-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_exp.py
230 lines (227 loc) · 14.2 KB
/
run_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import argparse
from email import generator
import os
from re import L
import wandb
import numpy as np
import pandas as pd
import random
import joblib
from evaluation import get_encoder, build_qa_prompt
from dataset import make_perturb_testset
from src.classes.prompt import TotalPromptSet
from utils import *
from metrics import *
from tqdm import tqdm
from perturbations import *
from transformers import AutoTokenizer, AutoModelForCausalLM
from openai import OpenAI
def evaluate_single_model(dataset: List[PromptSet],
model:dict,
model_name: str,
args: dict):
prompts, answers, ori_answers = [], [], []
idx = 0
print("length of dataset -> ", len(dataset))
instruction = get_instruction(args["instruction_type"])
client = OpenAI(api_key=os.getenv("OPENAI_APIKEY"))
encoder = get_encoder(args["lm"])
if args["perturb_testset"]:
before = len(dataset)
dataset = make_perturb_testset(dataset, args)
for d in dataset[:5]:
print("Q:", d.query)
print("A:", d.answers)
print("Substitution:", d.substitution)
print("Context:", "\n".join([wiki.text for wiki in d.supports]))
print("-"*100)
assert len(data) == before, "length of dataset should be same"
for idx, data in enumerate(dataset):
data.supports = data.supports[:args["num_wiki"]]
prompt = build_qa_prompt(data, model, model_name, args, instruction, encoder)
if idx == 0:
print(prompt)
has_answer_in_context = any([wiki.has_answer for wiki in data.supports])
ori_answers.append(data.answers)
if args["unanswerable"]:
if not(has_answer_in_context):
data.answers = ["unanswerable"]
answer = data.answers
prompts.append(prompt)
answers.append(answer)
if args["skip_model_output"]:
joblib.dump(prompts, )
raise ValueError
if args["lm"].startswith("Llama"):
tokenizer = AutoTokenizer.from_pretrained("meta-llama/"+args["lm"])
if "13b" in args["lm"] or "70b" in args["lm"]:
model = AutoModelForCausalLM.from_pretrained("meta-llama/"+args["lm"], device_map="auto")
else:
model = AutoModelForCausalLM.from_pretrained("meta-llama/"+args["lm"]).to(args["device"])
model.eval()
elif args["lm"].startswith("mistral"):
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1").to(args["device"])
model.eval()
is_corrects, f1_scores, num_tokens, has_answers, total_preds, total_candidates = [], [], [], [], [], []
with torch.no_grad():
for i in (tq := tqdm(range(0, len(prompts), args["bs"]), desc=f"EM: 0.0%")):
b_prompt, b_answer = prompts[i:i+args["bs"]], answers[i:i+args["bs"]]
if args["lm"] in ["gpt-3.5-turbo-instruct", "gpt-3.5-turbo-16k"]:
preds = generate_answer_from_gpt(b_prompt, client, args["max_tokens"])
elif args["lm"].startswith("mistral"):
tokenizer.pad_token_id = 2
preds = []
if not args["ensemble"]:
output = tokenizer(b_prompt, return_tensors="pt", padding="longest").to(args["device"])
output = model.generate(**output, max_new_tokens=args["max_tokens"], pad_token_id=tokenizer.eos_token_id)
pred = tokenizer.batch_decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
for p in pred:
preds.append(p.split("[/INST]")[1].strip())
else:
for p in b_prompt:
output = tokenizer(p, return_tensors="pt", padding="longest").to(args["device"])
output = model.generate(**output, max_new_tokens=args["max_tokens"], pad_token_id=tokenizer.eos_token_id)
pred = tokenizer.batch_decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
candidates = [i.split("[/INST]")[1].strip() for i in pred]
total_candidates.append("||".join(candidates))
result = aggregate_ensemble(candidates, args)
preds.append(result)
elif args["lm"].startswith("Llama"):
preds = []
if "chat" not in args["lm"]:
tokenizer.pad_token = tokenizer.eos_token
output = tokenizer(b_prompt, return_tensors="pt", padding="longest").to(args["device"])
output = model.generate(**output, max_new_tokens=args["max_tokens"])
