From f01bee1369ec980ba95f05388a156838db59c348 Mon Sep 17 00:00:00 2001 From: Jan Adler Date: Mon, 27 May 2024 14:14:32 +0000 Subject: [PATCH] Introduce Multi-Device Channels --- _examples/library/getting_started_link.py | 4 +- .../library/getting_started_ofdm_link.py | 4 +- .../getting_started_simulation_multidim.py | 6 - _examples/settings/chirp_fsk_lora.yml | 29 +- _examples/settings/jcas.yml | 33 ++- _examples/settings/ofdm_5g.yml | 11 +- _examples/settings/ofdm_single_carrier.yml | 11 +- docssource/notebooks/roc.ipynb | 45 ++- docssource/scripts/examples/channel.py | 6 +- .../radar_evaluators_RootMeanSquareError.py | 2 +- hermespy/channel/cdl/cluster_delay_lines.py | 18 +- hermespy/channel/cdl/indoor_factory.py | 13 +- hermespy/channel/cdl/indoor_office.py | 7 +- hermespy/channel/channel.py | 114 +------ hermespy/channel/delay/delay.py | 30 +- hermespy/channel/delay/random.py | 6 +- hermespy/channel/fading/correlation.py | 42 +-- hermespy/channel/fading/cost259.py | 15 +- hermespy/channel/fading/exponential.py | 23 +- hermespy/channel/fading/fading.py | 190 +++++------- hermespy/channel/fading/tdl.py | 16 +- hermespy/channel/radar/multi.py | 6 +- hermespy/core/scenario.py | 56 ++-- hermespy/core/signal_model.py | 2 +- hermespy/radar/evaluators.py | 31 +- hermespy/simulation/drop.py | 25 +- hermespy/simulation/scenario.py | 280 ++++++++---------- hermespy/simulation/simulated_device.py | 6 +- hermespy/simulation/simulation.py | 32 +- tests/integration_tests/test_fmcw_radar.py | 13 +- tests/integration_tests/test_links.py | 22 +- .../test_matched_filter_jcas.py | 4 +- tests/integration_tests/test_mimo.py | 2 - tests/integration_tests/test_polarization.py | 6 +- tests/unit_tests/channel/test_cdl.py | 18 +- tests/unit_tests/channel/test_channel.py | 18 +- tests/unit_tests/channel/test_delay.py | 16 +- tests/unit_tests/channel/test_fading.py | 121 ++------ tests/unit_tests/channel/test_ideal.py | 24 +- tests/unit_tests/channel/test_quadriga.py | 4 +- .../unit_tests/channel/test_radar_channel.py | 26 +- tests/unit_tests/radar/test_evaluators.py | 61 ++-- .../modem/test_channel_estimation.py | 2 +- tests/unit_tests/simulation/test_drop.py | 2 +- tests/unit_tests/simulation/test_scenario.py | 63 +--- .../unit_tests/simulation/test_simulation.py | 36 +-- 46 files changed, 514 insertions(+), 987 deletions(-) diff --git a/_examples/library/getting_started_link.py b/_examples/library/getting_started_link.py index 49e8e1dc..92398132 100644 --- a/_examples/library/getting_started_link.py +++ b/_examples/library/getting_started_link.py @@ -20,11 +20,11 @@ rx_device.receivers.add(rx_operator) # Simulate a channel between the two devices -channel = IdealChannel(tx_device, rx_device) +channel = IdealChannel() # Simulate the signal transmission over the channel transmission = tx_operator.transmit() -propagation = channel.propagate(tx_device.transmit()) +propagation = channel.propagate(tx_device.transmit(), tx_device, rx_device) rx_device.process_input(propagation) reception = rx_operator.receive() diff --git a/_examples/library/getting_started_ofdm_link.py b/_examples/library/getting_started_ofdm_link.py index a87d80c5..16830777 100644 --- a/_examples/library/getting_started_ofdm_link.py +++ b/_examples/library/getting_started_ofdm_link.py @@ -44,11 +44,11 @@ link.waveform.plot_grid() # Simulate a channel between the two devices -channel = IdealChannel(tx_device, rx_device) +channel = IdealChannel() # Simulate the signal transmission over the channel transmission = tx_device.transmit() -propagation = channel.propagate(transmission) +propagation = channel.propagate(transmission, tx_device, rx_device) reception = rx_device.receive(propagation) # Evaluate bit errors during transmission and visualize the received symbol constellation diff --git a/_examples/library/getting_started_simulation_multidim.py b/_examples/library/getting_started_simulation_multidim.py index 4b87cef9..d30dce4a 100644 --- a/_examples/library/getting_started_simulation_multidim.py +++ b/_examples/library/getting_started_simulation_multidim.py @@ -13,16 +13,10 @@ base_station = simulation.scenario.new_device() terminal = simulation.scenario.new_device() - # Specify the hardware noise model base_station.noise_level = SNR(dB(20), base_station) terminal.noise_level = SNR(dB(20), base_station) -# Disable device self-interference by setting the gain -# of the respective self-inteference channels to zero -simulation.scenario.channel(base_station, base_station).gain = 0. -simulation.scenario.channel(terminal, terminal).gain = 0. - # Configure a transmitting modem at the base station transmitter = TransmittingModem() transmitter.waveform = RootRaisedCosineWaveform(symbol_rate=1e6, num_preamble_symbols=0, num_data_symbols=100, oversampling_factor=8, roll_off=.9) diff --git a/_examples/settings/chirp_fsk_lora.yml b/_examples/settings/chirp_fsk_lora.yml index b98a717a..a2eaffdb 100644 --- a/_examples/settings/chirp_fsk_lora.yml +++ b/_examples/settings/chirp_fsk_lora.yml @@ -28,24 +28,17 @@ Devices: # Channel models between devices Channels: - - # Rayleigh fading between on the device self-interfernce channel - - ! - devices: [*transmitting_device, *receiving_device] - delays: [ 0 ] # Delay of the channel in seconds - power_profile: [ 0 ] dB # Tap gains - rice_factors: [ .inf ] - - # Configure 3GPP standard antenna correlation models at both linked devices - alpha_correlation: ! - - device_type: BASE_STATION - correlation: LOW - - beta_correlation: ! - - device_type: TERMINAL - correlation: MEDIUM + - # Rayleigh fading between on the device self-interfernce channel + - *transmitting_device + - *receiving_device + - ! + delays: [ 0 ] # Delay of the channel in seconds + power_profile: [ 0 ] dB # Tap gains + rice_factors: [ .inf ] + + # Configure 3GPP standard antenna correlation models at both linked devices + antenna_correlation: ! + correlation: MEDIUM # Operators transmitting or receiving signals over the devices diff --git a/_examples/settings/jcas.yml b/_examples/settings/jcas.yml index d8e4de08..a9ee5902 100644 --- a/_examples/settings/jcas.yml +++ b/_examples/settings/jcas.yml @@ -27,21 +27,24 @@ Devices: # Channel models between device models Channels: - # Single target radar channel - - &radar_channel ! - devices: [*base_station, *base_station] - target_range: [1, 2] # The target is located within a distance between 1m and 2m to the base station - radar_cross_section: 5 # The target has a cross section of 5m2 - - # 5G TDL communication channel model - - !<5GTDL> - devices: [*base_station, *terminal] - model_type: ! A # Type of the TDL model. A-E are available - - # No self-interference at the terminal - - ! - devices: [*terminal, *terminal] - gain: 0. + - # Single target radar channel + - *base_station + - *base_station + - &radar_channel ! + target_range: [1, 2] # The target is located within a distance between 1m and 2m to the base station + radar_cross_section: 5 # The target has a cross section of 5m2 + + - # 5G TDL communication channel model + - *base_station + - *terminal + - !<5GTDL> + model_type: ! A # Type of the TDL model. A-E are available + + - # No self-interference at the terminal + - *terminal + - *terminal + - ! + gain: 0. # Operators transmitting or receiving signals over the devices diff --git a/_examples/settings/ofdm_5g.yml b/_examples/settings/ofdm_5g.yml index 720d222c..1b4c61e9 100644 --- a/_examples/settings/ofdm_5g.yml +++ b/_examples/settings/ofdm_5g.yml @@ -32,11 +32,12 @@ Devices: # Specify channel models interconnecting devices Channels: - # 5G TDL model at the self-interference channel of device_alpha - - &channel !