-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGraphsDrawer.py
283 lines (246 loc) · 13.8 KB
/
GraphsDrawer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import mysql.connector
from mysql.connector import Error
import matplotlib.pyplot as plt
# from TwitterFetcher import players
from datetime import datetime
players = ['Djokovic', 'Tsitsipas', 'Nadal']
# method to draw a timeline with sentiment associated to the relative dates, for a single player
def draw_datetime_sentiment(list_of_date_sentiment, tennis_playre_name, sentiment):
figure = plt.figure(figsize=(20, 10))
axes = figure.add_subplot(1, 1, 1)
axes.set_title("Percentage of " + sentiment + " tweets for " + tennis_playre_name)
axes.bar(
range(len(list_of_date_sentiment)),
[sentiment[1] for sentiment in list_of_date_sentiment],
tick_label=[date[0] for date in list_of_date_sentiment]
)
return figure
def draw_datetime_sentiment_influencer(list_of_date_sentiment, tennis_playre_name, sentiment):
figure = plt.figure(figsize=(20, 10))
axes = figure.add_subplot(1, 1, 1)
axes.set_title("Retweets of influencer tweets for " + tennis_playre_name + " with a " + sentiment + " sentiment")
axes.bar(
range(len(list_of_date_sentiment)),
[sentiment[1] for sentiment in list_of_date_sentiment],
tick_label=[date[0] for date in list_of_date_sentiment]
)
return figure
#modify the dictionary incrementing the counter of the tweets
def sentiment_counter_by_date_dic_modifier(date, dict_of_dates):
if date in dict_of_dates:
dict_of_dates[date] += 1
else:
dict_of_dates[date] = 0
#calculate the percentage of the tweets for a specific date
def sentiment_percentage_dic_modifier(dict_of_dates, total_sentiment_counter):
for date_key in dict_of_dates:
date_total = dict_of_dates.get(date_key)
try:
dict_of_dates[date_key] = 100 * (date_total / total_sentiment_counter)
except ZeroDivisionError as e:
print(e)
try:
db = mysql.connector.connect(host=' 127.0.0.1', database='twitterdb', user='root', password='')
if db.is_connected():
print("CONNECTED TO MYSQL DATABASE!")
cur = db.cursor()
#Get the toal of neutral, positive and negative tweets
q = "SELECT searchParam, sentiment FROM tweet_sentiment;"
cur.execute(q)
total_neutral_counter = 0
total_positive_counter = 0
total_negative_counter = 0
for (searchParam, sentiment) in cur:
if sentiment == "neutral":
total_neutral_counter += 1
elif sentiment == "positive":
total_positive_counter += 1
elif sentiment == "negative":
total_negative_counter += 1
# Djokovic counter of tweets sentiments
q = "SELECT searchParam, sentiment FROM tweet_sentiment WHERE searchParam = 'Djokovic';"
cur.execute(q)
neutral_counter = 0
positive_counter = 0
negative_counter = 0
for (searchParam, sentiment) in cur:
if sentiment == "neutral":
neutral_counter += 1
elif sentiment == "positive":
positive_counter += 1
elif sentiment == "negative":
negative_counter += 1
figure = plt.figure(figsize=(20, 10))
axes = figure.add_subplot(1, 1, 1)
axes.set_title('Djokovic tweets counter')
axes.bar([1, 2, 3], [neutral_counter, positive_counter, negative_counter],
tick_label=["Neutral", "Positive", "Negative"])
plt.show()
# Tsitsipas counter of tweets sentiments
q = "SELECT searchParam, sentiment FROM tweet_sentiment WHERE searchParam = 'Tsitsipas';"
cur.execute(q)
neutral_counter = 0
positive_counter = 0
negative_counter = 0
for (searchParam, sentiment) in cur:
if sentiment == "neutral":
neutral_counter += 1
elif sentiment == "positive":
positive_counter += 1
elif sentiment == "negative":
negative_counter += 1
figure = plt.figure(figsize=(20, 10))
axes = figure.add_subplot(1, 1, 1)
axes.set_title('Tsitsipas tweets counter')
axes.bar([1, 2, 3], [neutral_counter, positive_counter, negative_counter],
tick_label=["Neutral", "Positive", "Negative"])
plt.show()
# Nadal counter of tweets sentiments
q = "SELECT searchParam, sentiment FROM tweet_sentiment WHERE searchParam = 'Nadal';"
cur.execute(q)
neutral_counter = 0
positive_counter = 0
negative_counter = 0
for (searchParam, sentiment) in cur:
if sentiment == "neutral":