pred = tokenizer.batch_decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
if "chat" in args["lm"]:
for p in pred:
preds.append(p.split("[/INST]")[1].strip())
else:
for _pred, _prompt in zip(pred, b_prompt):
generation_str = _pred[len(_prompt):]
_answer = generation_str.split("\n")[0]
print("-"*100)
print("Answer ->", _answer)
print("Generation ->", generation_str)
print("-"*100)
if len(_answer) < 3:
preds.append(generation_str)
else:
preds.append(_answer)
total_preds.extend(preds)
is_corrects.extend([exact_match_score(pred, answer, normalize_answer) for pred, answer in zip(preds, b_answer)])
f1_scores.extend([f1_score(pred, answer, normalize_answer) for pred, answer in zip(preds, b_answer)])
num_tokens.extend([len(encoder.encode(prompt)) if isinstance(prompt, str) else 0 for prompt in b_prompt])
has_answers.extend([True if answer != ["unanswerable"] else False for answer in b_answer])
tq.set_description(f"EM : {sum(is_corrects) / len(is_corrects) * 100:4.1f}% || Acc : {sum([int(text_has_answer(ans, pred)) for ans, pred in zip(ori_answers, total_preds)]) / len(total_preds)*100:4.1f}" )
print(len(total_preds),len(is_corrects), len(f1_scores), len(num_tokens), len(has_answers))
raw_data = pd.DataFrame(data={"question":[data.query for data in dataset],
"prompt": prompts if isinstance(prompts[0], str) else ["\n\n\n".join(prompt) for prompt in prompts],
"answers": [", ".join(ans) if len(ans) > 1 else ans[0] for ans in answers],
"ori_answers": [", ".join(ans) if len(ans) > 1 else ans[0] for ans in ori_answers],
"prediction": total_preds,
"candidates": total_candidates if total_candidates != [] else [None]*len(total_preds),
"is_exact_match": is_corrects,
"is_accurate": [int(text_has_answer(ans, pred)) for ans, pred in zip(answers, total_preds)],
"ori_is_exact_match": [exact_match_score(pred, answer, normalize_answer) for pred, answer in zip(total_preds, ori_answers)],
"ori_is_accurate": [int(text_has_answer(ans, pred)) for ans, pred in zip(ori_answers, total_preds)],
"num_tokens": num_tokens,
"num_ctxs": [len(data.supports) for data in dataset]
})
metrics = cal_metrics(raw_data)
output = pd.DataFrame(data={"em": round(sum(is_corrects) / len(is_corrects) * 100,3),
"ori_em": round(sum([exact_match_score(pred, answer, normalize_answer) for pred, answer in zip(total_preds, ori_answers)]) / len(total_preds) * 100, 3),
"f1": round(sum(f1_scores) / len(f1_scores) * 100, 3),
"accuracy": round(sum([int(text_has_answer(ans, pred)) for ans, pred in zip(answers, total_preds)]) / len(total_preds) * 100, 3),
"em_answerable":metrics["em_answerable"],
"em_unanswerable":metrics["em_unanswerable"],
"acc_answerable":metrics["acc_answerable"],
"acc_unanswerable":metrics['acc_unanswerable'],
"ori_accuracy": round(sum([int(text_has_answer(ans, pred)) for ans, pred in zip(ori_answers, total_preds)]) / len(total_preds) * 100, 3),
"unanswerable_ratio": 100 - round(sum(has_answers) / len(has_answers) * 100, 3),
"avg_num_tokens": round(sum(num_tokens) / len(num_tokens), 3),
"num_dataset": len(dataset)},
index=[0])
return raw_data, output
def evaluate(dataset: TotalPromptSet, model:dict, metadata: dict, wandb_run=None):
raw_data, output = evaluate_single_model(dataset=dataset.prompt_sets,
model=model,
model_name=metadata["model_name"],
args=metadata)
try:
raw_data.to_csv("raw_data.csv")
output.to_csv("output.csv")
except:
pass
tbl_result = wandb.Table(dataframe=output)
tbl_prompt = wandb.Table(dataframe=raw_data)
wandb_run.log({"result":tbl_result, "raw-data":tbl_prompt})
#wandb.log({"result":tbl_result, "raw-data":tbl_prompt})
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--num_wiki",type=int, required=True, help=f"Number of retrieved wiki passages.", dest="num_wiki")
parser.add_argument("--fewshot_type",type=str, required=False, help="Type of fewshot examples",choices=["cbr", "random"], dest="fewshot_type")
parser.add_argument("--filter",type=str2bool, required=False, help="1 means fewshots only including entities", dest="filter")