<5GTDL> - devices: [*device_alpha, *device_alpha] # Devices linked by the channel - model_type: ! E # Type of the TDL model. A-E are available - rms_delay: 100e-9 # Root mean square delay in seconds + - # 5G TDL model at the self-interference channel of device_alpha + - *device_alpha + - *device_alpha + - &channel !<5GTDL> + model_type: ! E # Type of the TDL model. A-E are available + rms_delay: 100e-9 # Root mean square delay in seconds # Operators transmitting or receiving signals over the devices diff --git a/_examples/settings/ofdm_single_carrier.yml b/_examples/settings/ofdm_single_carrier.yml index b493ffe3..25f14ec5 100644 --- a/_examples/settings/ofdm_single_carrier.yml +++ b/_examples/settings/ofdm_single_carrier.yml @@ -18,11 +18,12 @@ Devices: # Specify channel models interconnecting devices Channels: - # 5G TDL model at the self-interference channel of device_alpha - - &channel !<5GTDL> - devices: [*device_alpha, *device_alpha] - model_type: ! A # Type of the TDL model. A-E are available - rms_delay: 1e-9 # Root mean square delay in seconds + - # 5G TDL model at the self-interference channel of device_alpha + - *device_alpha + - *device_alpha + - &channel !<5GTDL> + model_type: ! A # Type of the TDL model. A-E are available + rms_delay: 1e-9 # Root mean square delay in seconds # Operators transmitting or receiving signals over the devices diff --git a/docssource/notebooks/roc.ipynb b/docssource/notebooks/roc.ipynb index d48da3dc..31da8ad8 100644 --- a/docssource/notebooks/roc.ipynb +++ b/docssource/notebooks/roc.ipynb @@ -72,7 +72,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAIYCAYAAAB9p6hbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9eZgcZbn9qerqZfaZTJZJQlYIO4QAAYMiSwhGRUFQ1KuCIPwE3AARBOQiiODKchG4CBpwVxQFlBAIcJF9iYQ9kJAEsk72zNrTS9Xvj6r3+96vuqqmu2d6tnzneeZJp7u6urq7uurUec97XgOAAw0NDQ0NDQ0NjUCYg70BGhoaGhoaGhpDGZosaWhoaGhoaGhEQJMlDQ0NDQ0NDY0IaLKkoaGhoaGhoREBTZY0NDQ0NDQ0NCKgyZKGhoaGhoaGRgQ0WdLQ0NDQ0NDQiIAmSxoaGhoaGhoaEdBkSUNDQ0NDQ0MjAposaWhoaGhoaGhEQJMlDQ0NDQ0NDY0IaLKkoaGhoaGhoREBTZY0NDQ0NDQ0NCKgyZKGhoaGhoaGRgQ0WdLQ0NDQ0NDQiIAmSxrDEgsWLMDf//73wd4MDQ0NDY1dAJosafQ7FixYAMdx4DgOMpkMVq5ciR//+MdIJpODvWm7DDSZ1NDQ0Og/WIO9ARojEwsXLsQZZ5yBeDyOQw45BHfffTccx8F3v/vdwd40DQ0NDQ2NkqCVpWGGRFVqUP5KRU9PD1pbW7F27Vrcd999WLx4MebNmwcAMAwD3/3ud7Fy5Up0dXVh6dKlOOWUU8RzTdPEnXfeKR5ftmwZvvnNb/bbZ9hXVFcnB+WvXDz++OP4n//5H9xwww3Ytm0bNm7ciLPOOgvV1dX49a9/jba2Nixfvhzz588XzynmO4jFYrjpppuwfft2bNmyBT/60Y9w1113aUVLQ0NjxEErS8MIiaoUrnvh8UF57UsPOwaZ7nRZz91vv/1wxBFH4L333nPXdeml+OIXv4hzzjkHy5cvx4c//GH87ne/w+bNm/Hvf/8bpmli7dq1+MxnPoOtW7fiiCOOwC9/+Uts2LAB99xzT3++rZJRXZ1ER+dfB+W1a2s+ja6unrKee/rpp+MnP/kJDjvsMHz2s5/Fbbfdhk996lP4+9//jmuvvRYXXHABfvvb32Ly5Mno7u4u6ju45JJL8IUvfAFnnHEG3nrrLXzrW9/CSSedhMcfH5x9VENDQ6NSMAA4g70RGsVhuJClBQsW4Itf/CLS6TQsy0IqlUI+n8epp56Kf/7zn9i2bRuOO+44PPfcc+I5d9xxB6qrq/GFL3whcJ0333wzWlpa8JnPfEa8RmNjIz71qU/1/c2VgOFClvjn8/jjjyMWi+HDH/4wAFc12rlzJ+69916cfvrpAIBx48Zh48aN+MAHPoDnn38+cJ3+72DDhg342c9+hp///OdivStXrsTLL7884N+LhoaGRiWhlaVhhEx3GpcedsygvXYpePzxx3HuueeipqYGF1xwAXK5HO69917su+++qKmpwSOPPKIsn0gk8PLLL4v/n3feeTjzzDMxefJkVFVVIZFIYOnSpf3xVvqErq4e1NZ8etBeu1y8+uqr4rZt29i6dStee+01cV9raysAYOzYseK+qO+gvr4eLS0teOGFF5T1LlmyBKapq/saGhojC5osDTOUWwobaHR2duLdd98FAJx55pl45ZVXcOaZZ+L1118HAHz84x/HunXrlOf09Lhk4LOf/Sx+9rOf4dvf/jaeffZZtLe34zvf+Q4OP/zwgX0TIegLaRksZLNZ5f+O4xTcB0AQnaH+HWhoaGgMJDRZ0qg4HMfBtddei+uvvx577rkn0uk0Jk+ejH//+9+By3/wgx/EM888g9tuu03ct/vuuw/U5mqg9++gra0NGzduxOzZs/Hkk08CcInWwQcfPCQUQA0NDY3+hNbLNQYE99xzD/L5PL761a/iZz/7GW644QacdtppmD59OmbNmoWvf/3rOO200wAAy5cvx6GHHorjjz8eM2bMwNVXX43Zs2cP8jvYtVDMd3DzzTfj0ksvxSc/+UnsueeeuOmmm9DU1ATH0TZIDQ2NkQWtLGkMCPL5PH7xi1/g4osvxrRp07B582ZceumlmD59Onbs2IH//Oc/uPbaawEAt99+O2bNmoU///nPcBwHf/zjH3Hrrbfiox/96CC/i10HxXwHP/7xj9HS0oLf/OY3yOfz+OUvf4lFixYhn88P4pZraGho9D90N5yGhka/wDAMvPXWW/jLX/6C//7v/x7szdHQ0NDoN2hlSUNDoyxMnjwZxx9/PJ544gkkk0l8/etfx7Rp0/CHP/xhsDdNQ0NDo1+hPUsaGhplwbZtfPnLX8aLL76Ip59+GgcccACOO+44LFu2bLA3TUNDQ6NfoctwGhoaGhoaGhoR0MqShoaGhoaGhkYENFnS0NDQ0NDQ0IiAJksaGhoaGhoaGhHQZElDQ0NDQ0NDIwKaLGloaGhoaGhoRECTJQ0NDQ0NDQ2NCGiypKGhoaGhoaERAU2WNDQ0NDQ0NDQioMmShoaGhoaGhkYENFnS0NDQ0NDQ0IiAJksaGhoaGhoaGhHQZElDQ0NDQ0NDIwKaLGloaGhoaGhoRECTJQ0NDQ0NDQ2NCGiypKGhoaGhoaERAU2WNDQ0NDQ0NDQioMmShoaGhoaGhkYENFnS0NDQ0NDQ0IiAJksaGhoaGhoaGhHQZElDQ0NDQ0NDIwKaLGloaGhoaGhoRECTJQ0NDQ0NDQ2NCGiypKGhoaGhoaERAU2WNDQ0NDQ0NDQioMmShoaGhoaGhkYENFnS0NDQ0NDQ0IiAJksaGhoaGhoaGhHQZElDQ0NDQ0NDIwKaLGloaGhoaGhoRECTJQ0NDQ0NDQ2NCGiypKGhoaGhoaERAU2WNDQ0NDQ0NDQioMmShoaGhoaGhkYENFnS0NDQ0NDQ0IiAJksaGhoaGhoaGhHQZElDYxfGqlWrsGDBgoq+xlFHHQXHcXDUUUdV9HUqhYH4jMrBggUL0N7eXtSyjuPgyiuvrPAWaWiMXGiypKExArH//vvjnnvuwerVq9Hd3Y21a9fi4Ycfxte//vXB3rQ+Y8qUKXAcR/zl83ls3boVDz74ID7wgQ8M9ub1GclkEueffz6ee+457NixA93d3Xj77bdx8803Y8aMGYO9eRoauySswd4ADQ2N/sWcOXPw+OOP4/3338cdd9yBjRs3YtKkSfjABz6Ab33rW/jFL34hlt1rr71g2/Ygbm35+MMf/oAHH3wQsVgMe+65J8477zw8/vjjmD17Nl5//fXB3ryy0NzcjIceegiHHnooHnjgAfzhD39AR0cH9tprL3zuc5/D//t//w/JZLLk9aZSKeRyuQpssYbGrgFNljQ0Rhguv/xy7Ny5E7Nnz8bOnTuVx8aMGaP8P5PJDOSm9Sv+85//4Pe//734/5NPPomHHnoI5557Lr72ta8N4paFI5lMIpPJwHGcwMfvuusuzJo1C6eccgruvfde5bErrrgCP/zhD8t63Z6enl6Xqa6uRldXV1nr19AY6dBlOA2NEYbdd98db7zxRgFRAoDNmzcr//f7cU4//XQ4joMjjjgCP//5z7Fp0yZ0dHTg3nvvxejRo5XnGoaBK6+8EuvWrUNnZycee+wx7LPPPkV7fA477DAsXLgQO3bsQGdnJ/7v//4PRxxxRJnv2iVLgPv+Ob785S/j0UcfRWtrK9LpNN544w2cc845geu4/PLLsWbNGvF+9t1334Jlmpqa8NOf/hSvvvoq2tvbsXPnTjz44IM48MADleXIq/XZz34WP/jBD7B27Vp0dXWhvr4+8LUPO+wwnHDCCfjVr35VQJQAl9h+5zvfKbh/woQJ+Pvf/4729nZs2rQJP/3pT2Ga6qHd71m68sor4TgO9tlnH/z+97/Htm3b8NRTTwGQXqhp06bhoYceQkdHB9atW4crrrgicLs1NHYFaGVJQ2OE4b333sOcOXOw33774Y033ihrHTfffDO2b9+Oq666ClOnTsX555+PX/ziF/jc5z4nlrnuuutwySWX4P7778eiRYswc+ZMLFq0CKlUqtf1H3PMMVi4cCGWLFmCq666CrZt44wzzsBjjz2GI488Ei+++GLJ2zx16lQAwPbt25X7zz33XLzxxhu4//77kcvl8IlPfAK33XYbTNPErbfeKpa7+uqrccUVV+Bf//oXHnzwQRx88MF4+OGHkUgklPVNnz4dJ510Eu655x6sWrUK48aNw1e/+lU88cQT2HfffbFhwwZl+SuuuAKZTAY/+9nPhLIUhE9+8pMAgN/+9rdFv+dYLIZFixbh+eefx0UXXYTjjjsOF110Ed5991387//+b6/Pv+eee7B8+XJcdtllMAxDWe9DDz2E5557DhdffDHmz5+Pq6++GpZlaaO4xi4LR//pP/03cv6OO+44J5vNOtls1nn66aedH/3oR868efMcy7IKll21apWzYMEC8f/TTz/dcRzHefjhh5Xlfv7znzvZbNapr693ADhjx451MpmMc++99yrL/fd//7fjOI6yzqOOOspxHMc56qijxH1vv/22s3DhQuW5qVTKeffdd51FixZFvr8pU6Y4juM4V1xxhdPc3OyMHTvW+eAHP+g8//zzjuM4zimnnFKwXv86Fi5c6KxYsUL8f/To0U46nXYeeOABZblrrrmm4P0kEgnHMIyCberu7na+973vFbzvFStWBG6D/+9vf/ub4ziO09DQUNT3vGDBAsdxHOU1AThLlixxXnzxReU+x3GcK6+8Uvz/yiuvdBzHcX7/+9+Hrvemm25S7n/ggQecdDrtNDc3D/o+rv/030D/6TKchsYIw+LFizFnzhzcf//9mDlzJi655BI8/PDDWLduHT7xiU8UtY5f/vKXyv+ffPJJWJaFKVOmAADmzp2LeDyuKDOAq0j1hoMOOgh77rkn/vCHP6C5uVn81dTU4NFHH8WHP/xhReUIw9VXX40tW7agtbUVTz31FPbZZx9ceOGF+Nvf/qYsl06nxe36+no0NzfjiSeewO677y5KYscddxySyWTB9t94440Fr8s9R6ZpYtSoUejo6MDbb7+Ngw8+uGD5u+++W9mGMNC2FBsHQPArSE8++SSmT59e1nM5eCMA/T+ZTOK4444rafs0NEYCdBlOQ2ME4qWXXsIpp5yCeDyOmTNn4lOf+hQuuOAC/PWvf8VBBx2Et956K/L577//vvJ/Km01NTUBgCBNK1asKFhu27Ztkeum9vff/OY3ocs0NDRgx44dkeu5/fbbcc899yCVSuHYY4/FN7/5TcRisYLljjjiCFx11VWYM2cOampqCl6nra1NvJ/ly5crj2/ZsqXg/RiGgW9961s477zzMG3aNFiWPIxu3bq14PVXrVoV+T4IbW1tAIC6urpAv1kQuru7sWXLFuW+7du3Y9SoUUU9P2zb8vk8Vq5cqdz3zjvvAJDlTg2NXQmaLGlojGBks1m89NJLeOmll/DOO+/grrvuwmc+8xlcffXVkc/L5/OB9xej+PQGMh9fdNFFWLp0aeAyHR0dva5n+fLlePTRRwEA//rXv5DP5/GjH/0Ijz/+OJYsWQLA9Rc9+uijWLZsGS688EKsWbMGmUwGH/vYx3DhhRcWGKGLwWWXXYZrrrkGv/rVr3DFFVdg27ZtsG0bN954Y+D6uru7i1rvsmXLAAAHHHCAMFv3hrDvqVgUu20aGrs6NFnS0NhF8NJLLwEAxo8f3+d1vffeewCAPfbYA6tXrxb3jxo1qldV49133wXgKilEdvoDP/zhD3H22WfjmmuuwUc/+lEAwCc+8QmkUil88pOfxJo1a8SyxxxzjPJcej8zZsxQ1JbRo0cXvJ9Pf/rTeOyxx3DWWWcp9zc2NhaoPKXggQcewGWXXYYvfvGLRZOlSiEWi2H69OmK0rbnnnsCgPJ9a2jsKtCeJQ2NEYajjz468P6PfexjAIC33367z6/x6KOPIpvN4txzz1XuLyYhfMmSJVixYgUuuuiigrIYgIKIgmKxc+dO3H777Zg/fz5mzpwJQCovXBGrr6/HGWecoTx38eLFyGQy+MY3vqHcf/755xe8Tj6fL1DYPv3pT2O33XYra7sJzz33HBYuXIizzjoLJ554YsHj8XgcP/3pT/v0GqXA/11+/etfRyaT6VeCq6ExXKCVJQ2NEYabb74Z1dXV+Pvf/45ly5YhkUjgiCOOwGc/+9l+m3O2adMm3HTTTbjoootw33334aGHHsLMmTPx0Y9+FJs3bw4NXQQAx3Fw1llnYeHChXjjjTewYMECrFu3DhMnTsQxxxyDtrY20UZfKm666Sacf/75+O53v4vPf/7zePjhh9HT04MHHngAt99+O2pra3H22Wdj06ZNmDBhgnjeli1b8LOf/QyXXXYZ/vnPf+LBBx/ErFmzxPvh+Oc//4krr7wSv/71r/HMM8/ggAMOwBe+8AWhmPUFp512Gh5++GHce++9eOCBB/Doo4+is7MTM2bMwOc+9zmMHz8+MGupv9Hd3Y358+fjrrvuwvPPP4+PfvSjOOGEE/DDH/6wT+qZhsZwxqC35Ok//af/+u/vIx/5iHPnnXc6b775ptPW1uak02nnnXfecW666SZnzJgxyrJh0QGHHHKIslxQ+79pms5VV13lrF+/3uns7HQWL17s7LXXXs7mzZudW2+9NfK5AJyZM2c6f/3rX53Nmzc73d3dzqpVq5w//elPzjHHHBP5/ig64Nvf/nbg47/+9a+dbDbrTJ8+3QHgnHDCCc7SpUudrq4uZ+XKlc53vvMd58tf/rLjOI4zZcoU8TzDMJwrrrjCWbdundPZ2ek89thjzr777lvwGSUSCeenP/2pWO7JJ590Dj/8cOfxxx93Hn/88YL37Y8y6O0vlUo5F154ofP888+L7+/tt992brrpJvGeALfFv729veD5FAvA7wuLDgiKAaD1Tps2zXnooYecjo4OZ8OGDc6VV15ZEJmg//TfLvQ36Bug//Sf/hshfw0NDY7jOM5ll1026Nui/8r7CyNh+k//7cp/2rOkoaFRFoKSusnj83//938DuzEaGhoaFYT2LGloaJSFz372s/jyl7+MBx98EB0dHfjQhz6E//qv/8KiRYvwzDPPDPbmaWhoaPQbNFnS0NAoC6+++ipyuRwuvvhi1NfXo7W1FTfeeCO+973vDfamaWhoaPQrDLj1OA0NDQ0NDQ0NjQBoz5KGhoaGhoaGRgQ0WdLQ0NDQ0NDQiIAmSxoaGhoaGhoaEdBkSUNDQ0NDQ0MjAposaWhoaGhoaGhEQJMlDQ0NDQ0NDY0IaLKkoaGhoaGhoREBTZY0NDQ0NDQ0NCKgyZKGhoaGhoaGRgQ0WdLQ0NDQ0NDQiIAmSxoaGhoaGhoaEdBkSUNDQ0NDQ0MjAposaWhoaGhoaGhEQJMlDQ0NDQ0NDY0IaLKkoaGhoaGhoREBTZY0NDQ0NDQ0NCKgyZKGhoaGhoaGRgQ0WdLQ0NDQ0NDQiIAmSxoaGhoaGhoaEdBkSUNDQ0NDQ0MjAposaWhoaGhoaGhEQJMlDQ0NDQ0NDY0IaLKkoaGhoaGhoREBTZY0NDQ0NDQ0NCKgyZKGhoaGhoaGRgQ0WdLQ0NDQ0NDQiIAmSxoaGhoaGhoaEbAGewNGCiZMmID29vbB3gwNjV0WdXV1WL9+/WBvRknQxw0NjcFHMccOTZb6ARMmTMC6desGezM0NHZ5TJw4cdgQJn3c0NAYOujt2KHJUj+ArgwnTpyorxI1NAYBdXV1WLdu3bD6/enjhobG4KPYY4cmS/2I9vZ2fdDT0NAoCfq4oaEx9KEN3hoaGhoaGhoaEdBkSUNDQ0NDQ0MjAposaWhoaGhoaGhEQJMlDQ0NDQ0NDY0IaLKkoaGhoaGhoREBTZY0NDQ0NDQ0NCKgyZKGhoaGhoaGRgQ0WdLQ0NDQ0NDQiIAmSxoaGhoaGhoaEdBkSUNDQ0NDQ0MjAsOKLB155JG4//77sW7dOjiOgxNPPLHX5xx11FFYsmQJ0uk0li9fjtNPP71gmfPOOw+rVq1Cd3c3nnvuOcyePbsSm6+hoaGhoaExDDGsyFJNTQ1eeeUVfO1rXytq+alTp+Jf//oXHn/8cRx00EG48cYbceedd+L4448Xy5x66qm4/vrrcdVVV+Hggw/GK6+8gkWLFmHMmDGVehsaGhoaGhoawwzOcPxzHMc58cQTI5f50Y9+5Lz22mvKfX/84x+dhQsXiv8/99xzzs033yz+bxiGs3btWueSSy4pelvq6uocx3Gcurq60GWsVMKZfMB+zuQD9hv0z07/6b+R9lfMb3Co/Q2FbU7VD5/PS//pv0r8Ffs7HFbKUqmYM2cOFi9erNy3aNEizJkzBwAQj8dxyCGHKMs4joPFixeLZYKQSCRQV1en/PWG6bMOwrf+cCe++fs7ynw3wxfbtv8RO3b+GaY5one3YYHP//AK/OyVp3HICfMHe1M0BhlXPHIfrnlqEcZNnzrYm6KhMeQxos9eLS0taG1tVe5rbW1FQ0MDUqkURo8eDcuyApdpaWkJXe+ll16KtrY28bdu3bpet8XO2+W9iWGOlpYmNDbWor6+GlOm7FqlzU9deiHOW3BLWc8dM2USvvvPP2POZz7Vr9u0x2GHwjBN7Hfsh/t1vRrDDw3jxsAwDOz5wcMHe1M0NIY8RjRZqhSuu+461NfXi7+JEyf2+hzbzg/Alg091NVVidujmntX4EYSPvi5U7D7oQdjxgcOLfm5x37lNIyZMhnzvvplAMCECaP6ZZsMT90zY7F+WZ/G8MTEffeCYRgAgNqmxsHdGA2NYYARTZY2btyIcePGKfeNGzcOO3fuRDqdxpYtW5DL5QKX2bhxY+h6M5kM2tvblb/eYGdzoY995Gtn47Trr+11HcMR9Q3V4vaoptpB3JKBhWlZgpjUNZdOdBLVLsmMxeM4+ugDsGbtXVi27LY+b5dhuidIXRLdtTH9kIPE7eqGhsHbEA2NYYIRfcR89tlnMXfuXOW+efPm4dlnnwUAZLNZLFmyRFnGMAzMnTtXLNNfsPPhytJxZ5+OmfOOwdSZB/Traw4F1NdLstS4C5GlpvGSgCera0p+fiweB+AqQMcccyAMw8Buk/pexiQ1wYyN6J++Ri/YbZ+9xO3q+l1L8dXQKAfD6ohZU1ODmTNnYubMmQCAadOmYebMmZg0aRIA4Nprr8Xdd98tlv/f//1fTJ8+HT/+8Y+x11574dxzz8Wpp56KG264QSxz/fXX4+yzz8Zpp52GvffeG7fddhtqamqwYMGCft32XC5cWSIForqxvl9fcyigtkaW4RobSicNwxWjJo4Xt5PVVRFLBsOy3DKZYZpIJj3i5KlCYfjeI//Atc8/CtOyQpfRZTgNABg3baq4narbdS5iNDTKxbAiS4ceeiiWLl2KpUuXAgBuuOEGLF26FFdffTUAYPz48Zg8ebJYfvXq1fj4xz+OefPm4ZVXXsG3v/1tnHXWWXj44YfFMn/5y19w0UUX4eqrr8bSpUtx0EEHYf78+di0aVO/brsToSwRij2BXXzxKcjl78ePf3JGXzer4qirS4nbDY27DllqYKXdRE11xJLBMC0iSCbiCUvcjkLjuLFIVlcrqoEfpCwZugy3S6OhZay4narZdX6XGhrlIvwSdAjiiSeeEAf7IJxxRiF5eOKJJ3DwwQdHrveWW27BLbeU17VULKgMF7X9Zqy4r+OET8yGaRqYP/9gXHJx/ypg/Q1u8G6oL500DFc0jJUls2RV6cpSLO7uC4ZpIhH3VKaIfYc/Ts+NWqaSytJf/nIJjps3C/vucy42btxesdfRKB+89JYoQ/nU0NjVoC8vBwi5bFbcDiuTFOsjMQ13udgwUAeqa6SyxInTSEf9aGnqjlelIpYMRoyV4eIeWYoqwyVS8jVinioVBFGGq+C+8/ETDkNjYw1O//Lc3hfWGHBYiYTwxAFAogwyr6Gxq2Hon21HCGxb5iyZVvDHHovwmijLxch3MvS/vtpdlCzVsHbsZDlkKUbKkoFEwj2xRQlLnJDF4uGq0UCU4Wg7q1KJir2GRvmYMnN/RaVMpJKDuDUaGsMDQ/9sO0Jg56RnybKCTyJGkaURU7R/R5dlhgKqq+WBeJciS42yHTueKp0smZYsvcWpJBfBluLshBdFukUZrqJkyX0NMqZrDC1MPehA5f9WQpNaDY3eoMnSACHPy3A+RUh4TawiyVKs8qWU/kJ1jTyJ19SUThqGK6qYJySeLP3KnTxFLlnq/XuOJ+VnG9UNhz4qSx/52tmYfdLHI5eh/TkxjMnSkUceifvvvx/r1q2D4zg48cQTC5a56qqrsH79enR1deGRRx7BHnvsMQhbWjom7rMnAHe0EwBYieH7PWloDBSG/tl2hIDnLHG/ACc8plmashSLDX1lqYYpS5w4AcCXfvoDXP3vhagd1TTQm1VxpGplO3a8jDIHER7DMGBFGLaDXqMoZamMEu646VMx76tn4NTvXxq5HAlgycSw6h9RUFNTg1deeQVf+9rXAh+/+OKL8c1vfhPnnHMODj/8cHR2dmLRokVIlkGMBxpjprhRKz2dXQB6IdcaGhoAhlk33HBGjiV4804kfqAyi1SWYgNg0u0vpJhvpbpKPZHMPP5YGKaJ2Sd9HI//+ncDvWkVBc9WKqfMIfYRw0CCleFM01T8b+I1GAGPUij74lmqHzvafX4vz6XXiBdB8oYqHnroITz00EOhj59//vm45pprcP/99wMATjvtNLS2tuKkk07Cn//858DnJBIJhUwVM4C7EmgYMxoAsHXtOkzce0+duaWhUQSG/tl2hMC2GVmyQshSkScwYxh5lqqYspSqkqRh7w/NESfskdiNw31KZSlL7ARmsf2lujqYePHXMCO64fpShovqsgtCIjl8yVIUpk2bhvHjx2Px4sXivra2Njz//POYM2dO6PPKGcBdCVAI5fuvvQmg90gKDQ0NTZYGDHZOqgFWiJpUdDfcMFKWeEcUV5kOmi/bykciWeI+ECseh2maGDu2sejnx1iZzIpzshTs++K+qGKUpXL2nWJLd8KzNIzLcFFoaWkBALS2tir3t7a2iseCUM4A7v5GqrZWEPE3n3gKgFfq1SZvDY1IDP2z7QiBnQsuw3HiZBR7MhpGylIyJUkD746aNkt25CTKaK0vFXPm7I0337oN769ZgJaWynukOPGNxeNY9vb/YsPG3+BDH9qvqOcbzODN95GammCVykrKk11ko4C3y5SjLHHTeTFIDOMyXCVQzgDu/sb0Q2bCMAw4joMVzy8R99eNaR7wbdHQGE7QZGkAQd0nimdJuV2ssuSVUoaBfJ5iBIkrDU3j5ey0Sua8zJgxAS8tuRFPPf0T7L33bthtt9G4+zcXVOz1CJyMWPE4dtutGYZh4LTTjy3q+Vz54V1lYR2FcUaWospwffEs8f0zSpmi3XKkKksbN24EAIxjI23o//TYUMXUg9xh3dl0Gpl0WhyTGkaPHszN0tAY8tBkaRBgxoPLcEWXOYZRGS7JSm908hy/5x7KSI54hcpwpmnilVdvxsEH7w7DMNDT48Y3zJ17ECZMGNXLs8tHqrZWIbKxuCW+q/33mxz2NAWK+shKelVVIcoSK6PEijDslqNK8v3TLIIIDWeDdxRWrVqFDRs2YO5cWUquq6vD4YcfjmeffXYQt6x3TNjTjTfo2L4DgLyAqx1dud+DhsZIwNA/245AxMxgn1KxXSn9GUq5227NOObYA3tfsExwdYFOnod+4qPqMsnK+CVOP/1YpFIJOI6DSy+9G3W1p6KnJwvTNLDgrvMr8poA0DRB9a2YliW+qylTxwY9pQCqMiX3i7AyHFeWipkNB6Mcg7dcb1iwqrdyd5uGsbJUU1ODmTNnYubMmQBcU/fMmTMxaZLbdn/jjTfie9/7Hj7xiU9g//33x29+8xusX78e//jHPwZxq3vHqN1cn9S2dRsAAE7e9VLWjdJkSUMjCposDQLMeHDprejZcP1Yhnvt9VuwePE1OPjg3fu8riBwsmR5Y172OPxQZRmrQtk0NJts7dqt+PGP/opcLoc771gEAJg7d2bF1KWm8Wp5JmbFxHfV3FxcuzhXDS1WVuOJ6MprJHgZLop0l0+0ecJ8NCFz/41HjF0Z6jj00EOxdOlSLF26FABwww03YOnSpbj66qsBAD/5yU9w880345e//CVefPFF1NbWYv78+ejp6RnEre4d9Z43qfXdlQCAvOelrBnVEPocDQ0NTZYGBZwg8cDBYpUl2dHUd7JUW1sFwzAwc+a00GU+//mjsGHjb3HiiYeXvH5Olqg8NHaqe3Vue1e1lerEOfTQGQCARYv+I+674IJfeeqSiV//+lsVed3GFlU9MmMxJXsorKONI0xZSoXMW+M5S1HeNyEslaUslda5GS8yN2wo4oknnoBhGAV/Z5xxhljmyiuvxPjx41FVVYV58+Zh+fLlg7jFxSFZXQMAeP9VNzaAJgvUNGiypKERBU2WBgE8qZtfrRef4E2epb6TJTp5WhEntgu/fRLGjWvEJZd8GqMmTsR5C27FjA8cGro8B/etxGIm6kY3iwyi7RtcM2y8AmW4gw6aLlSYG2+8T9yfy+XwqzsfBgAcN++ginTG1fnMsqYZYyTFwNy5M3tdBydL3IMUpiwpnqUilKWyDN68fFzEiIyR6lkazqBO2vXL3wUAZDMZAOp4Hg0NjUJosjQIiMWDTd2l5tj0RxlOKh7hJ1g66dXWVeHjF5yL3Q+dhZMvu6io9fP1GoaBQz/5URiGgXwuJ8gSH//SX/jW+Z8EAHR0dOPNN95XHjv//DuRyeRgmiYuueSUfn/tuma3vEfmWX8kxIeO3LfXdRiMCHPyU1UVoiwluLJUTHRAGQZv3oxQBNmKIuAaA49EdbX4vXd6Bu9s2i0barKkoRENTZYGEhQdEOJHKdXg3Z/RAVYEWaIZdNXVSaRqXRm/2IMrP2EaBrDPkW7C8Y6Nrcim0+4yFRjkOW/eLADACy+8U/BYLpfDuytcg+uhs2f0+2vTrDvyg5imoXxXs2ZN73UdvEzGlaXwMhzzLBURQVHOvmP64hB6Q9Q+pTHwqGmSpbbOnTsAAJnubgDqLEMNDY1CaLI0COClN646GIPQDUeI8pfQybqqKiFOmPEiTdn8RG8YBibu6RrJVy99DdketwTQ38pSbW0K48e7hOXXv3okcJnXX18NANh99/GBj/cF1Q0ukSQyGPN9T8W8phI9wPaRYpSlYqIDyht3wiMveidkWlkaWqhpdMmS4zjIpd3fXqbLI0s11YO2XRoawwGaLA0gHO9f3knE520VPRuuyDLcz68/C5///FGhj1uWJdYRNdmeSFkiERcnyWLVIOqAI9TVu1ewbz7xtCQT/Tz1/GtfP8Et9eVt/OlPTwYu89RTbwEARo+u79fXBoAqb0Bqur