-
Notifications
You must be signed in to change notification settings - Fork 126
models roberta base openai detector
RoBERTa Base OpenAI Detector is a language model developed by OpenAI that is fine-tuned using outputs from the 1.5B GPT-2 model. It is designed to detect text generated by GPT-2 and is not meant to be used for malicious purposes or to evade detection. The main focus of the model is to aid in synthetic text generation research, but users should be aware of its limitations, risks and potential biases, including accuracy and robustness limitations and the possibility of bias and stereotypes. The associated paper provides information on the training procedure and results from testing, which showed that the model achieved approximately 95% accuracy in detecting text generated by GPT-2, with a higher accuracy when trained using nucleus sampling. Further improvement to the model's effectiveness is said to require methods such as metadata-based approaches, human judgment, and public education.
The above summary was generated using ChatGPT. Review the original model card to understand the data used to train the model, evaluation metrics, license, intended uses, limitations and bias before using the model.
Inference type | Python sample (Notebook) | CLI with YAML |
---|---|---|
Real time | text-classification-online-endpoint.ipynb | text-classification-online-endpoint.sh |
Batch | entailment-contradiction-batch.ipynb | coming soon |
Task | Use case | Dataset | Python sample (Notebook) | CLI with YAML |
---|---|---|---|---|
Text Classification | Emotion Detection | Emotion | emotion-detection.ipynb | emotion-detection.sh |
Token Classification | Named Entity Recognition | Conll2003 | named-entity-recognition.ipynb | named-entity-recognition.sh |
Question Answering | Extractive Q&A | SQUAD (Wikipedia) | extractive-qa.ipynb | extractive-qa.sh |
Task | Use case | Dataset | Python sample (Notebook) | CLI with YAML |
---|---|---|---|---|
Text Classification | Detecting GPT2 Output | GPT2-Outputs | evaluate-model-text-classification.ipynb | evaluate-model-text-classification.yml |
{
"input_data": {
"input_string": ["Today was an amazing day!", "It was an unfortunate series of events."]
}
}
[
{
"0": "Fake"
},
{
"0": "Fake"
}
]
Version: 11
Preview
computes_allow_list : ['Standard_NV12s_v3', 'Standard_NV24s_v3', 'Standard_NV48s_v3', 'Standard_NC6s_v3', 'Standard_NC12s_v3', 'Standard_NC24s_v3', 'Standard_NC24rs_v3', 'Standard_NC6s_v2', 'Standard_NC12s_v2', 'Standard_NC24s_v2', 'Standard_NC24rs_v2', 'Standard_NC4as_T4_v3', 'Standard_NC8as_T4_v3', 'Standard_NC16as_T4_v3', 'Standard_NC64as_T4_v3', 'Standard_ND6s', 'Standard_ND12s', 'Standard_ND24s', 'Standard_ND24rs', 'Standard_ND40rs_v2', 'Standard_ND96asr_v4']
license : mit
model_specific_defaults : ordereddict({'apply_deepspeed': 'true', 'apply_lora': 'true', 'apply_ort': 'true'})
SharedComputeCapacityEnabled
task : text-classification
View in Studio: https://ml.azure.com/registries/azureml/models/roberta-base-openai-detector/version/11
License: mit
SHA: f5444000d615d1366ab9432a981035c58c57d55f
datasets: bookcorpus, wikipedia
evaluation-min-sku-spec: 8|0|28|56
evaluation-recommended-sku: Standard_DS4_v2
finetune-min-sku-spec: 4|1|28|176
finetune-recommended-sku: Standard_NC12s_v3
finetuning-tasks: text-classification, token-classification, question-answering
inference-min-sku-spec: 2|0|7|14
inference-recommended-sku: Standard_DS2_v2, Standard_D2a_v4, Standard_D2as_v4, Standard_DS3_v2, Standard_D4a_v4, Standard_D4as_v4, Standard_DS4_v2, Standard_D8a_v4, Standard_D8as_v4, Standard_DS5_v2, Standard_D16a_v4, Standard_D16as_v4, Standard_D32a_v4, Standard_D32as_v4, Standard_D48a_v4, Standard_D48as_v4, Standard_D64a_v4, Standard_D64as_v4, Standard_D96a_v4, Standard_D96as_v4, Standard_F4s_v2, Standard_FX4mds, Standard_F8s_v2, Standard_FX12mds, Standard_F16s_v2, Standard_F32s_v2, Standard_F48s_v2, Standard_F64s_v2, Standard_F72s_v2, Standard_FX24mds, Standard_FX36mds, Standard_FX48mds, Standard_E2s_v3, Standard_E4s_v3, Standard_E8s_v3, Standard_E16s_v3, Standard_E32s_v3, Standard_E48s_v3, Standard_E64s_v3, Standard_NC4as_T4_v3, Standard_NC6s_v3, Standard_NC8as_T4_v3, Standard_NC12s_v3, Standard_NC16as_T4_v3, Standard_NC24s_v3, Standard_NC64as_T4_v3, Standard_NC24ads_A100_v4, Standard_NC48ads_A100_v4, Standard_NC96ads_A100_v4, Standard_ND96asr_v4, Standard_ND96amsr_A100_v4, Standard_ND40rs_v2
languages: en