neutral_counter += 1
elif sentiment == "positive":
positive_counter += 1
elif sentiment == "negative":
negative_counter += 1
figure = plt.figure(figsize=(20, 10))
axes = figure.add_subplot(1, 1, 1)
axes.set_title('Nadal tweets counter')
axes.bar([1, 2, 3], [neutral_counter, positive_counter, negative_counter],
tick_label=["Neutral", "Positive", "Negative"])
plt.show()
# Plot a timeline tweets sentiment for Nadal
q = "SELECT searchParam, tweet_sentiment.date, sentiment FROM tweet_sentiment WHERE searchParam = 'Nadal';"
cur.execute(q)
dates_dic_Nadal_neutral = {}
dates_dic_Nadal_positive = {}
dates_dic_Nadal_negative = {}
for (searchParam, date, sentiment) in cur:
date_time_obj = datetime.strptime(date, '%Y-%m-%d %H:%M:%S')
if sentiment == "neutral":
sentiment_counter_by_date_dic_modifier(date_time_obj.date(), dates_dic_Nadal_neutral)
elif sentiment == "positive":
sentiment_counter_by_date_dic_modifier(date_time_obj.date(), dates_dic_Nadal_positive)
elif sentiment == "negative":
sentiment_counter_by_date_dic_modifier(date_time_obj.date(), dates_dic_Nadal_negative)
sentiment_percentage_dic_modifier(dates_dic_Nadal_neutral, total_neutral_counter)
sentiment_percentage_dic_modifier(dates_dic_Nadal_positive, total_positive_counter)
sentiment_percentage_dic_modifier(dates_dic_Nadal_negative, total_negative_counter)
draw_datetime_sentiment(dates_dic_Nadal_neutral.items(), 'Nadal', 'Neutral')
draw_datetime_sentiment(dates_dic_Nadal_positive.items(), 'Nadal', 'Positive')
draw_datetime_sentiment(dates_dic_Nadal_negative.items(), 'Nadal', 'Negative')
plt.show()
# Plot a timeline tweets sentiment for Tsitsipas
q = "SELECT searchParam, tweet_sentiment.date, sentiment FROM tweet_sentiment WHERE searchParam = 'Tsitsipas';"
cur.execute(q)
dates_dic_Tsitsipas_neutral = {}
dates_dic_Tsitsipas_positive = {}
dates_dic_Tsitsipas_negative = {}
for (searchParam, date, sentiment) in cur:
date_time_obj = datetime.strptime(date, '%Y-%m-%d %H:%M:%S')
if sentiment == "neutral":
sentiment_counter_by_date_dic_modifier(date_time_obj.date(), dates_dic_Tsitsipas_neutral)
elif sentiment == "positive":
sentiment_counter_by_date_dic_modifier(date_time_obj.date(), dates_dic_Tsitsipas_positive)
elif sentiment == "negative":
sentiment_counter_by_date_dic_modifier(date_time_obj.date(), dates_dic_Tsitsipas_negative)
sentiment_percentage_dic_modifier(dates_dic_Tsitsipas_neutral, total_neutral_counter)
sentiment_percentage_dic_modifier(dates_dic_Tsitsipas_positive, total_positive_counter)
sentiment_percentage_dic_modifier(dates_dic_Tsitsipas_negative, total_negative_counter)
draw_datetime_sentiment(dates_dic_Tsitsipas_neutral.items(), 'Tsitsipas', 'Neutral')
draw_datetime_sentiment(dates_dic_Tsitsipas_positive.items(), 'Tsitsipas', 'Positive')
draw_datetime_sentiment(dates_dic_Tsitsipas_negative.items(), 'Tsitsipas', 'Negative')
plt.show()
# Plot a timeline tweets sentiment for Djokovic
q = "SELECT searchParam, tweet_sentiment.date, sentiment FROM tweet_sentiment WHERE searchParam = 'Djokovic';"
cur.execute(q)
dates_dic_Djokovic_neutral = {}
dates_dic_Djokovic_positive = {}
dates_dic_Djokovic_negative = {}
for (searchParam, date, sentiment) in cur:
date_time_obj = datetime.strptime(date, '%Y-%m-%d %H:%M:%S')
if sentiment == "neutral":
sentiment_counter_by_date_dic_modifier(date_time_obj.date(), dates_dic_Djokovic_neutral)
elif sentiment == "positive":
sentiment_counter_by_date_dic_modifier(date_time_obj.date(), dates_dic_Djokovic_positive)
elif sentiment == "negative":
sentiment_counter_by_date_dic_modifier(date_time_obj.date(), dates_dic_Djokovic_negative)
sentiment_percentage_dic_modifier(dates_dic_Djokovic_neutral, total_neutral_counter)
sentiment_percentage_dic_modifier(dates_dic_Djokovic_positive, total_positive_counter)
sentiment_percentage_dic_modifier(dates_dic_Djokovic_negative, total_negative_counter)
print(f"The neutral tweets are in total: {total_neutral_counter}")
for date_key in dates_dic_Djokovic_neutral.keys():
print(f"The percentage of neutral tweets for the date {date_key} Djokovic is {dates_dic_Djokovic_neutral.get(date_key)}")
