Skip to content

Latest commit

 

History

History
192 lines (119 loc) · 3.26 KB

README.md

File metadata and controls

192 lines (119 loc) · 3.26 KB

logo

Introduction

MegBox is an easy-to-use, well-rounded and safe toolbox of MegEngine. Aim to imporving usage experience and speeding up develop process.

MegBox is still in an early development stage.

Features

easy_use

Easily generate tensor
from megbox import easy_use

x = easy_use.randn(2, 3, 4, 5, 6)
Easily pad
y1 = F.nn.pad(x, [(0, 0), (0, 0), (0, 0), (0, 1), (1, 0)])
y2 = easy_use.pad(x, [1, 0, 0, 1])

print(easy_use.all(y1 == y2))
Easily exchang axes
y1 = x.transpose(0, 1, 2, 4, 3)
y2 = easy_use.exchang_axes(x, -2, -1)

print(easy_use.all(y1 == y2))
Easily use where
# use number in where
y1 = F.where(x > 0, x, mge.tensor(0))
y2 = easy_use.where(x > 0, x, 0)

print(easy_use.all(y1 == y2))

well-rounded

Support Pooling with ceil mode
from megbox.module import AvgPool2d, MaxPool2d

module = MaxPool2d(
    kernel_size=2,
    ceil_mode=True,
)

# Note: Use an approximate implementation, which may cause some problem.
module = AvgPool2d(
    kernel_size=2,
    ceil_mode=True,
)
Be aligned with torch's implementation
from megbox.module import AdaptiveAvgPool2d, AdaptiveMaxPool2d

module = AdaptiveAvgPool2d(7)

module = AdaptiveMaxPool2d(3)
Commonly used attention block
from megbox import attention

print(attention.__all__)
se = attention.SEBlock(in_channels=64, reduction=16)
Some kinds of convolution variants
from megbox import conv

print(conv.__al__)
involution = conv.Involution(channels=64, kernel_size=11, stride=1)
Further support for reparameterization convolution with dilation
from megbox.reparam import RepConv2d, RepLargeKernelConv2d

rep_conv = RepConv2d(32, 32, dilation=(1, 2))
rep_lk_conv = RepLargeKernelConv2d(
    channels=32,
    kernel_size=11,
    small_kernel_size=(5, 1),
    dilation=2,
)

rep_conv.switch_to_deploy()
rep_lk_conv.switch_to_deploy()
Visualize the reparameterization process
from megbox.reparam import visualize

visualize(kernel_sizes=(7, 5, 3), dilations=(2, 3, 1), save_dir='./')

safe

Safely sort with NaN
import megengine.functional as F
from megbox.functional.safe import sort
import megengine as mge

x = mge.tensor([3., 4., 2., float("NaN"), 1., 2., float("NaN")])

# can not return corrct result
y1 = F.sort(x)
y2 = sort(x)

Details

More details can be found in documents(will be supported as soon as possible).

TODO:

Reference

timm

External-Attention-pytorch