-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_user.py
59 lines (45 loc) · 3.18 KB
/
preprocess_user.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
import numpy as np
import pandas as pd
def parse_order(x):
series = pd.Series()
series['products'] = '_'.join(x['product_id'].values.astype(str).tolist())
series['reorders'] = '_'.join(x['reordered'].values.astype(str).tolist())
series['aisles'] = '_'.join(x['aisle_id'].values.astype(str).tolist())
series['departments'] = '_'.join(x['department_id'].values.astype(str).tolist())
series['order_number'] = x['order_number'].iloc[0]
series['order_dow'] = x['order_dow'].iloc[0]
series['order_hour'] = x['order_hour_of_day'].iloc[0]
series['days_since_prior_order'] = x['days_since_prior_order'].iloc[0]
return series
def parse_user(x):
parsed_orders = x.groupby('order_id', sort=False).apply(parse_order)
series = pd.Series()
series['order_ids'] = ' '.join(parsed_orders.index.map(str).tolist())
series['order_numbers'] = ' '.join(parsed_orders['order_number'].map(str).tolist())
series['order_dows'] = ' '.join(parsed_orders['order_dow'].map(str).tolist())
series['order_hours'] = ' '.join(parsed_orders['order_hour'].map(str).tolist())
series['days_since_prior_orders'] = ' '.join(parsed_orders['days_since_prior_order'].map(str).tolist())
series['product_ids'] = ' '.join(parsed_orders['products'].values.astype(str).tolist())
series['aisle_ids'] = ' '.join(parsed_orders['aisles'].values.astype(str).tolist())
series['department_ids'] = ' '.join(parsed_orders['departments'].values.astype(str).tolist())
series['reorders'] = ' '.join(parsed_orders['reorders'].values.astype(str).tolist())
series['eval_set'] = x['eval_set'].values[-1]
return series
if __name__ == '__main__':
orders = pd.read_csv('../data/raw/orders.csv',nrows=50000, dtype={ 'order_id':np.float64, 'user_id' : np.float64, 'order_number':np.float64 , 'order_dow':np.int32,'order_hour_of_day':np.int32})
prior_products = pd.read_csv('../data/raw/order_products__prior.csv' ,nrows=50000, dtype={'order_id':np.float64, 'product_id':np.float64,
'add_to_cart_order':np.int32,'reordered':np.int16})
train_products = pd.read_csv('../data/raw/order_products__train.csv',nrows=50000, dtype={'order_id':np.float64, 'product_id':np.float64,
'add_to_cart_order':np.int32,'reordered':np.int16})
order_products = pd.concat([prior_products, train_products], axis=0)
products = pd.read_csv('../data/raw/products.csv' , dtype={ 'product_id': np.int32 , 'aisle_id': np.int32, 'department_id':np.int32})
df = orders.merge(order_products, how='left', on='order_id')
df = df.merge(products, how='left', on='product_id')
df['days_since_prior_order'] = df['days_since_prior_order'].fillna(0).astype(int)
null_cols = ['product_id', 'aisle_id', 'department_id', 'add_to_cart_order', 'reordered']
df[null_cols] = df[null_cols].fillna(0).astype(int)
if not os.path.isdir('../data/processed'):
os.makedirs('../data/processed')
user_data = df.groupby('user_id', sort=False).apply(parse_user).reset_index()
user_data.to_csv('../data/processed/user_data1.csv', index=False)