0TQCFZGju2dzMtL5Px8mwqhCxxwmlave9H5ShLnNgXE0/g/+41BhfV9YX7erqzC8DIHDmkMfxw2vXX4pAT5g/2ZgRCH80GEqIMF+ZZKrUMF77MMcceiAsuOBG/+vU3Q5eprWXDXiNUACJxyaQMVyxGWQBUVQQAqDLTtmWr8Ev0N1n67KlHAgBWrFgP27YDl/nnP18A4Kof/R0hkKxxS5WdO3YAAGKGozxeXZ3slRhzMsOX5SNjOGJFdsOJ9fcxwdsKSQkP6n7UGBqobnDJksN+E+mODgBAfABGDmloROFDXzgVM+cdg89d870hGbg89LZoF0AYQepPg/fUKW77elRHUm2tLKVFlUyI8MTjVsnzwfw7fdx0iUOmu1v4JYolicViv/3dlOx//P250GVWrWpF3osu+PjHZ/fr6yer3av0nZu2AAAsj9w6jgPHcWAYBmb36pXiypK8XVx0QO+DdFFGBVfZb0P2K8sqzNXSGBogxZNfQHS3ufPpii2ra2hUCuOmTwXgHr/mfPbkwd2YAOij2SAgxoMouQG6H8twyZCTKgefMxZFlkjJisVMQX4MwxBG5ij4fVWWR5ayPT3IeGW46BDF0nDggVMRj1twHAc33XR/5LLbtrknig9/eP9+e31AhmxSt5/JlKVMxjV9H9tLajr/ak1m9k6lwpQlNdz0jTduRSb7D+y2mxyQyuMFyslZUuIMQr4zrSwNXVR5JXA7nxf3de5sA1CcYV9Do5JoGCMjV4449VODuCXB0GRpABHUSh42VDcKxXTDJRKkAIWvp3iyJGfRcWIzauKEordVvI731rPdGWS6PLJUZL5UMTj88L0AALmcjY0bt0cuu2qlS2YOOHBqv70+IE88W9asBQAwYQhbtrgnp1678JQynLydDBkhwsuiMSuOGXtOgGXFcPzxBwcuU45nSQ2lDD65cjXJX4LVGFxQJysnS11ehECUB01DYyDAL77HTZ8Kq4gL/oGEPpoNAmLKia24Se4cUlkKXyYlgh7DF+JJ0lElE+6R4upCY8u4sKcUbCsRRVmG60KPKMP1325ISeQdHd29Lvufl92RD5Mnj+m31wekUrZjYyscxxGeJcdxsHp1KwBgrz0nFr0+TmySIQGelm8gM31nPOeKm/jLMniHeO04VGVJH16GEogs5bM5cV/HNveCor9L4RoapaKqQTYgGKaJo0//r0HcmkLoo9kAgghDWBBlqdEBdMLb+0NzCkaGkBE4WlkqzbNkGAZS7GTY0FI8ybBt971b3vZk0j3o6XS7xcoxG4dhxp6u2rV5885el3388VcBAPX1/ds2Td/L9vVUhnPvt20Hr766GgAwYWJz0FMDwZUlUgwLlmFKj8HGq3CCxE3gZSlLXAUNMeXHlODK/ou20Og7ktXufk4jTgCgfds2AJosaQw+qrysLzpPzv7kxwdzcwqgydJAwrOuKFfoyu1ivw55Epp71uk4+7br8Y3f3q4sEdY1xcFHZxTjWQKAmiq5XP3o6BO+aZripJzLudI/KUu5dBo9na7605/hmpMmuQRu7dotvS678MGX4DgOTNPAIYfu0S+vXze6WSFLfmXp6afcmVx1ddGt2vwz4R9PIrQbLnjGIO9ytLgq1dfogBCylIhrZWmogro0c5wsbY0uVWtoDBQSXkfmmtfcY2TzpIlIDaFkeX00G1B4yhK/+i5xhIS7nFSWJuzlnuTrmTkOcNv8ewMPOIwqw/ETdw1bL431CANXbNJp9wBtmW5HmG3b6OnylKUyzMZhGDPGlXJXLF/f67IdHWlhuP7o/EP65fWbxrcAcIlR5/YdcGxbeJZs28Hixa8AcInEtGnBZUx/rV4pw4XkW3FFJ2FJZSnGDFNWXz1LMe5Z6t3gPRTbf3dl0Mko54XBAkDbps0A3P2hpqlxMDZLQwOAvJh78f5/IZ/LwTAMHHfWaYO8VRL6aDaAIHkxZgabuovvhpP/inKI7+QXpkBwFK8ssQTplLxd28vBtaFBkqXubjdTKc46w3o63EC8ctrYw1BX577ma6+/38uSLsgE/oEP7NUvr08+LvquHdsR3XC27WDTph1CZTv++FmB60gk1cwbXs2Khxi8eYdlVRVr3+eKU589S8x0HmLw5mqSLsMNLRBZyvb0iPs6tm0X+6r/gktDYyBB58LN763BujffBgDM+tjxg7lJCjRZGkhQGU45oZSfswTIcoj/5BfWNcVRVSXJUtSken7Sq4oz4hSQCMxBpSbHcQRZ4gJWd2dHr9tYCizLEobml15cXtRz3nlnHQBg730m9cs2kI/L9ubC2XaeKUtuvk1bm0sSZx4UPCMunlLJEv9uE2HdcIwIVbF4gXhYB1s5s+FivDGhGGVJk6WhBNqvKAzWj96UYg2NSiFVXyeOc5vfW4Nn7vk7ADVOYLChydIAwqEyXD/mLNFJy//cRCKuLBsEpQwXYfBUyBIzGFfVRQ/frGfKUrrbLcPFTUckmdM4EMMwkEj1PUF45kFTYRgGHMfBkiXvFvWcF553B+3SLLm+gnxcuYz7fu28LTxLFIJJpb9UiPqXSKkBgfwbTIS0eHOFkq+XK4ZqGS7ybQS/hslJevD+opjAdRluSIGCJykMlkCJ3posaQwWxk5xg4Qdx8GODa1ofXe1+0A/+ln7Cn00G0gEdcOxE0qpZThAluH8pCgquZvA54zFivQspeLMP+MZRsNQ75XEHAfo9gZ3up4l9/HudqkspXohXsVg9uw9Abhm8lwu18vSLhYtetl9/VQiNB27FNAJh0oddr5QWSLSFKYSWb40Zf7VWvFgksLJUlWSEyRGXpTnGjjxxMPx3vsL8LGPHRrxjtgzFJIfTPTijEz3p3Ffo++gjlkKgyXkvbJwMSGzGhqVwOjJbpQKEfeObTsAuMeQoZK3NOzI0nnnnYdVq1ahu7sbzz33HGbPDh9V8fjjj4sRE/zvn//8p1hmwYIFBY8vXLiwItvuiG644K6iUnOW3OcHjx/hLeZhJ+WqFFeWes9ZAoAkI0vxqugRCTR7jpfh4oYDx/EUlq4uuS39QJYO9MIl29t7z1giPPPMW2IEyXHHzezzNtQ0NgIAerxp7nYuJzxLuZz7vok0xUOIj3/0BP9qw0gwJ0vJkKwjXoYzDAOXX/5ZTJo0Gpde9pnI9yReg+0HRkiJzdKepSELIks9nV3K/fmcq4LWNPU+4FlDoxIYtZsb+UKdmh1bt4rHapuGBokfVmTp1FNPxfXXX4+rrroKBx98MF555RUsWrQIY8YE5/2cfPLJaGlpEX/77bcfcrkc7rnnHmW5hQsXKst9/vOfr8j2C4M3L73FSleWOMJmtcVZ11QoWVKUpSLmiQHgTXbxRDRZIs+SbTvo6iLPkiO8W4D8TGhuVV8wY4b7g9tSRMYSwbZtQa6OO+6gPm8DDSulDKl8LieUJVKUiDRZYfPVfMGT/JsNI1gqWZL7Ee9ytHgnnSGVxbDSXuFrBIepcsT7aCLXqBxofyMiT8h7JePqBk2WNAYHjePcxhjy02XSaXFuGCqK57AiSxdeeCHuuOMO3HXXXXjrrbdwzjnnoKurC2eeeWbg8tu3b0dra6v4mzdvHrq6ugrIUk9Pj7LcDm9afL+Dxp2E5CyV6lkCWBeUX1mKB3tVOPicsShlSSVL7LV7OcnW1hJZstHZKQ3epCxxJGv7Hgw5yZuD9v6a3jOWODZtcskVka2+gMqJNKA0n80KzxJ1wYkyXKiypJIlLtCEdS1yBYkrS5Zi8FaJDBGvohsLzID9zgeVLBW1Wo0BAoWSEpEnZL0ogaohlGmjsWuBOjHTHZ0Fj9U0Dg0SP2zIUjwexyGHHILFixeL+xzHweLFizFnzpyi1vGVr3wFf/rTn9DVpcrQRx99NFpbW7Fs2TLceuutGDUq2uiYSCRQV1en/BUDoSwpScilG2K5wdsMKcPxFvMwZYkP240KEOTllDjL7ekt9bfaSwi3bRudHa5PIm46cGwpLdHtZHW0/6kYjB7j/qiWF5GxxLFtqzuvbczYvv8ok9UuQaQBpblsTpAdIks0myuM+BSU4djtsOfw9PdknCtL4anbRGxixe53bLmw4cdqXpdmS0MJ9HvtbldPSORh6o9SuIZGOagd1QgA6G5vF/eRf0mTpRIxevRoWJaF1tZW5f7W1la0tLT0+vzZs2fjgAMOwJ133qnc/9BDD+G0007D3Llzcckll+Coo47CwoULI4nLpZdeira2NvG3bt264t5EwCBdQzF4F3dy4bxIlM8iDN5hIzJ4yncUWVJa12Pq/f4xKxy13qDeXM5GuzerzWKeJUCqTMma6ETrYkBlv9dee6+k55GyNGpU36+sE1XuNtDMLa4sZbMuSaIyXFhmkv8zNYpQlvj+yhWrWIiyBMMQ6wryFh35pc9i1ER1fl0xQ5+1sjR0Qd9ZukON7KDuOBqHoqEx0CD7Ah03AXlRWe35QAcbw4Ys9RVf+cpX8Oqrr+LFF19U7v/zn/+MBx54AK+//jruu+8+nHDCCTjssMNw9NFHh67ruuuuQ319vfibOLG4oahiNpzBTbfBJblo8FTmEGWJnzBDTmwKWYr0LMnbft7VND58mG61R5by+bzwBcVNR8yJA+TVQ2+ddb0hkbDEZ/Hii++U9Nz1610zYX/MiKMSWsdWd+ZWricD4jGkLOW8MlwY8YnshgvpWuTkJcFLpWbwvmaw1/eX4Y780mdx0sXn47xf36xuR8i6OPSIk6EL+p6729qU+6ksl6zRZEljcJDy5sK1b5HGburSrB4i5eFhc2TbsmULcrkcxo1TT87jxo3Dxo0bI59bXV2Nz33uc/jVr37V6+usWrUKmzdvxh57hM8Ky2QyaG9vV/6KgchZsriaxD1LKuE5//wT8c7y2zFlyljlfqU7KoQs8dyk0DJckRPi+bppthuhacL40OeRgTyXs9HuBTFapgPHzotlqDMsWdU3ZWnWrN1FxtLL/1lZ0nPfe88d+cAHC5cL8oW0bXZ9U9lMhilLbpxBnspwYeqMX1ni6w95DicycW7qtnjpjLf7S2XJX4YbO3UKAHkAE8/nZbgilCWNoQUaK0R+OgLlnVHCt4bGQIP2vZ3e+B1ABvv2R6xMf2DYkKVsNoslS5Zg7ty54j7DMDB37lw8++yzkc/9zGc+g2Qyid/97ne9vs7EiRPR3NyMDRs29HmbC2AHGbx5O7b6dXz30k9jjz0m4MJvnxS6yhgpSL6SB8/jCSv3JMoow/k9yQ3jgjsRATlOJZvNYedOjywZkiABbmgjACSq+3agPnT2DO+18sr6i8HKlS7ZToTMXSsFRCJ2bNwEAMj19IhuOFGG8/4N62xTutbgKAbvsO9JKcPFghUgpfvOkOvyk3RRBvQRcFMZdxI2doVdCBhGaHOBxiDA+/o6d6jKEvlE/F45DY2BAh1ztq2T512KEaiq1WSpZFx//fU4++yzcdppp2HvvffGbbfdhpqaGixYsAAAcPfdd+Paa68teN5XvvIV/OMf/8C2bduU+2tqavCTn/wEhx9+OKZMmYJjjz0W9913H1asWIFFixb1+/aLMpxilA1vtaYr/6oqf1mGleG8dRWU4fhJMuQEmyhSWVLW61ssiizR2I1sNo/t2zu85ztw8pwsucShrwneBx4wFQDQ3t4VvWAAyBBumkafUqdNyxLfw3ZP7cyme6Sy5CV3UzkurJTFowP8tp+w74kTbb5aJffIR1xIdfJ7lixPHfOTKG4iD1O4/ASwunpoBMrt6uD7pr8M193m/jb95V8NjYECXWRuXSObc2jgc7K2780//YFhddn3l7/8BWPGjMHVV1+NlpYWLF26FPPnz8emTe5V/OTJkwtUhT333BNHHnkk5s2bV7C+fD6PAw88EKeffjoaGxuxfv16PPzww7jiiiuQyWQKlu8rBFniRlmDl+TUEyGduKPa+qXvJZhoARHKElMaqBTTOH4cdmxQTfRRZTga7xEEInnZbA47dngHZNMRahIgpdZEH8twe8xwy4GbN7f1smQhli1zDfqGYWDatHF4993yVEVeW+/Y6hoVsz09QhnKeGW4bI7KcMHfKzd4+73X4WSJq3/BZTg/waF1+QlijEbl+PYpQ9lXQ0IpLT9ZSopZeBqDB95R1L59h/JY5063wYFIsobGQKK6oV6cYzatWi3upykIqSHipRtWZAkAbrnlFtxyyy2Bjx1zzDEF973zzjuh4XjpdBrz58/v1+2LgiNylng5I3j0ift/dzn/CUjthjML7nOfw7ujQjJxfMrSxf/4A8ZOn4pffe3beOtJWdpUPFIeWaLU65qIdFUKPcxkctjGlCVOaPMeWYqn+nZVu9tubk7H++9tKvm5XV1p2LYD0zSw114TyyZLiSr5o6aU5ExaluEyPmUp1ODNynCU/i3+H0JSOJGxYgYo+dMMSYvnjxUoS7ScvwzHVaqQnCW/WsaDTzUGD7VNjQDc323a51nq3O4S+7A4CA2NSoI8ko7jCK8nIMlSXy+k+wvDqgw37BGgLHH/UqFHxP16Cue2FZbh/M/lJ63QsRqMRJkxE6N2mwDDMDD90Fmhb4E2hUhOVAYGddtlerLYvo3IEuDkpcFbkqW+leFGj3ZbT0vNWCKQ+Xr33cMN672B4g8cx0HOUyYz3d2iDNfjzccjz1LYPD4rzpQl32NhZUJOwPk5T+m2tMKUJd++EzKE2fAZvFet/hXWrL1LWSbue43+mLen0XdUea3ZQWj32rV7y03T0KgEmiepc+EIFGkxVBoPNFkaQNDOoJx0lBNQiLLku18dpBvsWVKTm3v3l8RMUygPftVAKcNRGnWGUn/DD8IpIkuZHLZulVezFpiy5Jn4/KnVpYIyll59dXVZz097RGbKlHAPVm8IyorKdHeLUlqPpywRMQvz/ajKkvpYMcoSDw5VPUvqkFv6XgvKcCHDmflyNTVxTJkyFhMnNmPSZPmZ+cuEWlkaGqASManbHNSurcfTaPgxbvrUgq7Y/oaYC+eN3SHQWJ6+Xkj3FzRZGkDQcSqsBbvgSj7kZMYRCzl58pNWaBmOkSUzZgoSF3YSd1/PLQ1lvB05qp5MylK6J4tt22QQXsKUZIl+IH3pxEkkLPF+X3xxeVnroByoSZNGl78dqUKy1NPVJZWlHve9Zr1QyjD/EcUPOI5TfBmOjyIJ6Z6LWaonhdbl3+/o9f3ucv4aPKOL71+WT8VMjWCyVFtbixtuuAGrV69GV1cXnn76aRx66KGDvVmBoFEm/qt3AGjb5Da+DKUJ7xqDj4n77oXv/OMP+MFTD+H4c79SsddpHOdG41CSPIGsDH29kO4vaLI0gKC0akMpw4VHB9gx94RU3Rw+fsUM6YbjJ8nQFnWuPiVkt4wZUh4iJExHzPCJSv0lT1Q6nUEul6PkBMSNQmUpKgm8Nxw6e4bIWCpXWaJuvXEt5Q9tTFTLMhyhp6tbkBciSzmhLEWTJThOgbIUdvWvzgvkt8ODJCUZDy7hFipLPPgyeFCzvwxXNYJPvnfeeSfmzZuHL33pSzjggAPw8MMPY/HixZgwoe8zBvsblFXDmysIbVtltk19c/nKqsbIwvRZM92RWrEYPnLeWfjuP/+CxogQ4nJBc+H8MwvpHNOXc0N/QpOlAURgdECEspT3vp6aseE+mmKUpbCTMidLVkIqO2HmXULcdNDlzT6LMmbTSbQn7ZIEOk4nYpJM0BBPqw9XD/vuMwmAG35ZasYSYcsW9/2Mbg4vK/YGEazJyFKmq1uoQ+RZIqN36PfClSXfY+GlElZ642XaWPC+xtdVQJbicVTHCj9HZaByMtgTt6uU4VKpFE455RRcfPHFePLJJ/Huu+/iqquuwooVK3DuuecO9uYVoMqbX2kzvyAhl86IY1P92Oi5mBq7DohgO44Dx3EwZsokXHL/n/r9daj5oCAs1SNPQ6VLU5OlAYRjF3bDKbPhDPXroMWih9zSY+H+krBUZUVZ4qbiXoyeCdMRplArIsiRyFJ3t9vVkHfk8wnkferLD2L8ePcAn/HVvEvBxo3u+2lsKr8+T8SRDwpOd3QKZSmdpjKcZ/AOVZbcz83O5wvKcOHKEns+W20sImeJnuNf594Tq/H/9t6Gj05VZXElJZx9X7yr0t/hN1IN3pZlwbIspH2lg+7ubnzoQx8KfE65A7j7Aykvq4aiOvwgslQXEQVSKZimifEzdh/w19WIRsobQZXu6MSDN90GoDLBpdWNhXPhAEmeYkNkKoAmSwMIqSzxBG/2FfhDAMUy4cZL8VhEHk8YWVLSli21M07ZDu9kStufMGWLZ1iSMyBPnN0eScgFKEs5rz001gey1DLeLZ0RGSkHa9e6Jtfa2vLNhHGva4OrWz2d0rNE25fpcU9YYV40+kxdsqQ+Fi4s8Xlw8m5VYex9CC8A7NacgGEAzSlVXeIDoBOJYE+cnwCOVLLU0dGBZ555BldccQXGjx8P0zTxhS98AXPmzMH48cFKcNkDuPsBdOKjVGQ/SHGqG1V+GbpcfPMPd+Kie3+HIz53yoC/tkY4aFZgPpfDfx58GIB7Lkj088BlmgvatkUNjabqRW+VjoGCJksDCNkNx5QlJaDSb/D27g8hLwDEkFb/OVTJ1wktwwXn5pghc+XyXh0tHnOw0xvnEdVBQyStq4uUJXdZVsFBhspwfbh6GOPFBnR1pXtZMhyrVrlBnH05uZPBm7xpAJDu7GDKkvteZTdcdLBjPpcLJ0cRCDN4K145OKFlOPq/iXBVywqJpihUloaGhF4JfOlLX4JhGFi/fj16enrwzW9+E3/84x9DS8HlDuDuDyQ9P10+G6ws2TS0NCIKpFIYPdkto0+bdeCAv7ZGOMiPms9m0bVTlsiqG/pXEaUcpR0b1TDkLi8s1X/+GywMja3YRSBDKUOCKP1luIBlCtq8hbLkN3izdv8QgzdXuJRRFkwt4mSJwhQTpoNt69d7L2ugxqs5+0Enzq5Ol8QEKUtZr4xhWuWfVEc1uz/ejvbyydK7K9z3E/ZZFQPq2uDjXLrbO0QprdtHlsKVJfezyGdzYh8Q+04R7MliZc6YGawscX7kX6UIqyzohpPrSvLZg/FwVTI5QpUlAFi5ciWOPvpo1NTUYNKkSTj88MMRj8excmXwIOdyB3D3B4gs5TI9gY9To0VNw8CTJSrt9HWYtkb/guZ15jJZZLq6xDGoqp/Lx2Tl2L5ho3I/KUv+xqfBwtDYil0EpCyFkZ+CWVxG4TKWFa4ycajPCSYAoaoDu82VFurmSpgO2rdsFz+e5onB3T+0/u5ujyQIsiSXyaa9Mlwf0oObPJ/Rzp2dvSwZjmVvy5En9fXlycyUB2Lb0kSbbpeepZ6M+wH09FKGoxp9LpMVRIvH4wSpX0o3HDd4h8whjDEvVIGyRIpThF9KDT2N8Cwlh4aEXkl0dXVh48aNaGxsxEc+8hHcd999g71JBYh7RIQaKvzI99PYoXJA+3tfU/w1+hc0r5OsEoSq+v4lS1TJ2PL+WuX+Dt9YnsGGJksDiCBlSTV4+z1L5HGS9yd8c97C7ExhJzYOrj5xc3lYGY5IT9x0kMv2iPfTMH5s4PqJ2HV4ylLW9spwrF0rI5Sl8k+qdXUuudm2rfwr9TXvbxbvZx+vu65UxL3sIdunLIlBul6xVCpLIZ2M3veVy8i5cjZjS35flb+1NqwMx1WfmKIs+cNQzYJl+P2AGhGgkiWfsjREMlIqgeOPPx4f+chHMHXqVBx33HF4/PHHsWzZMjHYeyiBTnx0ceJHnlTjASZLiepqcawaKuGDGi5oX8jSnFTvGJTqx8G2NU2N4vvfvPp95TGar1kJn1Q50GRpACGUpViwmlSQayOUJe4V8ZOlMGWJleFCyJJaAjQC7+cnQvIeJUwHuUxWdNY0jg0mS7Sejg5/GU4uQ+GWfRm1QORhy9a+lTXIkzVjRnk5OfGkpyyx9uxMV5ckPHDfIyl0oWTJ849lezJC3eEErKpavQK3fFfkMVaGC4sO4MqSfxeifbJg83iSezw4xytm+snSyPUsNTQ04JZbbsGyZcvwm9/8Bk899RQ+8pGPIBfScTaYINUm2xNcqs7nsspyA4Wx0yaL21pZGloQ+4x3QSvKcCUketMokzCMmTpJrJuS5AmdTFmqax74xgM/Rr5GPoQgDN4hKk5hgnfh/X5lKczCophxQ3w4yutxssROsNyg2+GlXMdNB/lsDrlMFlYigboxwanXRJa6CpQluQzN/+mLia+qyv1Rb960o+x1AC6JsawYpk0rL3iNsqL87dlSWXLfI+UshZEl0yOo2XSPuJrJsziC2hr1Cjzha+flq+U5XApZUnhycWU4M6SzTjV47zpk6Z577sE999wz2JtRFMhPRxcnfogk/QEmLGOmSBU3PkTCBzVckGKd8aJfbNuGGYshWaSy9M3f3YEpM/fHvdf+HE//8a+By4zebTcAwcnyuUxGDGyvGzUKW9cMXPdoELSyNICQZbgQNcnvHRF3R3mWgl+Ln4jDuuH4Mg6CT6qkLDmOg/YOb7BhzFWWaCp0XUjCOK2fRol482ORYGU4mv/DzealIumxr/UbtveyZDRIOSt3PhwdXPzBf/Tx245KlkL9Zt7nn+3pkcqS7Yj9p7rGpywlfMqSUZqy5CdttLv5y3DKjEArWH30K4TJXcCzNBwQ8/bNnu4QZamfZjSWilGsIzCmyVLRME0TP3x2Ma5+8qGKvYYg2KQseep21IgrjrHTpwIA9jv6yNBlwubCCdAxr7H8sOD+giZLA4ignCXFs8QJi2lKZYkTn4KRFfSvX5XqvQwXpizxbeJKVrtXTiNliYhObUg3HK1fkKUAzxKtw29uLwV0sl6/bmsvS0aDDOIUclnydnhdHfkQZSlvyFl5QFQZTkYHSM+SfLzKd/Ufrwr3LJmKssSIk/LVhylL6nYZSmddcLelf+hzYgQrS8MJFPpK87b8yHnG73hiYJWlJjY+IyrgVkPFmOlTkKqtQU1jA2orlI1FQcWZLnefoYvAZJFkKeHlzjVFjEhpHOdemPrnwhEohqO6sbGo16wkNFkaQBAzN0JKXpww8I4npQznyyPiX6DSWcdOdGHdcL0pG4BaRunodA+ormepR8zuCeuOoNWTIkVkKcHec0+Xu46+tIcSIXj//c29LBmNbZ7naczY8tqn6cqYzLLifu9zyHskOeORpdDP3/u+7HxeZB25ypL7eI1PWVJTdR1w8dEMiQ5QPUv+xgKjYBn/cpwU8f2rIDogoZWloYCYIEvBHaNk4u3L2KFy0DBWqrhDZazFcEDdKJm0XqnUdcq+owvaPJGlquLIEp1Hoshcvff9p9s7Ah8nr2ZNg1aWdinIUMqwESecLMkDB1/EX4bjaZS8oywsQFB5KlcX2P2qwVs+t81TiBKmg3wuh7SXE9NbK2nbTvfKJEvjTuJMWeroKtjeUtDYWCue+957m8paB2HTJjcEbdSo8lpj6WCfZynJpmkKhSZveGSpyDJcPqsqS6IMVx1OlvylM+5ZUrK0InKWaGeIGuJrxYL3kQJlSasFQwKUndbdEUKW0n1P0i8H/ETaW0dsJYa4DlfUjmoUt+vHVIYs0feR7nCJDHkxaWB4FBrHjxPHiygliiwcXTt2Bj5Or9nfcQXlQJOlAYTwLClqUpiyJA9aJqMy/tElirIUcrCJmi0nXpsrDSHdcG3M4J3tyaDT28GDfgypVEL8WHa2eWTJdtcbZ2fqdMjBu1hMn+4eQB3Hwfr123pZOhrr17tlvHJzliRZkmW46mp5pW7H3NuU5B2ekSXLcKTu2I70LPlzljhZsiJM2YrKFKEs0WKm4eu+VPLBghsI/GQ+kSjfi6bRfyAC3hPye6MsnYGe8F7NFIOorLXDT/kkvrfo7/jGb385EJs15MGT1mubKlSGE2TJPX7TRSCV16IwYc89xG0zFgvdr6rq3e+/fVuw3zSvydKuCQorVMeVBHuWePkrqqSm+MNDDjbFlOEU0hUwV85xHOxsl9EBdi4nyFIiIB+lsVF2TLS3qWU4TpaoLFCusjRp0mixfX3Fe++5ZTx/matYxDwVhc/fqq2VV2F5ER1AylLweujzz2ezogyXZ8pSlc+jxEsnfl6slnzDlKXgMhygkr1QZYmX4Xzl1L6MsdHoP9A+1dXWFvg4eUYGemgpz+yJig/Z64MfgGEYGMOiBkYqEqkUTr3qMkw+YL/QZWo4WaqQZ4m+D1KWct5FYNDx3o+xU6eI24ZhYNL++wQuR9//zk3BFgoatF6sqbyS0GRpAEHT6PlJJ8xkHeZZ8itL/DTnz2CS9xd+zdXV6g6vkC7FsyTXubPNPaC63XAZ0Q0X5DdqaJA7d5tQljyyxAze3axWnSohv4MwcaIrQedywfO4SsHKlW7cfrmlI7oS42W4Gtbmb8RJWaJgwGC2ZIgyXFbphrNtUpbU7YtUlkICUM2onCX2/zqmsvGSMTd4c0LkVwf8HjuNwQF9990h3pCM1yUX60M4bDngIZhRHbFEDnYFX9NHvnY2Dj/5Ezjt59eELsOVlpqmyoyoIYJNfiIiLsXESzRP3k35/+T99w1cjojX9vUbAh+n10yWcW7ob2iyNICwgzxLvCRnFKMs+dKWeaaOdyCxLEtN8A4ow/lToPn50mAHLaksAds971HcCz0kUhCkCtXW0VBZR7xvKsNxVYIb+1J1pSfDTpjgkqVMWOtpCVi+3J0PZ5pG6CiSKMgxJXKkBKlUtgOYCfcz7xEG7+D10Gvns1nQN2E7EGTJryzxfBq/KTusG85SXtvfSSlvq2RJ3h8LSfP2d/j1ZdaeRv+BfqM0b8sPCh4caLLEO+CiOmKrPXIw0Ns3GGia0AIAqK4PNzXz+WxVEcv1BbTPdHve1FKyuJpa1KDi8XvuHrgcqfFb164PfJy8dMkifFKVhiZLA4hAg7eSoi1vqmQpuE3b9xRRhuOlEyC4DOcvNfHjlJL+zcpwOzpkGQ6QraRBylKQ7yfruOu1mCqRSafLSoYljB3XCECOYukLli2T8+HKCaakA3kuQFnKO0DCO8hQGS4M9HnmuLLkSLJNIZwEXobzi4jKbDhlkG64ssRRVy8JrBIdoDQdhBu847obbkihO4Qs9Xjt4WGl/Eoh9FjoA5Vr+pL0P1xAxCDKP8bLl9WV8vMQwfZKtzSEOZ7snSzVjVGz6kb7lCaA4nHc19i06r3A9VB5WJOlXQwywZuX4cKUpRCzdoFnSZ70qAzn75YKMk7W1PiVpWCDN89Z2r7T9R5Zpns/GZmDlKV6piwRch5ZioVcQSZrS69Ljx7tXlV1dgbndJSCrq60UG/22is6pj8IpjemJMeGldJ3kXcMMfuquzt4PpdYjyBLOZhw9xnblsqSPxWbdzBFKktMMYxK8Ob/U8hSiNfOivAs+cvGGgOPVH2d+O7ChpP2dHkzGgeQjPCOqd5A5bqhMoG+kqD3GkVcuYenP2e1ETiR6d7pKks0hLmYJoAaL0SSLqgbxhWOxGqePEnOhXv//YLHAVkeHgpzA0f+njeEEFiGU4hDcBmOL1KQs8QVIe8xf5nGP68LCCBLBg/NLGwLdxwH23dIQjKupSmSLNH6bZammLFDyBJ1edWUriw1N7tXVRR82VfQkNvddx9f8nPp4JZlU7qp3Gk7MhG3h+UsBZX7hLKUycrYAaYsFXiWvIOX4ziwzHCyxEu+flKlvD67XVMXTJbClCV/yTcsEFVj4MAzajpDWrSFsjSAZISbgAHv9xBSZqPST9hvZiSBus0Mwwg1UyfZYNlkTf+TpVSdPBbTPkOl2mLCQ8l/urPVNW5XNxT6qsZNd79/x7aRSwdXBigQMzEE5gaO7L1uiCFYWQq+ragH3CviOxmp+Ujuialg0GqQwdtfhkNwWc1inqVM3gHNc20Z1yQ9SwFKUZ2nLHGyRJ6lQq7kKSZldDw0NLgHih07+hZBQKC2/qnllOG8q3Ie3U9G+rxjwPLk63RaPu6f9QdwspRh0QHSxO6PDuBjIizfZxumYkZ1w/GdqrY2yReUz1eGO7P1+shR2FxCjYFDjZd+7DhOwdxCAkV4DKRyM3qyq94qQ6Lrgi+YrLjcx2tDxiuNFHAVxW+UJvCso0qUqHi3HWUgZUrI4iLC9/7rbyr/52jezf3+c9lwW0LaS5y3iij9VRqaLA0gRDecklcT7FniHVlmlGdJMXiHKEtBZTgfoTIMWT5Sy3BSWYrF40IdGjeuQWRgBBq8SVFhAxJz3nP9i/eFLBEp27atveTnBoEUqt0mln5Api62LIvup++CK0vcX+UvmQKSfOYzMjrAdgzkvZOKv1tPXOk5TkAZjnuWeleWTNNUDgpVrGtSLcNxshRh8NbK0qBDZBlFpGv0R5J+qRg10Z0LxkddBCkQgFoerKtQCONQAZ/P1zwp2A7AfUO8o7C/QKZxpUHHG3peDFmi7+v1x55w/2+aqPGNxRo10VXvuRLvB5H4gc7/CoImSwOIoJwlFKMsMcR8ngL+BVpWPPC5QWU4v/pkwBFSvBJKaXGyZAmy1Nxcj3wuW/AeCEJRyXOyRIsbijpCV5bJMn70RMq2bgk2rpYKUqjGtZSeXUJkhP/4q5hniX7waSY5+0tqgFSAcpmMMGLnHTZuIBVMltwynG+beBlOiQ7gr8fWlUop/6+uqWLLMbIUkv3lVz61sjT4qG5wS9WOEx6vQV2p5eadlQPysfR0dskmjwBlybQs5UKyfoQrS5wYUGecH7wjrZjutFJBniMwz2lPkfES3Iv25pPPiu92ysz9leVo1ElYUCogM56GQmSEJksDCKksBbdzc/DyDD98FSpLzJjtravKX6YJKsNVFXbDUQaLms4su+GseFxkJY0eXSfk0yjPEs8/yrLdjc9fo/Jkorp0ZYlI18aNO0p+bhBoNEt9XenbQipOlhm8SVnK2/KKrKtLPh5EiunzzGYyTFliZTif+Z8OJI5dqCyFlXnV5RhJr65S9rdq7m1Tnh9chvMrS2GBqBoDh5TXZs7LXX7Q2KGBRL030yzd3i5Ur+qAGWCN41QjeM2okUGWDpx3LC5b+DdMP3SWcj9XbhrHBdsBOKGqxDw/ynHiDTrkH+qNLI3fY7p4brqtXbT/77