-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathesquery.py
402 lines (390 loc) · 12.8 KB
/
esquery.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
#queries using Elasticsearch using python
from elasticsearch import Elasticsearch
import json
es_host = 'localhost:9200'
es_type = "meta"
es = Elasticsearch([es_host])
es_name_query = [
"All normal and tumor fastq exist.",
"Fastq normal and tumor exist, no alignment.",
"Alignment normal and tumor exist, no somatic.",
"All flags are true. All documents exist."
]
#sample queries
es_queries = [
{
"aggs": {
"project_f": {
"aggs": {
"project": {
"terms": {
"field": "program",
"size": 1000
},
"aggs": {
"donor_id": {
"terms": {
"field": "project",
"size": 10000
}
}
}
}
},
"filter": {
"fquery": {
"query": {
"filtered": {
"query": {
"bool": {
"should": [ {
"query_string": {
"query": "*"
}
} ]
}
},
"filter": {
"bool": {
"must": [
{
"terms": {
"flags.all_normal_sequence_exists_flag": [
'true'
]
}
},
{
"terms": {
"flags.all_tumor_sequences_exists_flag": [
'true'
]
}
}
]
}
}
}
}
}
}
}
},
"size": 0
},
#donor1 and donor2 exist
#How many samples are pending upload (they lack a sequence upload)?
{
"aggs": {
"project_f": {
"aggs": {
"project": {
"terms": {
"field": "program",
"size": 1000
},
"aggs": {
"donor_id": {
"terms": {
"field": "project",
"size": 10000
}
}
}
}
},
"filter": {
"fquery": {
"query": {
"filtered": {
"query": {
"bool": {
"should": [ {
"query_string": {
"query": "*"
}
} ]
}
},
"filter": {
"bool": {
"must": [
{
"terms": {
"flags.all_normal_sequence_exists_flag": [
'true'
]
}
},
{
"terms": {
"flags.all_tumor_sequences_exists_flag": [
'true'
]
}
}
],
"must_not": [
{
"terms": {
"flags.all_normal_alignment_exists_flag": [
'true'
]
}
},
{
"terms": {
"flags.all_tumor_alignment_exists_flag": [
'true'
]
}
}
]
}
}
}
}
}
}
}
},
"size": 0
},
{
"aggs": {
"project_f": {
"aggs": {
"project": {
"terms": {
"field": "program",
"size": 1000
},
"aggs": {
"donor_id": {
"terms": {
"field": "project",
"size": 10000
}
}
}
}
},
"filter": {
"fquery": {
"query": {
"filtered": {
"query": {
"bool": {
"should": [ {
"query_string": {
"query": "*"
}
} ]
}
},
"filter": {
"bool": {
"must": [
{
"terms": {
"flags.all_normal_alignment_exists_flag": [
'true'
]
}
},
{
"terms": {
"flags.all_tumor_alignment_exists_flag": [
'true'
]
}
}
],
"must_not": [
{
"terms": {
"flags.all_tumor_somatic_variants_exists_flag": [
'true'
]
}
}
]
}
}
}
}
}
}
}
},
"size": 0
},
#alignment normal and tumor exist
#somatic variant calling does not exist
#How many tumor WES/WGS/panel samples have alignment done but no somatic variant calling done?
{
"aggs": {
"project_f": {
"aggs": {
"project": {
"terms": {
"field": "program",
"size": 1000
},
"aggs": {
"donor_id": {
"terms": {
"field": "project",
"size": 10000
}
}
}
}
},
"filter": {
"fquery": {
"query": {
"filtered": {
"query": {
"bool": {
"should": [ {
"query_string": {
"query": "*"
}
} ]
}
},
"filter": {
"bool": {
"must": [
{
"terms": {
"flags.all_normal_sequence_exists_flag": [
'true'
]
}
},
{
"terms": {
"flags.all_tumor_sequences_exists_flag": [
'true'
]
}
},
{
"terms": {
"flags.all_normal_alignment_exists_flag": [
'true'
]
}
},
{
"terms": {
"flags.all_tumor_alignment_exists_flag": [
'true'
]
}
},
{
"terms": {
"flags.all_normal_germline_variants_exists_flag": [
'true'
]
}
},
{
"terms": {
"flags.all_tumor_somatic_variants_exists_flag": [
'true'
]
}
},
{
"terms": {
"flags.all_normal_rnaseq_variants_exists_flag": [
'true'
]
}
},
{
"terms": {
"flags.all_tumor_rnaseq_variants_exists_flag": [
'true'
]
}
}
]
}
}
}
}
}
}
}
},
"size": 0
},
#all flags are 'true'
#How many donors are complete in their upload vs. how many have one or more missing samples?
]
#checking if the word represents a number
def repNum(s):
try:
float(s)
return True
except ValueError:
return False
#sample json_docs
# json_docs = []
# with open('merge.json') as f:
# for line in f:
# newline = []
# words = line.split()
# for word in words:
# i = 1
# if ((word[:i]==":" or word[:-i]=="," or word[:-i]=="]" or word[:-i]==":")==False):
# i+=1
# if (repNum(word[:-(i+1)])==False):
# #NOTE: replacing all periods (except in num) with 3 underscores to work with ElasticSearch
# #losing whitespace in strings
# word = word.replace(".","___")
# newline.append(word)
# #adding document to array to be loaded into Elasticsearch
# json_docs.append(json.loads(''.join(newline)))
#
#
# #loading above json_docs
# for i in json_docs:
# res = es.index("es-index", es_type, i)
# es.indices.refresh(index="es-index")
#checking the number of documents
res = es.search(index="analysis_index", body={"query": {"match_all": {}}})
print("For search for everything, got %d hits:" % res['hits']['total'])
for hit in res['hits']['hits']:
print("CENTER: %(center_name)s PROGRAM: %(program)s PROJECT: %(project)s DONOR ID: %(submitter_donor_id)s" % hit["_source"])
print "\n"
with open("data.json", 'a') as outfile:
outfile.write('[')
#querying documents using queries above
addingcommas = False
for q_index in range(len(es_queries)):
if (addingcommas):
outfile.write(', ')
else:
addingcommas = True
response = es.search(index="analysis_index", body=es_queries[q_index])
#print(json.dumps(response, indent=2))
count = 0
program = "NA"
project = "NA"
for p in response['aggregations']['project_f']['project'].get('buckets'):
count = p.get('doc_count')
program = p.get('donor_id').get('buckets')
project = p.get('key')
print(es_name_query[q_index])
print("count: "+str(count))
print("program: ", program)
print("project: ", project)
print("\n")
outfile.write('{"Label": "'+es_name_query[q_index]+'", "Count": '+str(count)+'}')
outfile.write(']')