None
# Creating Flask app
app = Flask(__name__)
@app.route('/')
def index():
return render_template("index.html")
@app.route("/predict", methods=['POST'])
def predict():
try:
# Extract input data
N = float(request.form['Nitrogen'])
P = float(request.form['Phosporus'])
K = float(request.form['Potassium'])
temp = float(request.form['Temperature'])
humidity = float(request.form['Humidity'])
ph = float(request.form['Ph'])
rainfall = float(request.form['Rainfall'])
# Preprocess features
feature_list = [N, P, K, temp, humidity, ph, rainfall]
single_pred = np.array(feature_list).reshape(1, -1)
# Scale features if scalers are available
if ms and sc:
scaled_features = ms.transform(single_pred)
final_features = sc.transform(scaled_features)
else:
final_features = single_pred
# Predict crop
prediction = model.predict(final_features)
crop_dict = {1: "Rice", 2: "Maize", 3: "Jute", 4: "Cotton", 5: "Coconut",
6: "Papaya", 7: "Orange", 8: "Apple", 9: "Muskmelon",
10: "Watermelon", 11: "Grapes", 12: "Mango", 13: "Banana",
14: "Pomegranate", 15: "Lentil", 16: "Blackgram",
17: "Mungbean", 18: "Mothbeans", 19: "Pigeonpeas",
20: "Kidneybeans", 21: "Chickpea", 22: "Coffee"}
# Get result
crop = crop_dict.get(prediction[0], "Unknown crop")
result = f"{crop} is the best crop to be cultivated right there."
except Exception as e:
result = f"Error: {str(e)}"
return render_template('index.html', result=result)
# Run the app
if __name__ == "__main__":
app.run(debug=True)