forked from Hourout/CTR-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFM.py
53 lines (44 loc) · 2.03 KB
/
FM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import tensorflow as tf
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
K = tf.keras.backend
class MyLayer(tf.keras.layers.Layer):
def __init__(self, input_dim, output_dim=30, **kwargs):
self.input_dim = input_dim
self.output_dim = output_dim
super(MyLayer, self).__init__(**kwargs)
def build(self, input_shape):
self.kernel = self.add_weight(name='kernel',
shape=(self.input_dim, self.output_dim),
initializer='glorot_uniform',
trainable=True)
super(MyLayer, self).build(input_shape)
def call(self, x):
a = K.pow(K.dot(x,self.kernel), 2)
b = K.dot(K.pow(x, 2), K.pow(self.kernel, 2))
return K.mean(a-b, 1, keepdims=True)*0.5
def compute_output_shape(self, input_shape):
return (input_shape[0], self.output_dim)
def FM(feature_dim):
inputs = tf.keras.Input((feature_dim,))
liner = tf.keras.layers.Dense(units=1,
bias_regularizer=tf.keras.regularizers.l2(0.01),
kernel_regularizer=tf.keras.regularizers.l1(0.02),
)(inputs)
cross = MyLayer(feature_dim)(inputs)
add = tf.keras.layers.Add()([liner, cross])
predictions = tf.keras.layers.Activation('sigmoid')(add)
model = tf.keras.Model(inputs=inputs, outputs=predictions)
model.compile(loss='binary_crossentropy',
optimizer=tf.train.AdamOptimizer(0.001),
metrics=['binary_accuracy'])
return model
def train():
fm = FM(30)
data = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2,
random_state=27, stratify=data.target)
fm.fit(X_train, y_train, epochs=3, batch_size=16, validation_data=(X_test, y_test))
return fm
if __name__ == '__main__':
fm = train()