forked from anishathalye/neural-style
-
Notifications
You must be signed in to change notification settings - Fork 0
/
neural_style.py
289 lines (258 loc) · 11.6 KB
/
neural_style.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# Copyright (c) 2015-2019 Anish Athalye. Released under GPLv3.
import os
import math
import re
from argparse import ArgumentParser
from collections import OrderedDict
from PIL import Image
import numpy as np
import scipy.misc
from stylize import stylize
# default arguments
CONTENT_WEIGHT = 5e0
CONTENT_WEIGHT_BLEND = 1
STYLE_WEIGHT = 5e2
TV_WEIGHT = 1e2
STYLE_LAYER_WEIGHT_EXP = 1
LEARNING_RATE = 1e1
BETA1 = 0.9
BETA2 = 0.999
EPSILON = 1e-08
STYLE_SCALE = 1.0
ITERATIONS = 1000
VGG_PATH = 'imagenet-vgg-verydeep-19.mat'
POOLING = 'max'
def build_parser():
parser = ArgumentParser()
parser.add_argument('--content',
dest='content', help='content image',
metavar='CONTENT', required=True)
parser.add_argument('--styles',
dest='styles',
nargs='+', help='one or more style images',
metavar='STYLE', required=True)
parser.add_argument('--output',
dest='output', help='output path',
metavar='OUTPUT', required=True)
parser.add_argument('--iterations', type=int,
dest='iterations', help='iterations (default %(default)s)',
metavar='ITERATIONS', default=ITERATIONS)
parser.add_argument('--print-iterations', type=int,
dest='print_iterations', help='statistics printing frequency',
metavar='PRINT_ITERATIONS')
parser.add_argument('--checkpoint-output',
dest='checkpoint_output',
help='checkpoint output format, e.g. output_{:05}.jpg or '
'output_%%05d.jpg',
metavar='OUTPUT', default=None)
parser.add_argument('--checkpoint-iterations', type=int,
dest='checkpoint_iterations', help='checkpoint frequency',
metavar='CHECKPOINT_ITERATIONS', default=None)
parser.add_argument('--progress-write', default=False, action='store_true',
help="write iteration progess data to OUTPUT's dir",
required=False)
parser.add_argument('--progress-plot', default=False, action='store_true',
help="plot iteration progess data to OUTPUT's dir",
required=False)
parser.add_argument('--width', type=int,
dest='width', help='output width',
metavar='WIDTH')
parser.add_argument('--style-scales', type=float,
dest='style_scales',
nargs='+', help='one or more style scales',
metavar='STYLE_SCALE')
parser.add_argument('--network',
dest='network', help='path to network parameters (default %(default)s)',
metavar='VGG_PATH', default=VGG_PATH)
parser.add_argument('--content-weight-blend', type=float,
dest='content_weight_blend',
help='content weight blend, conv4_2 * blend + conv5_2 * (1-blend) '
'(default %(default)s)',
metavar='CONTENT_WEIGHT_BLEND', default=CONTENT_WEIGHT_BLEND)
parser.add_argument('--content-weight', type=float,
dest='content_weight', help='content weight (default %(default)s)',
metavar='CONTENT_WEIGHT', default=CONTENT_WEIGHT)
parser.add_argument('--style-weight', type=float,
dest='style_weight', help='style weight (default %(default)s)',
metavar='STYLE_WEIGHT', default=STYLE_WEIGHT)
parser.add_argument('--style-layer-weight-exp', type=float,
dest='style_layer_weight_exp',
help='style layer weight exponentional increase - '
'weight(layer<n+1>) = weight_exp*weight(layer<n>) '
'(default %(default)s)',
metavar='STYLE_LAYER_WEIGHT_EXP', default=STYLE_LAYER_WEIGHT_EXP)
parser.add_argument('--style-blend-weights', type=float,
dest='style_blend_weights', help='style blending weights',
nargs='+', metavar='STYLE_BLEND_WEIGHT')
parser.add_argument('--tv-weight', type=float,
dest='tv_weight',
help='total variation regularization weight (default %(default)s)',
metavar='TV_WEIGHT', default=TV_WEIGHT)
parser.add_argument('--learning-rate', type=float,
dest='learning_rate', help='learning rate (default %(default)s)',
metavar='LEARNING_RATE', default=LEARNING_RATE)
parser.add_argument('--beta1', type=float,
dest='beta1', help='Adam: beta1 parameter (default %(default)s)',
metavar='BETA1', default=BETA1)
parser.add_argument('--beta2', type=float,
dest='beta2', help='Adam: beta2 parameter (default %(default)s)',
metavar='BETA2', default=BETA2)
parser.add_argument('--eps', type=float,
dest='epsilon', help='Adam: epsilon parameter (default %(default)s)',
metavar='EPSILON', default=EPSILON)
parser.add_argument('--initial',
dest='initial', help='initial image',
metavar='INITIAL')
parser.add_argument('--initial-noiseblend', type=float,
dest='initial_noiseblend',
help='ratio of blending initial image with normalized noise '
'(if no initial image specified, content image is used) '
'(default %(default)s)',
metavar='INITIAL_NOISEBLEND')
parser.add_argument('--preserve-colors', action='store_true',
dest='preserve_colors',
help='style-only transfer (preserving colors) - if color transfer '
'is not needed')
parser.add_argument('--pooling',
dest='pooling',
help='pooling layer configuration: max or avg (default %(default)s)',
metavar='POOLING', default=POOLING)
parser.add_argument('--overwrite', action='store_true', dest='overwrite',