draw_datetime_sentiment(dates_dic_Djokovic_neutral.items(), 'Djokovic', 'Neutral')
draw_datetime_sentiment(dates_dic_Djokovic_positive.items(), 'Djokovic', 'Positive')
draw_datetime_sentiment(dates_dic_Djokovic_negative.items(), 'Djokovic', 'Negative')
plt.show()
#timeline with number of retweets about Nadal, made from the hight impact accounts (more than 10000 folloers) related to the sentiment of the tweet
q = "SELECT searchParam, tweet_sentiment.date, sentiment FROM tweet_sentiment WHERE searchParam = 'Nadal' and number_of_followers > 10000;"
cur.execute(q)
dates_dic_Nadal_neutral = {}
dates_dic_Nadal_positive = {}
dates_dic_Nadal_negative = {}
for (searchParam, date, sentiment) in cur:
date_time_obj = datetime.strptime(date, '%Y-%m-%d %H:%M:%S')
if sentiment == "neutral":
sentiment_counter_by_date_dic_modifier(date_time_obj.date(), dates_dic_Nadal_neutral)
elif sentiment == "positive":
sentiment_counter_by_date_dic_modifier(date_time_obj.date(), dates_dic_Nadal_positive)
elif sentiment == "negative":
sentiment_counter_by_date_dic_modifier(date_time_obj.date(), dates_dic_Nadal_negative)
draw_datetime_sentiment_influencer(dates_dic_Nadal_neutral.items(), 'Nadal', 'Neutral')
draw_datetime_sentiment_influencer(dates_dic_Nadal_positive.items(), 'Nadal', 'Positive')
draw_datetime_sentiment_influencer(dates_dic_Nadal_negative.items(), 'Nadal', 'Negative')
plt.show()
#timeline with number of retweets about Tsitsipas, made from the hight impact accounts (more than 10000 folloers) related to the sentiment of the tweet
q = "SELECT searchParam, tweet_sentiment.date, sentiment FROM tweet_sentiment WHERE searchParam = 'Tsitsipas' and number_of_followers > 10000;"
cur.execute(q)
dates_dic_Tsitsipas_neutral = {}
dates_dic_Tsitsipas_positive = {}
dates_dic_Tsitsipas_negative = {}
for (searchParam, date, sentiment) in cur:
date_time_obj = datetime.strptime(date, '%Y-%m-%d %H:%M:%S')
if sentiment == "neutral":
sentiment_counter_by_date_dic_modifier(date_time_obj.date(), dates_dic_Tsitsipas_neutral)
elif sentiment == "positive":
sentiment_counter_by_date_dic_modifier(date_time_obj.date(), dates_dic_Tsitsipas_positive)
elif sentiment == "negative":
sentiment_counter_by_date_dic_modifier(date_time_obj.date(), dates_dic_Tsitsipas_negative)
draw_datetime_sentiment_influencer(dates_dic_Tsitsipas_neutral.items(), 'Tsitsipas', 'Neutral')
draw_datetime_sentiment_influencer(dates_dic_Tsitsipas_positive.items(), 'Tsitsipas', 'Positive')
draw_datetime_sentiment_influencer(dates_dic_Tsitsipas_negative.items(), 'Tsitsipas', 'Negative')
plt.show()
# timeline with number of retweets about Djokovic, made from the hight impact accounts (more than 10000 folloers) related to the sentiment of the tweet
q = "SELECT searchParam, tweet_sentiment.date, sentiment FROM tweet_sentiment WHERE searchParam = 'Djokovic' and number_of_followers > 10000;"
cur.execute(q)
dates_dic_Djokovic_neutral = {}
dates_dic_Djokovic_positive = {}
dates_dic_Djokovic_negative = {}
for (searchParam, date, sentiment) in cur:
date_time_obj = datetime.strptime(date, '%Y-%m-%d %H:%M:%S')
if sentiment == "neutral":
sentiment_counter_by_date_dic_modifier(date_time_obj.date(), dates_dic_Djokovic_neutral)
elif sentiment == "positive":
sentiment_counter_by_date_dic_modifier(date_time_obj.date(), dates_dic_Djokovic_positive)
elif sentiment == "negative":
sentiment_counter_by_date_dic_modifier(date_time_obj.date(), dates_dic_Djokovic_negative)
draw_datetime_sentiment_influencer(dates_dic_Djokovic_neutral.items(), 'Djokovic', 'Neutral')
draw_datetime_sentiment_influencer(dates_dic_Djokovic_positive.items(), 'Djokovic', 'Positive')
print(dates_dic_Djokovic_negative)
draw_datetime_sentiment_influencer(dates_dic_Djokovic_negative.items(), 'Djokovic', 'Negative')
plt.show()
except Error as error:
db.rollback()
print('Failed to insert into MySQL table {db}'.format(error))
finally:
# closing database connection.
if db.is_connected():
cur.close()
db.close()
print("MySQL connection is closed")