parser.add_argument("--size",type=int, required=False, default=10, dest="nq_size")
parser.add_argument("--except_perturb", type=str, required=False, default="", choices=[])
parser.add_argument(
"--ex_type", type=str, required=False, help="""["random_top1", "random_exact", "random_unanswerable", "cbr_top1", "cbr_exact", "cbr_unanswerable", "fixed_top1", "fixed_exact", "fixed_unanswerable"]""")
parser.add_argument("--prompt",type=str, required=False, default="base", dest="instruction_type")
parser.add_argument("--device",type=str, required=False, default="cuda", dest="device")
parser.add_argument("--num_examples",type=int, required=False, default=5, dest="num_examples")
parser.add_argument("--unanswerable",type=str2bool, default=True)
parser.add_argument("--unanswerable_cnt", type=int, default=1)
parser.add_argument("--model_name", type=str, choices=["ours","baseline", "hybrid"])
parser.add_argument(
"--lm", type=str, default="gpt-3.5-turbo-instruct",
choices=["gpt-3.5-turbo-instruct", "gpt-3.5-turbo-16k", "mistral-instruct", "Llama-2-7b-chat-hf", "Llama-2-7b-hf", "Llama-2-13b-chat-hf", "Llama-2-13b-hf", "Llama-2-70b-chat-hf", "Llama-2-70b-hf"])
parser.add_argument("--max_tokens", type=int, default=10)
parser.add_argument("--bs", type=int, default=1)
parser.add_argument("--perturb_testset", required=False, type=str2bool, default=False)
parser.add_argument("--perturb_testset_op", required=False, type=str, default="random")
parser.add_argument("--perturb_data_ratio", required=False, type=float, default=0.5)
parser.add_argument("--perturb_context_ratio", required=False, type=float, default=0.5)
parser.add_argument("--test", type=str2bool, default=False)
parser.add_argument("--skip_model_output", type=str2bool, default=False)
parser.add_argument("--prompt_test", type=str2bool, default=False)
parser.add_argument("--skip_wandb", type=str2bool, default=False)
parser.add_argument("--data_dir", type=str, default="/data/seongil/datasets/")
parser.add_argument("--data_file", type=str, default="TotalPromptSet-all_ex_20.joblib")
parser.add_argument("--fixed_set", type=str2bool, default=False)
parser.add_argument("--adaptive_perturbation", type=str2bool, default=False)
parser.add_argument("--adaptive_perturbation_type", type=str, default="fixed", choices=["fixed", "random"])
parser.add_argument("--prefix", type=str, default="", required=False)
parser.add_argument("--ensemble", type=str2bool, default=False)
parser.add_argument("--ensemble_method", type=str, default="voting", choices=["voting", "avg"])
parser.add_argument("--formatting", type=str2bool, default=False)
parser.add_argument("--selective_perturbation", nargs="+", default="", help="swap_entity, adversarial, conflict, swap_context, original")
args = parser.parse_args()
metadata = vars(args)
path = args.data_dir + args.data_file
total = joblib.load(path)
total_promptset, total_metadata = total["promptset"], total["metadata"]
print("length of total promptset -> ", len(total_promptset.prompt_sets))
metadata["dataset_config"] = total_metadata
random.seed(42)
del total
if not args.skip_wandb:
run = wandb.init(
project="rag",
notes="experiment",
tags=["baseline"],
name=make_exp_name(args),
config=metadata)
model = dict()
if args.adaptive_perturbation:
from transformers import AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, pipeline
qa_model = "deepset/roberta-base-squad2"
nli_model = "cross-encoder/qnli-electra-base"
model["nlp"] = pipeline("question-answering", model=qa_model, tokenizer=qa_model, device=args.device)
model["nli"] = {"model": AutoModelForSequenceClassification.from_pretrained(nli_model).to(args.device),
"tokenizer": AutoTokenizer.from_pretrained(nli_model)}
if not args.test:
evaluate(total_promptset, model, metadata, run)
else:
total_promptset.prompt_sets = random.sample(total_promptset.prompt_sets, args.nq_size)
evaluate(total_promptset, model, metadata, run)