-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsource.lua
executable file
·111 lines (99 loc) · 3.41 KB
/
source.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
local source = {}
-- camera source, rescaler, color space
if options.source == 'camera' then
require 'camera'
source = image.Camera{}
elseif options.source == 'video' then
require 'ffmpeg'
source = ffmpeg.Video{path=options.dspath, width=options.width,
height=options.height, fps=options.fps,
length=options.length, delete = false}
elseif options.source == 'dataset' then
require 'image'
local image_names = paths.dir(options.dspath, 'r')
image_paths = {}
-- filter files and remove non-images
for i=1, #image_names do
if image_names[i]=='.' then
-- ignore
elseif image_names[i] == '..' then
-- ignore
elseif string.find(image_names[i], "txt") then
-- ignore
else
table.insert(image_paths, options.dspath..'/'..image_names[i])
end
end
local tmp_img = image.load(image_paths[1])
options.width = tmp_img:size(3)
options.height = tmp_img:size(2)
local gtfile = torch.DiskFile(sys.concat(options.dspath,'init.txt'),'r')
if options.dsoutput then
state.dsoutfile = torch.DiskFile(options.dsoutput,'w')
end
local gt = {file=gtfile}
function gt:next()
local line = self.file:readString('*line')
local _, _, lx, ty, rx, by = string.find(line, '(.*),(.*),(.*),(.*)')
self.lx = tonumber(lx)
self.ty = tonumber(ty)
self.rx = tonumber(rx)
self.by = tonumber(by)
end
gt:next()
options.boxw = gt.rx - gt.lx
options.boxh = gt.by - gt.ty
gt.file:close()
gt.file = torch.DiskFile(sys.concat(options.dspath,'gt.txt'),'r')
source.gt = gt
local index = 1
source.nframes = #image_paths
source.forward = function()
img = image.load(image_paths[index])
index = index + 1
return img
end
local oldforward = source.forward
local function gtwrap(self)
self.gt:next()
return oldforward(self)
end
source.forward = gtwrap
end
if options.source ~= 'dataset' then
options.boxh = options.box
options.boxw = options.box
else
state.learn = {x=(source.gt.lx+source.gt.rx)/2,
y=(source.gt.ty+source.gt.by)/2,
id=1, class=state.classes[1]}
end
if options.source == 'dataset' or options.source == 'video' then
local oldforward = source.forward
local function finishwrap(self)
if self.current == self.nframes then
state.finished = true
end
return oldforward(self)
end
source.forward = finishwrap
end
source.rgb2yuv = nn.SpatialColorTransform('rgb2y')
function source.setdowns(downs)
-- originally owidth and oheight had +3, not sure why, removed for now
source.rescaler = nn.SpatialReSampling{owidth=options.width/downs,
oheight=options.height/downs}
end
source.setdowns(options.downs)
extension = 20
function source:getframe()
-- capture next frame
state.rawFrame = self:forward()
state.rawFrame = state.rawFrame:float()
-- convert and rescale
state.RGBFrame = source.rescaler:forward(state.rawFrame)
state.YUVFrame = source.rgb2yuv:forward(state.RGBFrame)
state.input = torch.Tensor(state.YUVFrame:size(2)+2*extension, state.YUVFrame:size(3)+2*extension):fill(0)
state.input[{{extension+1, state.YUVFrame:size(2)+extension}, {extension+1, state.YUVFrame:size(3)+extension}}] = state.YUVFrame[1]
end
return source