help='write file even if there is already a file with that name')
return parser
def fmt_imsave(fmt, iteration):
if re.match(r'^.*\{.*\}.*$', fmt):
return fmt.format(iteration)
elif '%' in fmt:
return fmt % iteration
else:
raise ValueError("illegal format string '{}'".format(fmt))
def main():
# https://stackoverflow.com/a/42121886
key = 'TF_CPP_MIN_LOG_LEVEL'
if key not in os.environ:
os.environ[key] = '2'
parser = build_parser()
options = parser.parse_args()
if not os.path.isfile(options.network):
parser.error("Network %s does not exist. (Did you forget to "
"download it?)" % options.network)
if [options.checkpoint_iterations,
options.checkpoint_output].count(None) == 1:
parser.error("use either both of checkpoint_output and "
"checkpoint_iterations or neither")
if options.checkpoint_output is not None:
if re.match(r'^.*(\{.*\}|%.*).*$', options.checkpoint_output) is None:
parser.error("To save intermediate images, the checkpoint_output "
"parameter must contain placeholders (e.g. "
"`foo_{}.jpg` or `foo_%d.jpg`")
content_image = imread(options.content)
style_images = [imread(style) for style in options.styles]
width = options.width
if width is not None:
new_shape = (int(math.floor(float(content_image.shape[0]) /
content_image.shape[1] * width)), width)
content_image = scipy.misc.imresize(content_image, new_shape)
target_shape = content_image.shape
for i in range(len(style_images)):
style_scale = STYLE_SCALE
if options.style_scales is not None:
style_scale = options.style_scales[i]
style_images[i] = scipy.misc.imresize(style_images[i], style_scale *
target_shape[1] / style_images[i].shape[1])
style_blend_weights = options.style_blend_weights
if style_blend_weights is None:
# default is equal weights
style_blend_weights = [1.0/len(style_images) for _ in style_images]
else:
total_blend_weight = sum(style_blend_weights)
style_blend_weights = [weight/total_blend_weight
for weight in style_blend_weights]
initial = options.initial
if initial is not None:
initial = scipy.misc.imresize(imread(initial), content_image.shape[:2])
# Initial guess is specified, but not noiseblend - no noise should be blended
if options.initial_noiseblend is None:
options.initial_noiseblend = 0.0
else:
# Neither inital, nor noiseblend is provided, falling back to random
# generated initial guess
if options.initial_noiseblend is None:
options.initial_noiseblend = 1.0
if options.initial_noiseblend < 1.0:
initial = content_image
# try saving a dummy image to the output path to make sure that it's writable
if os.path.isfile(options.output) and not options.overwrite:
raise IOError("%s already exists, will not replace it without "
"the '--overwrite' flag" % options.output)
try:
imsave(options.output, np.zeros((500, 500, 3)))
except:
raise IOError('%s is not writable or does not have a valid file '
'extension for an image file' % options.output)
loss_arrs = None
for iteration, image, loss_vals in stylize(
network=options.network,
initial=initial,
initial_noiseblend=options.initial_noiseblend,
content=content_image,
styles=style_images,
preserve_colors=options.preserve_colors,
iterations=options.iterations,
content_weight=options.content_weight,
content_weight_blend=options.content_weight_blend,
style_weight=options.style_weight,
style_layer_weight_exp=options.style_layer_weight_exp,
style_blend_weights=style_blend_weights,
tv_weight=options.tv_weight,
learning_rate=options.learning_rate,
beta1=options.beta1,
beta2=options.beta2,
epsilon=options.epsilon,
pooling=options.pooling,
print_iterations=options.print_iterations,
checkpoint_iterations=options.checkpoint_iterations,
):
if (image is not None) and (options.checkpoint_output is not None):
imsave(fmt_imsave(options.checkpoint_output, iteration), image)
if (loss_vals is not None) \
and (options.progress_plot or options.progress_write):
if loss_arrs is None:
itr = []
loss_arrs = OrderedDict((key, []) for key in loss_vals.keys())
for key,val in loss_vals.items():
loss_arrs[key].append(val)
itr.append(iteration)
imsave(options.output, image)
if options.progress_write:
fn = "{}/progress.txt".format(os.path.dirname(options.output))
tmp = np.empty((len(itr), len(loss_arrs)+1), dtype=float)
tmp[:,0] = np.array(itr)
for ii,val in enumerate(loss_arrs.values()):
tmp[:,ii+1] = np.array(val)
np.savetxt(fn, tmp, header=' '.join(['itr'] + list(loss_arrs.keys())))
if options.progress_plot:
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
fig,ax = plt.subplots()
for key, val in loss_arrs.items():
ax.semilogy(itr, val, label=key)
ax.legend()
ax.set_xlabel("iterations")
ax.set_ylabel("loss")
fig.savefig("{}/progress.png".format(os.path.dirname(options.output)))
def imread(path):
img = scipy.misc.imread(path).astype(np.float)
if len(img.shape) == 2:
# grayscale
img = np.dstack((img,img,img))
elif img.shape[2] == 4:
# PNG with alpha channel
img = img[:,:,:3]
return img
def imsave(path, img):
img = np.clip(img, 0, 255).astype(np.uint8)
Image.fromarray(img).save(path, quality=95)
if __name__ == '__main__':
main()