bv3spyYtRJW3hVoLvNOycNgeOIJksDCOEJKsazpIRSynVEeZZinrJUkPAcQMgKlSWg0+uU4d4WUpZs20EsJpWlUc31yEdkG1E0Qc4bKptIpdz2d++318zmr4lp1tWldzxQ1+CGjcFx+aWCAjT9nq5iQMpNtpuV4bzv0VWWvIRv5hvxfw/uetzPmHuW8o4hPsu4rwxHniXbtgMM3ux2EbPh4klVWeIxBWoZTi6jKEs+FdOvhGoMPCiTh5TtIFCWTpTJur9BZZnOHTuF6hXU2UXlGgKfizacMf/rZ6N5twk4/pwzlft5inrY3DdOqCqhugQR7LQ3baG3jslx06cBkDl83V70QMvu05Tl6PvvCBl1AshcsKEQGaHJ0gBCGry5Tyn4K+AnUZUQ+cpwvBvOI0UFs8MCFBs/oTIMOZ8naDac4ziIJaSy1NhYI/KEgpQloah4RChelQJgiOdTFxsgyVIiVXoZjk7U69dtLfm5QWhrcw8IQV6i3kCfWyYtO/NSzLPEr8jEnLcIZSnX06MM0hVluESYspQXJEjMIeTRFCGz4TiS1SklRkLJdAopw8UCogPo9YOaCzQGFikvksPOhZMlfnUfZrLubxCJa9uyVWaI1RVmBjVNUNUVbj4ezqDQSf/nHYvJ33fYKBN+LKlEUCdl3nGCTepjWDWEMMrzWfV4Hqe2ze6x2e+/otdo2xw86gSQnXhR6e4DBX0kG0DI6IBgoyynRSnlil4u4TfMBhEpP1mqCjBNkuJBKqsJRyhFhlKGY8qSFUMmL8kSGbyDPEtE9rJZjyylyLvjPs7HrdB6ElVlEBTvtd97b1PJzw0CeZb8n2Ep25JRPElSWQo6qKWqAl4nqAwHQ3yWCb8njdS/vC3GndD3GmbKjhV+ZQBc4yjfJfn2qZ4lto/Ewj1LWlkafFAbdz6kEw7wjx3q/1b0IFBDx85Nm8WFZFDWWsM4NeAwKtm6GMz62Dx89Zc3lVX2708kvGOgP0OIqyhhxFAZkF2B31jS2wc4wSZlqbcmgFHjXXJLJbSta92wXyq7Eqijb8fG8GN3544d3msOnJcuDMOOLJ133nlYtWoVuru78dxzz2H27Nmhy55++ulwvGnt9NfdXZjHc9VVV2H9+vXo6urCI488gj322CNgbX1Hb2U4pRuOl+HYOgrKcEwhIGnWbxpOBlytkfLjeCdj0wDsvOdBCggcdBwHMUsqSw311ch7Yz2CdmNSJDIZd51k3ra9YMpUldxGameOl6gstbQ0ic9v9er+IUtbt7k/8KCW/t5AKk6miylL3neRdxBY3gj0LHn/5pWcJUmW/L41+t7z+ZwowxExVwzeTGUyQ5SleFVK+T65mVyZH8h2Q+6Jo4M4kTWtLA0+qLU8F1E2t3M5abIeoAnv1NG1fd0GcVJOBWQG+U+yfd2+T136bew55zDM++qX+7SevoJ8R/4MIZ6HFvZew2Y+9hdSXmMHJ9jFkiVK7+7c7lYqNqx4F0ChamiJUSfrQtfVFZILNhgYVkeyU089Fddffz2uuuoqHHzwwXjllVewaNEijPFFq3Ps3LkTLS0t4m/KFDUI7eKLL8Y3v/lNnHPOOTj88MPR2dmJRYsWIVmBXAe6ego76ygnqRDTnv9Eyb9A+pEl/WW4qsIrKHES9zbJJUuFOVAJRVmSnqW6+mo51iNAWaLyEoU8Wik5Iw1QDeZ5QZZK+8xpJInjOP0WHbBtq1sjL48seYoQK8ORgmc76hWgiEsICnij9fT0+HKWPGXJF0xKZMnO5UXOUj5oaDMnwSG//HgyqXqW+L4U1g3Hr3K9Zej9Bc0l1BhYkIKTzxY3EqiYMpxpWTjzf36C/eceVfZ2kdK6de06UWIOIku1PkN3OQO3OajVfvTkSX1aT19BxwN/hpDiXQ1Tv3zH3P4O6qTX5UPBi+2YpE66nZu2AADWvvE2gEIjOr3/Le+vDV1X+9Zt4jWDzP8DiWF1JLvwwgtxxx134K677sJbb72Fc845B11dXTjzzDNDn+M4DlpbW8Xfpk2qAnH++efjmmuuwf3334/XXnsNp512GiZMmICTTjqp37ffCTqBKTseIymhBu+InCWv1u0/0ccCUmB5ech9ZSc4lJIbvFnOUk1NKvJKlco3pCxRdgiRJa5+UVddvMSujt0mjRbb1l/YssUlXWV1cXnfRQ8zeCeFsmQo0jkpL37vGEe2p0ctw9Fn6f9+vZOOncsh5ilLRKwU4ZKXf0OVpaTiWVIaDdj+Geajo/dI38lIT1seDqAUaN6lGQSZd9Z7Ge7E73wT+x1zJD73g8vL3ibaHzevfl+clBMBAYv+fJ5UGXlsHGSgrmsuPR6kv1DT1CiO/VEG7aA5bIlUquAcUhPibSoXVKLkcy55qTYKRGa3b9gIAFi99DUA7naOmeIS1Poxo8V7aH13Vei6uLJUN8iREcPmSBaPx3HIIYdg8eLF4j7HcbB48WLMmTMn9Hm1tbVYvXo13n//ffzjH//AvvvuKx6bNm0axo8fr6yzra0Nzz//fOQ6E4kE6urqlL9iUEoZjisO/OTlz63hXyCdNP2mYdMq/MHRSZArS/mA7YuxMpxpxUQZrqYmGdkNRyZkGu1B5m3qreDlHTpQlprSuttuLlnKRRhXS0Vr6w4AfTvJU14VIMtseSfYpBilYGV7MkoZLkOk0vKX4WiAb054lqhkF6YshSV4xxMJRTVSZruFjTvhypL3ZCoDamVp8EFKSq9kicbpFKHcTDv4oKKXDcLoqZPd13QcbF2zTqjLQWnU/vJNEKEqBbS/U7L5YGDsNFnh4J1tfI4fEDxapLZZliWJ4Nb5SpV9hSjdsn2mu624jkki51vec+e9pTs6xLlvyoFu1tLYaVMBuNvfFTLcGXCPI/Qe+5sQlophcyQbPXo0LMtCa2urcn9raytaWoKDu95++22ceeaZOPHEE/HFL34RpmnimWeewcSJriufnlfKOgHg0ksvRVtbm/hbty685sph9zLuhIObeCOjA5ScJfckWuCDCVBJiFDlyAgMwAkgS1JZshGzLBEsGY9bSgu8H0TGMj1EhEhZ8jxLTEXKed6nUpWlFi84kghZf2DTph0AAiuLkeCDJzNdTFnyyJDtGIqyQwcAv1nbfW2vGy7dIxQg1+DtkSV/Gc47cOWzWUGCAslSaM6SJG3xlOpZSrBMp5AsVWWfpOgA6ZkaNoeYEQsqb/PycBBI+S5mfEbzJDd92zAMjJ+xe8nbNJbIku0mRJNKHTQwlQznoms2YHRGsagb3Sx+B6kB6voLwmg2xoRnCNX5VLQgf1D9aFdhcRxH5FP5fV29oWHcWJx61WVoHB+c4xQPUCO7WcdkdYRvjN5P68r3xH00EHfCPnsCgFCY6DuNgiBLTYPbBTmij2TPPfccfvvb3+KVV17Bv//9b5x88snYvHkzvvrVr/Zpvddddx3q6+vFH5Gv3iB2jBDTLUdcUZbY/UV0w/nJkh3wNVM+ER9BIpQltn1x5lkyLQuO94qxmCkN3gHMgtafFsqSHCjr30YiS6VG2o/1gi27usLj8kvFRi+vyTAMNDYWfzDlnTU9nTKRNsGUJX7gozKVXwW0WNkr09MjyI8NA5kez//lN3hbpCxlhcE7kw0qwwUrS4AkS1YioTxHHa0SEh3AyJLIiMqRsjT4XSy7OqiUk+mO/p1Qm3iQb4jDSiQUL82ecw5THm+aOB71Y0ZHroPmgpGqTMeSICJE5I3GogSVpooFkTy+3sEAjXoBVMXZr3YFeXVqqXzoOOI7q/WRrN7wpZ9ejcNP/gQ+/8P/DnycTOc5No0gzcpwVSEdiQ3jxorzwYZ3Voj7qauNspaaihh1QiDFs69dkH3FsCFLW7ZsQS6Xwzhfoum4ceOwcePGotaRy+Xw8ssvi243el6p68xkMmhvb1f+ioFDBmru/QhpiQwrz/iVpaC8m0K1wiiQaWkZ8iAZkAcuTuCoLZwM3kR2TNNAlik6flmW1I+0NweNSmzCs8S8OnT1Umq42pjR7o+nszPdy5LFgyeBjx9fvOzL59rR8EdAfo95x1BIZZiylEjKk0W2O81ylgz0eFfffj+V4lki31SmMF09SlmyLFKWksInBUiDv7uCwJu+nCX3kXxAs4DG4IBU3UxAJzCHGDtUE00i9jnqCOV7nXyAtDY0jh+Hyx/8Ky5b+LfIUg0pGkSAskJdLiRCpIxRuaYvQ1VHTZABl4M5b6yxRZ5z+Dmg2jNHO6z85DeiV3txArZtiwvwsDymMIyf4Z4DG8YGk1r6jPncPl4SC2sCmLCnqzL6y2sbV7i+pPF7uq/b5L1/3jkcBuqU1AbvIpHNZrFkyRLMnTtX3GcYBubOnYtnn322qHWYpokDDjgAGzZsAACsWrUKGzZsUNZZV1eHww8/vOh1lgLbCTiBhJxM4sogXak4+E+Uij3cu0LxhxaaBjDlwP2U+0S3mm2KzRDKl+JZkmWVWCwmc5lME7mMvCrwH3iIJJCyFE+oBm++jVQXL2ZAI0dTk/uDbW/r/QdXLPgBoaUEssRNpzl2gKHOtbzKTVgopY9ksjJEJi1DKfPM4O3fB0j2zudkdEC6J5os+Tm6VJbiaq4XVzgVsiWXicVMHH/uV/DlG38kym7kI9NluMEHXYRwL10QKMKjt3DYfT/8IeX/Y6dPFbcP/eRHYZgm4skEPvyFU0PX0eApTzQolYZPB3XE0nFhZ6sbXmjFw0lYb+AkZTBToXkyt2EY4ndS7SlLtm0LRYWrYYDMXrLzeeH1IpJVDKxUQlzchXXb0fE80x18IVpVH0yW/OndhFcX/x8AoG7UKJimKd5/d8SoEwK9xzA1a6AwrI5k119/Pc4++2ycdtpp2HvvvXHbbbehpqYGCxYsAADcfffduPbaa8XyV1xxBebNm4dp06Zh1qxZ+N3vfocpU6bgzjvvFMvceOON+N73vodPfOIT2H///fGb3/wG69evxz/+8Y9+3347IMQx7MqbHxAMSMUhyrNkhihLBoAJe81Q7qNlsg5TOwIG/VLZL5+3YcYt2B49M01DyeDw+41IWer2SmRE9mhreRmOpNhYiQfBhga3XLB9R3FdGsWCSmRjxxRfI4975QM+pRuQnWu2pyzR1Ta9RsJn4OSZK7m0VJYcx0SPR4AK1MUYkaW8MHhLsiSXoytYxymcIZdIuOuIJ5O+sm/wIcLvWZr31TNwwNyjEEvSTEAiS1pZGmwQ2eDl4SCIcNheylOT998HgLy4avQG4gLAHrMPEbcPP+WToeugUhKNwqD5YUFqD3UAUx5PX8ax1I+WSophGCUrMgDwoS+ciskH7Nf7ghHwvy6Zl4mEOLaNvOdRHDVBJUtEGvK5nPB6VQcED4fhwLlHi2N8kEcMkMZyvxrZWxOAP72bsHTRI3AcB4ZpYN9jjpSjTrwRW1EQZGkQPWYAMDBDgPoJf/nLXzBmzBhcffXVaGlpwdKlSzF//nwRBzB58mTlRNXU1IQ77rgDLS0t2L59O5YsWYIjjjgCb731lljmJz/5CWpqavDLX/4SjY2NeOqppzB//nz0FFFLLRV2L9EBKklRjbV0EClQFdjtmKcs+Ut4huFgHLv648uQZwkATKdw+2LKbLiYUIZiMVMx//kPcuR16vLKcFJZMrzXZ2QpXdw0az/q6t2D+rat/ZOxRMjn84jFTIwugSyFXaH5laVUTTW6draJfcEfA0DyN5Euriz1ULnSvw9QqVRRlgpH0fDyqt9KRCckK656lniul7ou/lxT+KHoRBZkMNcYHNBFSLqzlzJckXlnTV4pa+2bb2PyAfsqJ86W3aeL22OmTkaiuloMYOUgdYTmglG5x38cMU1T7GzUYt4XRahutNp+Pm73aZGzyfzY96gP4lPfvQCZ7jQuPeyYsrfDb5CuHdWE9i1bRedfPpdHPptFPJVEw7jRgc/NZ7JClS+FSOx7lFQGw0qRQo3sVL87oYiHpLxTenfaFzOQS2fQtbMNNY0NOOgjc0XYJuUoRYE8rb156SqNYaUsAcAtt9yCqVOnIpVK4QMf+ABeeOEF8dgxxxyDM844Q/z/wgsvFMuOHz8eJ5xwApYuXVqwziuvvBLjx49HVVUV5s2bh+XLl1dk24OUm7BwsXiC+UDgiAOYfy6Pkm/pnUT9wZUG1Fo9IE/inCwZ1NjP1mnFZBnONXjL7aSdGChscaUTene3esUoynAsOiDjXVWWSpZoftvmLeGtp+WATvR8fl1vEGZRR1Vs4syzBMhEXiL1fjO+37MhlCUYwocUpSwRCepKF3YqFtMNZyUTirIUljelkvRCgzd17mllafBB+0e6F28l5Z1FdZslqqvF448v+L23flN4kGq8IbeO47g2ibO+FLielJgL5s4No3KPv8TWMH6c2G/XLXsHQN8IuD+ziXelFYO9PvgBAC6htMoYiURI+sgGZQhViTEjOVE2rRutkiUiKrlMRpDMUjr7Ju0vPWb+WaPyfiLYKlkiX1sYcanzyqtBBHT92+55derM/cXFZdSoEwJdlCf7mK/VVww7sjSckc8VeoL8v3uTTlo+ZYm6yWK+kw//nyjDxf3KElDnM/JRmSzLzpmmWL4wOiCft2HGTKEMGYYhy4ooNGfT87o6PbLkM3hz9YsOlGaJQZAUrEkdbP2FjCdtl0KWSM52/GSJuglJWfIOasLg7SO2/qt6nrOUTrvbVTB/jdS/XFaU4brSAUOO6bbjwB9/RKTOiseVwEqVLPXeDUdkn8iSVpYGH4IsdUSXq8lnEk+Gk6UDjv0wDMOAY9t49ZHHRCluryMOx+QD9oNpmnAcBxtXrAQAHHLC/MD1EOHa0eqeLMno6/ctNnudxo7jiKRnwzDKNmf7TcLNu00IWTIYpNAbhoHpsw4qaxsAeTwn1Hokk0hkLpsVfi5/pxuRpWxPjzh2hiZ9B6CxRZZNw0aXkELsL93S9+0newRSDCm9m+ONJ54C4HbMiVE3G3pvzqLKgyZLuxAckbMk7/NHB1iWexDg87YMSMWhoATDPUthZTgUyr6kXHFlKWYUGtClwdvthnNEGU76XwAg5jt40QmUOtVIeXICyZJ7oCxVXqd1bFjfu5RbCoiUNJUSHVAVTJZETpUow7kHGeoW82cmCWWJjPRKdEAwWaLPLZfLizEmXd2F2VP0vTqOU5DgTQqilYiryhJ/La5i8v2ORwd4r9ET4JnSGBwQge3a2YuyVETe2d4fcsN6O71OJ0p1njrzABw472gArv/o8V//DoBrqA7yBcUs93jQ5p1UyePiV5dJsXJsG+2eCgWw9vkIBDUX+MtHDcxvVQyaxsv8vWkHzyzpuRx+UkjGbiIEuWwWXTt3uo/5CB4Ro0y6R5CZYolE86SJyoVt2BgROqZ0+wi2IEsh5Myf3s2x5P6F7rEnFhOl4S3vrel1m7NECKsGL+oB0GRpQEESpsqW1GXoxGMpXhE5W63Q4M2fS2W4wm44v5GPjNtqGU6Mqhf30evZeRtmLCYSuAtInu/HL8hSV3AZjqtfgiwFJFxHgXw2a9YUXsX0Bd2ez6qhofgrGaEs2dFkibwFwuDtz1lKFg44BtysrO601zXo3weoDJfNivJaZxcpS2w5Rpb8niVSlmJxtRtOyVDir6nsdzKQk8pwpM6NZGXJNE1cffXVWLlyJbq6urBixQp873vfG+zNKgCpB929leF6wtv3CbvtuxcAYNOq9wDIMkrLHtMx3Uv13r5+A5b88yHkslkYhoHjzy0cR0XHufatLgEiFcVv3m4Y6879zGWzyKTT4mKk3leaKli/aeLqJx/Cj//zb8VTRSd5sZ6QPKj95x6FSx/8K2af9HHlfk78JvqaZooFD7Al8kGERSZn96B9q6uY+83UlOmW6eoWnqJECJEYP2N3zD3rdPH/WR+b564/mxWfwagAdY2+H7/3yI5IWgfkRXHb5sJjctfONlFaFKNOVq0OXA+HyNfqQxhpf0CTpQGEnfeutnnOku9kQlccFlNZTDjias9fY1bLcF5WToGy5MA0TeUKwhJlOFZaCdgmOlnm8q5niecscRQMSfQO0B3t3d7recNeqfzEtrGnyGnWyutZljhhv79mc9HPKwYUcllfAlmSypKt3C/KmOTV8g505FkqKMPR5+ioZMmBITKr/J89kUxOlqSyVFiGC+yGi7NQSr79irJUuK8AwWW4/kxVH6q45JJLcO655+LrX/869tlnH1xyySW4+OKL8Y1vfKNirznrY/Nw7fOP4egzvlDyczt7meBOWUexoOHOHkjpWfWfpQCA1pWu6bppQgvGeKnc7732pvvvK+5MsAPnHVu4Im9fImUp4530/Z5MajEnIidJTnRi9XFfPQNV9XWw4nHs9cHDxf1U5iYVLUj1OvHib+HLN1yH0ZMm4mPfOld5jHcKjp5S3iDe5kkTpQLrlR9rvGMzEaFsukcoaf7uRDrW9HR1CQIcRnD/3y9vwse+dQ5O+/kPAQAzDp8NwCW59Fk2TSicViEJtkqWRMdkCHGhC/awESatK+QcOMdxsH3dhsDlOIgQljrhob+hydIAwskXGqj90hLtbJwUGYb8McR8hIKfN+kk6jd40zK83dUSyhJbDuoJlC9n523PjyCjAzj8JI4e7+jwOt2oK4zGpShkyT1ghAV0BmHSJDm2YPWq3k2CpaDT2+ba2uJlX5FQnlfJklDmaJSEF/hHZTh/dAApcI7oTHTvz8NAuofIkr8M5/4/n82JMlxnUHQAES+7UFmKif3O8vmRgr8TRX3iaoD3AJUyRzKOOOII3HfffXjwwQfx3nvv4W9/+xsefvhhHHbYYYHLlztTkuPIL5yKZHUVPvT5Txe1vJVKiN9J145oZYkiPML8QNUN9eI4RLk57736hniMmhfe/LfrTXnsV24prnZUk3KhxuefkWeJyj3+UjwZn8mbQ8dQv1Hbjw/912fEbd4JbMXd90YG5CpmT7ASCXzrD7/Ch7/0OTY/TnbE1o1uVn57pY4YIYwRo15s4ceh8iCRkGy6Bzu8Lu+CWBbv/+nOLpFTFEYk6PM7cN4xGDd9Klr2cLsV17z+plCJGscWliLp/ftzkMTA4xAlyxAl32CytOzp58Rtx7YDl/Ej7V1MW4nyw0j7A5osDSCIlUfNhqNaPleWDPDoAF8Jht0WypKPuFieF2niPnvJ+4TiYUi1yAiIDvB2/rxtI2bxMpw0CwOFZTg/WRJlOGqZZ4ROSLMlKEtTpoz1Xt5BF5vF1h9oa3e3p6ameNlXtPzbfmWJPj/3/3TlSGTJP7qEDnqOUJY8ud4x0N0VPF5GfG52VhCdjq6AuX3iO8sXhFKShy0WjyuDm/3knKAQKrYMbW9POnwUzkjBM888g7lz52LGDLccc+CBB+JDH/oQFi5cGLh8uTMlOWpHjfL+7d2zAwA1DY3iNnlgwiCT9IO7Ug84zs3nsfM21r6xDACw/Fm3GzlmWa7x23Hw1hPPAACWPfWs6IrjKdRN4+Rvt8NrHacynH9/IbJC6nPeU+drm8Lf/75Hf0ghOcocNpHZtB6AGib7X9ddKdLIqXMrZlmiVDf9kIOU1ynXcCxGveRy4jOnxg8ioz3d3di+3vX9+P1NtEy6vUN4x4ICfacfOkuWxw0DZ/zPT8Tn8uYTT4mMpvqQFG+gkPTkqAkgJF5CEPMQsvTCP/4pjm25iEHsHNSYEDRUeCChydIAQmZAhXuWyFCteEUMSUYKowPYiY2ycjwiJMzYHsUZN11OuhYncYctF3Be454lw5Q5S8L/Qsv5rkbp8XaPeMR8ZTieI5XuUOvYxWDSZNfLkM8Xd3VSCtp2uttD0QTFIEHdfr7BkKJE5n1w9IMXBm//6JKEWoajj8SGIbxUhWU4L26CraozwuAdY6VC2ZVHniVLUY3CWv+5CmlyAk9XpN0yViJsdM9wx49+9CP86U9/wrJly5DJZPDyyy/jxhtvxB/+8IfA5cudKclBSoiVSBQVzkhGaMdxeu2GIyNtWJL+Hoe5gZM05wsAWleuVi4Qejq7lEgR2r94cjY/OdMxUUy095Fzer9d3uOkbFQzMuTHCRd8Tfk/mbJNyxLH2/VeDAEvX005cH8AwMolS/HzT58mfsv7HvVBAMCk/fYGIEt4ZizW6wy8IPC5aKTmUeNHnI2moRDOMKtGd3sHOr1Qx6DYlf28PCX6jMdMmSQI7auP/p8IAiX1iZCorhav2ekLjRQDjwPKftyL1RmSXbVjQ6t4z72N3yEQkS51wkN/Q5OlAQTlLKk2Et+Jj05aPmMteYIsn0zNv0AqY5FakSMS5Hi5QbvJgzOtP+8wHcEpNKBTeS2XyyNmxVjOUrSyRGjv8DxLlo80sDN7urP0BO4JE9wfOGUi9Sd27nR/nKkSclToSstPlsTn7L1vUg5lGc7XDUdlONtv8DaQDlFr6ASTsuT9Hd0BypIHE4UEk7YzZlk+P1IRZTgzVnA/L8NVVw+uMbNSOPXUU/GFL3wB//Vf/4WDDz4Yp59+Oi666CKcdtppgcuXO1OSg8o0hmEIQ3UUShmwmgnpSCPQkFe/atDD5nttWbNWeYzmenGCRLlBnGT5jcQEKk/Ra+Y8L1zY1PsxUyZh7DT3opBKbRRE2TxxvPjtrHrZ9VPR7xGQpb23nnSVMSJopChRCWvnpi2CgOxx2MHi+d97+O+4+qmHeiVQZFrv6ewWkQnkZSQFvqezC1vWSLJEXjFAWhq6drYJMuO/iAaAKTNd8rd51XvY8r7sOkt3dCKXzghF37+P1DRJItrV7lOWIpoAqlipNSqZmzrg/H6oMND3EJYJNVDQZGkAQTlL6sku2KzLd37TcESZx/SdvNSuJMpokiU2ADAd98TJD1ikQtmsDEer5q9AuU5524Zh8pwl93EngCzxKwxSaeiqQHiWmNTfwyT4YmeJjRrlHiwzmXBSUC62bnN/xMlk8YoIKUaFZIk+P3U5UYbzl0yFZ0mNmcg7hjCe+wU4IktJL707ZwM5/zA6MGUJhcoSlUVjlk9ZClH7FK9cQHQAbSsAVFcPrjGzUvjpT3+KH/3oR/jzn/+M119/Hb/73e9www034NJLL63Ya3Iiw0/UYaCySzH+ENGVGkKWqGSVTatl752bZIPF6pdfVR4jJaiOtfrTbT4uqdMrEfozlMgbQ6Qg682j5F6jU6+6DGffdj2O/cqX8NkfXA7DMJDpTuP1x/4NQI4Coa4vx3Gw4R23zGaYBhKpFKxUQvw233nuRQDANq9UR8NfR010n799w0ZhOp4y8wAArvrUNL4FNQ0NuOAvd0Uex0jJ6W5vF4SFOr3oOJnu7EK6rV0O050ky5iirb9tp0jADrIwkDdq7Vtv467zLxXrIrJCSqN/VIrYZxwHuXRGeUz42gI8UjzOoTukDAcAD/z8F2jfsg2P/fq3octwEFEezFl+gCZLAwr/iRQoPPHRVYPFzkauZ4m8TBGeJVKWhIrjrdMpnNoslSW308p9fmF0gDAPe9EBjlgkWBEDgPp6WcvfKciSNxMtoPzErzASIWFnfjR6c+EyRda9S8G2be6VTCnlIyKz+YIyHHUTqqSSZqf5OxfF5+QbjeMAjCz5Cbb7/4SnLOUdQ3yHQcTchPvaNivBEnk1LUvxLBVVhuMJ3qAynCRLVVWDa8ysFKqrq5XxSoD7/VdqeHAjS7MGZBt/FEgNCjr2+EEKUSzkpERdWf6BvJvfe1/cfu3RfyuPUYcd9xjRbZp9BqhGYk6EqHGCIgZECKNH3PY5cg4OP/kT2PtDc/Dx88/DtFlu9tFLDyzE5tXudhHholKgnc9j65p1gjyMmT4FM2YfIkpU5MeixPAmT9UhkrNp1Xto3+JuD6lNh50s5+DVj27Gub++BYCbxfS9h/+Oa597FGOmuooXKVid23eIhGyaCSlG03iqI31vo3aTExiINHRs2yk8X0EXmnS8f+eZF7Bh+bv49+/+jEw6jYf/91cAJAnxp39XRwysjWoCoH3NPx/Tj3eefQHfP+bjeOHeB0KX4ejyujhL8bRWAposDSCok6NUZcmdDed5lnw7DPcsGT5lKUcqkE3TxGU5hE6CeccQJ8ygncESgYdegrd4Xe8kLspq8qTP84na2jyyROUn70fEQzepJg0UP+OI5sJVRFnyxqeEjfoIgph9l/OTJfdzylEZjroCw5SlOJXhvH3Fu992DMUHxEGZV8S7cg6QdwK+TW9lpCzxSChZhov5lCX+Okbg/QpZCijDVVWNTGXpgQcewOWXX46PfexjmDJlCk466SRceOGF+Pvf/16R1/MPwx5TROs6lUbyud7JEilLRkBJB5BZYuQxJLz/mjtr07EdrHjhJeWxrLdO7jGi21k2f5OX4XiJjWIMKBGaylbk8aFgSMdxhPk4l8nigZ//Ahu9WXJ07KQAylwmC9u2xbFrzORJ2H32wcr6AWDFC0u813KPSVQSXPvmMpEm3uz5j6bNOhCAJH3TDzkIly38G752121oGt+CZE015n/tLADyGNe2ZSt6yLxM3c6eqkcXkOQR4p4v+h12bN+uJGXXMu/RbvvtLdLUX3/8SQDA/T+5CZfOPgZvPvE0ABkl4TeqE1kNUiMzYuBxoe2CyJk/mLev6NjullMHu1lkZDovhyiok4Oj0LznXeErV+vyJFrQos9vU6ClMG97SgLNpGPrFMZtB4IA+bN33HV6pCqXd0MpHf8Oq3pxAEmWHMcRPhs6CORJYWHvI5fJiK6ZYocl1tV6B+50MIHoCzZvdg8i/vDHKNBBnZcWAPn95vIOwIz6Oc9r5e9uFEnndKDiBu+Q7CLyqiVJWbIN8K8pkbCQyeSE6uM6z9zyqynKcN5+F4sFqpX+0oxComIKo3LfXy4vvtORqix94xvfwA9+8APceuutGDt2LNavX4/bb78dV199dUVer2X3acr//TPDglBNg1mzvSuwpHKEhcOKLiyfUfyJ3/4Bh37yo1j1n1cKnkNqFSdAdDLmZMm2bbm/NDCy5F2sUSI0tZFTKOLYaVMBuBEE18w7CXWjm9Hd0Y5cOqPMkqsb3YwGz0tEr5vPZmHGkmietBt229c1b7dtkeRj2VPPudtkGm5nmXf8XP3yqxg1cTz2PeqDqGlqQqq2VpSu/nD51Tj+q2di0v77iFEqtu3Grkz1CBX5k3a2bhLHddnAQyU2l3Rl02kkq6vQ6Fko/CbqdEeH+NzqxjSLMMj9j/kwANdjFGbs7/BCL/2jV4jM+QN2AdYEYEWQpSIjAYpF53b34tUwDDfrL9f/F8jFQJOlAYQ/gwdAQTcc/Vh4+cNkyhJ5iOgHonYueb4TUoPofOudj/nOFqgsBRB3Im15rxvOX4aT407kj6e2rjCDg+a+ZUMUFULYNGs/arwMpEqQpY0bdwAo7UqGZGn/SYnWkc3ZQFySjpwnr8ctfxnO8z4VKEtANi9La5ZlIUcHDe81UnGv5OcYsBmNJrIklCUjD8ANGCV+zD1Limrk3TYLIitYGc4oVJZyTMmoqhrcLpZKoaOjAxdccAEuuOCCAXk9ar+38+6FS9TAW0Kqzhu6WgRZIu9gkFkYAKyk7MLiyKUz+PEnPhv4HFKNUyxTik7GXMUB4NaEDQNVXmK1aZpih6I2elofeXyavAHh7Z7CQuUxuk3HyYl77yk8NRmvjJhJpxFPJdE0fhxGT3LjBTatkiXFdEcH8tksrERCZC85joPWlaux6j+uNyueSmLOqSd5kQp5vPl/T+GdZ17Axff9EfVjmvHk7/+CrWvW4TNXfhcNY0bDNE3h99m2fqMwV9PvXuYUuWSpp6sLtaOaUNvsZjpx9WgnvVfvc6tvHgUKo5h+iKu4UY5VEIgY+v1HKTFloFCNFE0AAfESRJaKKfmWgu426X+qqqst6NAbKOgy3AAi7zu5BYEUGL9XJOl1ZhWMumC36SDHO90A9UumAb1UuuGepaDGJ1FGyuV9ZTj3X8cuVJZqvJZ7rsYKZcljcAWqjbdwqsjsklovA4kG9fYnaDCvYRhFd3LRlaG/3CGUJXrfYrnCciR/3PERa9txgykJtbVyu+g1knGZ6cQVQH/wZcz7rN2vTlX6TMunLBnkZwtXlkyfvw5QIx2SyZFJlgYa5J3ZvmGjIAG7ee3sYRCDWTO9X1QIL1LI8Yn2cX9QYRQoYTpVIy+g6IKoxzfRni68SHlqYB4tQZY8okYqV73X6bZ13frA16cyVsuM6cLITISL/m0YO0YQqTVvvKU8v93rqNtj9iwAEO32K196WXwHR5z6KXcbvFb/XCaDaz96Cr576NH41w234qV/LvQUKhP7zf2wOBZuXbOWdXrRcdlrkPDN3iNSRWTJcRykvefShVXNKEmkxk6dCkDmRQVhZ6trzPd3Mov5lQGlWznDr/Bil0hwMSXfUpDukjaNZHVxF9OVgCZLAwhi3IpjyW/WpSRlH1mKe2SpIL1Z8SyRsiSJkP816CqCTnBKN5wZEErJx52wbjh6F0JZYj8eeXJk6gOpXd5n4CdLtJ5kkWW4Kq/DqrOr/8nShg1yMO/48U0RS0oIL1JWPSnRR0mKGh0Usx5x9kdBiLEwVDploZSZvPxeeIeZIEteGS7HDN5AoVGdPEtcVaTvz4zFVB+cQdsVUYZT9lW1DAcAqZAAO43SQC3pO1s3CwVzxuGHRj4nKTrYev+d0Ik5TFGlfbezl3BLDjrp88RnKqEVDGn1TvpEpkZ5qhHPiKL1kZJLKkjrytWBr09KyJjJk0QpkAgKhXTWjx0t1rf8+ReV55NJnEgnvX4mnRYXv6RuvfXvZwK3IZfOCH/Q4SedID7fTavfR6fnx/GreZRl1bndfR55z+oCBgjTeaV2VKO4j9r/lz/3UsHyhO0bWwEUGqeJLAWVu3rEWJpCZYk+o3yuf5tucukMOz8M3jBdTZYGEE4R8iSVq/wt20RATFMlKaq/JERZYgsJude7z1WWUPCatC5RhsvlYZiyB0pGB5BiIn88pGRwZUmQpWwIWfIYW7FlOMpA6uwoLtisFGQyOfH5jh8/qpelXdDnGpZKm6H37X1OpDT5E7xl12BeITm2A+Qgl1XSxf3KkgPkWWnM74uKmdLgLaIDaL8zTdUHR2U4hdQ5PrJUWIbL523x/adGaBluoEHG6B0bN4mTLx9hFAQiJsUEAJIfKAxi7tf24skS5e3wXB7yyPgVKjrp00m3yTM1cw8MkQj6ndB61731duDrEyFqmjAeSe/YQmUc6iQbM1mGNb7/yhvK89e87s65E+NZPILBt5+e+9Qf/xq4DXw9ZCSnuWiUBWWYpjIGRmzjNncbSXEPioKgrkJSzsbP2N3rXHbw2qP/F7pN2zw1zjAMddiw91q8W5FA6mNQqZa2MV+BDmW5bZos7RIQ8iQnQiHKkn9OWjxB3RJqOrfqWVIJTs6WHhcCHWToPtWzxMhSQi0H5vJeN5zP8yfLcPLETsSOd0XIcEvyLKm7Hl1VkvmxNxBZamvvf7Lkbo+77WPHhicFc4gyI/OGcDNmVpBEGfLp/t9fhpMRCzwU04brGaHPlJMlMm6nEuRVM8BpdNynClmecpRnZIlIm9/gTbd5eq7f2xaUxZRVlKWR2Q030KAr/i1r1ooTHQUwhoEUnWLIUvdOqSwFtYYTKabupGJAhIR7Gi1PafSPXyFPJ52sRfca+00RSYxZFppYyCTNqPOjzRtGWz+mGUnvs6BsIjJDUyRCNt1T0PL+9jMvKP/nMQk8XyrTncbWNeHja5Yuesx9LW8biOyQyRoA6lgZjUimfxuDoiCoxErDePc79kgA7rGoIyRJGwDaWjcHDtOlzz+XLSzd9nSENwEkqeRbhD+uXBR7fqgENFkaQAQavH2gk66/DBemLAV1wxWU4dhCcd9B0GbKEpXhAMCyVI9ULptXxp0QZBlOnpBTqUJliUqEGe9qxV9OpHRz/4TtMNDn0d7W1cuS5YE8N2PGhGeOcND758oS9xVlsu76TM/blfUiD/xGd1qPnc8r41Zsx0AiJT8bpR3f21USFjN4G3K9pFDRicWC9CyJMpz3PRsxM5DLm2w7/QcNddah+28+z8iS9iz1C6iEvmnVauFFaYiY6wWwWWOdvZMlntZcFZKQDQDtW4snS21bPLLEjg9imK1PoaKyD5FCCtGl1Gj3td31maaJKZ6qZtt2qOmXlKCapkbx+RGB2uZ12InRTFu3Fjx/1ZKlykXfurfeEbc3rXyP3R+sbBGWLnxEWQ8RinaWkzRmimsydxxHfBZUXiQ1LigKgrKsqCQ5/eBZ3vuUnX1BsG1bHAA4WaLGgSCVnKYtBA09T7IhwP0NMZapyPNDJaDJ0gAiqLvAv8sR4fH7BuLUDeebYm8YjizJCWVJqkaATzHyqQyKb0Up16kn2FwuD9M0hBmcQFdIvLWcTs784ECKWdb7AfrJEhHJYjp8AKmW7GyrjLJEyk9zc2lkKcuMtJws9XjkiI+PAQKUJUaWuDHacdTPJmhuXTIhDd48WDAetxSlICaUJSOgDBfzdbq5/1rs+zV9ERMKWfL+zWXzYh/VylLfYaUS4nNe/84KrPKSsnvz+NEYnt5KbACQYXlnvCwDQCkR8Y6z3tDmqS+8jEvHFr/qQR4gUl9oWHCGJYYLJcYwMGHvPQEUJopzUB5SqqZG+AF3egSKEroJm99bAz9s21ZUuVVLZUL52jeXidsvL3w4dBsAV/3h75da8Du2bZfhmFPcxG1+lbnsqecAuJ/fqIkThXrEFWxaFxmsW3afCgDY8M67kdsEyBBdnuMkyVKhspQWvrZC6kDfG4+E6DeQZymlydIuATugBuwvw8Viwd1wcV9ZLEhZMkzV4C2iAwx5UrQSCVjehHDAl+DNyZLoypMGb3fciVynaZqCLMUUslRYhqP1ZDL5wPdHGVTJIq8cqNV9x/bS58oVAwq7bB5dHFki5YXX63mpTLxv73Oi9YeX4fJCoQPcMlw8lRSfaVCXXlLMBDSEZwFwySsnszHDM3jbrAxnUfnXLCizVVenlJNdQRku4Cozm5XKUjKllaW+YsKMGeJ3vHnle3jnWdeIbJpmZDglkeRi5nBR1hFQGA7bMLpZ3A4bkhqEnV7rOsWWAJI4+ZUcUltIPSCyxLvmqN3dMAxM2HN3AOET7gGpzFjJhLiYJEVp0+r3lWU5+VHfg0v4HMfBeqYsvfnEU64KlM/jhfv+FboNhPdZqTCIvI7yAi55KbB9y1ZBIvc+8gPC08mJDJFJKlHVed/V8heX9LpNdLziCmU8Ga4QCVN+QA8AkSxKWe9P0GeSGMQ5k5osDSCKyZ8whLKk3h+PU84SKUtsdphQlqjNW1WW1O42S1E8bDZIl5+3Ywm17JfN5lyDNxMVEgkrsAyX8LwzNqvZ0fvKhClLntJiJYrrnKKT+/YdvV8xl4MeLwCyqbE4w7lQzthVFZElx3FEJhIpS9kQZYm6TPI5qSy5H6OBeCpVYJrmvqhUUs4E5AbMWCymdLNZZngZzjTNguNgdbU64T5kAgoA1eAtlCVdhuszxnvEwM7nRdmJTqIz5hwW+jz/+Ixi4W+04C3rUaMs/KCWfwBoGOcOkBUK1SaVLNGJm0pONF6EK1lUQgNkIGVUuWm9F0zJfyfkLeKZSoBM7PaDksAp+Zuw+b01uOv87+K2s75RMEMtCEsXLRa3OcGjC86GAEM7X3barANFqY2TpR4K6qypxr5HfVBcKL1434O9bhMdr+qaJRkmNTLbU0h6ojom6XnF+ONKBXljE1pZ2jWQDyjDEfykw2+aFQZc01eGY88V5nAqnTkqeQLcg2dtrSQkeX7CZMtZvrwntwynzqtPpRKsDMc9MkHKkvs4hUj61QgikkHTrINAJ/ft20qf3F4MaLZZQ7FkySokS9U1zHPkvb/eugLp+3fyeZF8TZwznmTKkveYxdJ3hbJkq6298URMMWh7CQPIOUHKklFA1GtqUuL9OY6jzIUDgstw2VxemvY1Weozxnpzxfj+Rd1YUw4M74ij/amryGwk2ZWqKkuk8gSlOkchk06Lfaxx3FgkqqtlZ9kmNTCRCAApFNT5tY0RLjsnO1Xrx7gn+K2+chrH5vfWKMchx3GE2pXp6hKPOY4jgib9ePqPf4Nj23jv1dcLHnv9sX9j5Usvh74+x9JFj4nX4yU5siBQZpQ/p4jM/C17TBd+rgxTfWj8TDyVwmGf+gQAd55auojvnBLWKccJkGpkQWgogO6dcp0pn6+NnufPz+oP0HkmXqRNoxLQCd4DiMAynA9mqLLkGb/ZYFvA9Y84tgPEeDecpywFXABaiTgSNVxZ4gZveeI2436yZMMwTF/YoSVOiFxZopKhoixRGa4nhCyR0hIwcygI9PxtlSJLXe528jl30dvjERVmRuXhnHQAJBITprCZIrwzh2TSI07eY/FEQnymVd664yx9lxQ9v7KUiFtKtAM1IuZtA47pI0tGYRmupjaFDpMrS36y5P803PdLo20Smiz1GaO80Rnpdqmkbt+wEbWjmsQw1yCIdv+IUhWHGwViFrRo0/DXIN9lr+u0bRixGBrGjhFDUQFVJQIkWaILJurKIt+RXJ8DIyY79lpXrop8fTuflxchvrll+WwOViKOXE8mNLhzxQsv4aKZH4x8jWJg53LYsWEjmiaMx3rmJ7LzOQBxQQ79+Ubr316BKQfuj6aWceL4kmWlLgr+TKSSYkbd6qWvFbVNFMxZ3SjtBjQtoiegnMabAKrr6hVCVkmyJC6mU7oMt0tAhFJGJHhTt5R/EVKWqNQmDd6sJGeqZbc8V5ZIPbLirDwE0Iwweg2pcMWVdWUzORimoWgKyVRcJE1zT4soHzE5mcgNKUv+z4BKCv5uvd6weXNxJ4FS0dnpHijqaouTfYmccDNqtSBLDlOWvOVClSWP8ORyvjKca/IVwX3eY3EW+JgQniXZfQi4/i6lG0kpw3nft+fuD/BtoqY6pYw78ZOpoG44RVlK6GuyvqJxrFvC6mBdX+THafAeCwKRcU5SokBX8P4ZjdXevDb/oOhiQBcKDWPHiA433vFFEENaPbJEhuzWd1cqy/mPo+vejO5E4x4a/2uSUkd5RpXGrWd+A/+68VY89Itfivty3kV0lTcSxt96/+5L/wHglkbJzyXS1iFN14mqKkFqi/FQAZJoVbFxNNStGKQs8YDIqgZVfaTvK2wWXV9A33miyMpDJaDJ0gCC/wj8g0kJ1MXkd45YIlKAlCWZBi5KYaZahuMJ3g6NtUjEhTmY7iMCxNvYLb/B2wul5Cp8KhkXJ0SlGy4uSzYEUpbS3dFkKRbvXYWor5dS/pYtxQfklYK2dvdgpIQ/RoDeX1YhS9KzRAFvwtskIhSCc7Y4WSIDfjyZlMqSFx1AZkyAkSWbDN7u/fG4pcx/sliZltZH330sgMjX1CSVcTZRyhLdzOdsoX5qZanvoHEcbSzbh8pJkVfbNKG+yHZ/kXVUqyqqFHhYzEBeP+g5tc1NqPeG/wYNWyVDcTyZQHVDvfhNrfW15du+geRhGUuEbubX8rfDk9F6s0+9qhS2rVuHx371W4W0Ca+W103mV7jefvp5MS6FfFzcIE7ZU8maajGj7vVHnyhqe/hzCaRC96YQVdWqZTg6B3R39L+PVCpLmiztElCUFl8oo2j/DynDidldVGLzmJCpKEtq7ACFUrov4L1uzEJNjTq7jf7lZInKYTw6wL0towbiCUt2w/la1d1tlO9XzDzqSge+PyJLVhFluDFjGsTtTZsqRJa8SALuO4qCKciS9BIQoXGVJZUsZTwDeaHB2/Ok5XKi5V58P4mkVJa8x+jg4TiOiGzIO4a3PaQaxQTZcRwH9DVzZYl7lghEtqurk0pZryBnKaA1JpvVylJ/gq78t63fIO7bQbO9Qn4zVkLGDbQXqZyIK/gqlSwJ1aOMdGZSb2qbmsTJPmh+GKmyViKOifu4sQCO42DHhlZlOb4Ntm33WmLkRDHjixlYfPsCbN+wEf+68dZi306/I5txPx865vrJUtfONnF8pGG1aUZISG2k73pbyJy8IJB3io+jIRU6LG5C5KfVqeojqeLdRZZ8SwHtl/6hvwMJTZYGEFzCpsGkQmER5RC6X32unN0VoCzRbVGGc5+jdsORsmSJ8pBUidzluME75isHusqSulGqssTIUoRnqVuQJZ+y5F19FkOWKFXbcRzRgt/f2LnTm5ZeZEaQ8GSxgzGpUrbtiIOdIEvZ4JKsUJayOZZX5T4WT8YFASXVicvSRFJdg7fJlKWYkpNkUbSEI78j2q/4V5z3yLZLlqJCKQtvZ7M5qSwV6UPTCAcZW3kWEAUu8gsVjlo2R6zYIMmwCA+KEqATeymgMlh1Yz1qvPllQQpVxistxeIJtOw+3Vuu8PfNyUS2iDb1Ha3SSO5XS57763245vhPYe0bwbEBAwF6D8LyENCyTzPiaJk0i4LwB3Iue/r5ol+7bbNLuHljDR3LQ8mSmOGnluHEMb6EQcvFQtg0dBlu1wA/QFhxSzH3SmVJJTxieSrP+abYG4b0wxhRZTjqmLPiTPFwH7eDlKW4qmRlMjkRREYUKJmMC6LG3wudtLmSRtvUHTLLjQ6KxZThmpvrvO0vrTOnFFB+U6rIjCB6f7xtlj5n27ZlGc77nCiaoMDgTUZx7lnyHlOVJfcxi8/c4sqSz7Nkshl0QlmyWf6W2L/ktuS8j7eqOik9T44jQi3le2e3vX/z+bzYR8l4rlE+6PPfuFz6d7av81QmwyjYjwDWweY4goj0Btsj8QlfaU8M5C0jQ4f8NVV1dWJcR5CZmkhVLG5hjDfGJagNnXcEFmNc5+GT6SLypgYadIEVRZa2rlVHqfDuRkoBJzzzp78V/dqUIcUbQETncshnFTbHU/jj2vpfWcqLaBmtLO0S4DlLZiym+Hxk+7+nLPmeKw24VIbzSAq/7VN+5Gw4MIN3jClLfs+SKRUuS1W+sqIMB0WxCPIsUWBkXmnHc5/bGVIHJz9XLMTLxdE0yjObltjGXAq2bvU6TIpVRQIOdClBlriy5JXrMmGeJU85zGYLlCUrERcEhMhSnPxAjiPIbs42vEws94nxuKV4jixTkmnpWfKUJbYttP9UVyUE+XLgEnTfm2e33Mey2bzYL+NaWeoT+Ay0tcukf4fyggzDQOP48QXPq23ylKUSfiYyRVslSykv8LCcwEEqGVXV1YoyUhAhINUnZlkY5Y3fCCJDfBt6G+kBAK2rVovbnb55dEMBPT4jdU8AQfSb2Llhv32LJEuZ7rQw/hcDUif5xRWdY8KCTKkjsmBOG/njtu0o+vWLhaw8aLK0S4DPhovF46rJm8iS8B2pz6WdOcZyj2g5Ku8ZvqvLIGUpFo/L/B5vc7jBm26bPrLkzoZTNyqZjBfkBwFydIZShvOe2uV5gQzf1XC+FLLU5F7R5IuYtVcutnhkyT+7LQz0OfEulSqvhJfP2+L9iXKdiA5QP1NDlOGyIvlafD+JREFpi4aSOmxbc44s2wKF3XBEvHNs3ImIrGC7EOV0JVNxmdvkqGNx3PdeeDuXs6WyFNfKUl8wca8ZANwret6qzTOMmicVkiUxod4p/ndCFy1+07jowiojcJDKMsmaalHOC1KM5ET7mOjw86smgNqlFZWxRNjI2vTDZsgNJnp8huigz2aF1xFH4CSSD/SlmYHFYpunThqGAcs7XtExyj/omEDHfG4KN9lUiM4dO0rahmJQiqe1UtBkaQCRy0np2bRiis+HpE1BUnzPFYNORXeaLZajHclv8M47fC3S7CvKQyKQzXsNK8YUKJUsZTJZcSakLrp4PNjgLcpBnMx4z21rk1cr1dXyKoHyQ2Lx3snSqCbPbFpGG3Ox2LLZPVD4Ddi9IdvNlCWP7OTzedH9QqQy3eN9Z37PEnU7ZnMs3NN9LBa3pGeJynBxqSzJAcoGDJPFQMRMeZBxHKYssW64WMw1BLM9j76+qipu8HZg+EMpA267niVSlrTBuy8YN30agOAp8HbAbC9CdVODskwxIFIf9xlpiTz5T+zFgDquEqkqUboJ6rSiURpmLIYaTxUj5YODe2koXTsK61esEL8FrsIMFXT7Wu3TAZ/xO15HHKFjOzOts3DNpQ8/WtJrb2fm+aYWlXCHBZnSxTn3tfFQy87twSSrLyjF01opDDuydN5552HVqlXo7u7Gc889h9mzZ4cue9ZZZ+Hf//43tm3bhm3btuGRRx4pWH7BggVwHEf5W7hwYUW23c5J8mCapmK6pas/02fSFst7l/N8/AjgtnELsmQYiiE5F6QsJeKyPETdcN7yrm+FynDkf4L3eoVluGQyLn44XFmyArrhCO07OFmSV690RWuGmFU5KCgyW0TIZ7nYuHGHuz1Rsz0CwJWlpPdd5HK2eH8ynNP7v+FXljwynM0iQd4vkYMVFwSR/EwkSzuMLOVsb26feJ6cDecAsLx9KW8bLFTUhJVKCs+S40iyXZVKqMqU2pOgsCWhLOXzyHv7e7HqnEYwmidNBFBYrgGk1y+QLNUXTqjvDSIY0teiTeTJf2IvBp3eid1KJpDwSjdB7eVEoMyYKUiVP5ASUMtD696KzlgCvGwgbz/3p4YPBfjJUU+AsTqTTiueV79hf81rb2LHxk149s9/L+m1eSL6qIktysDmMD+Yf+AxoI7DqUTOEnVAxuK6DFcUTj31VFx//fW46qqrcPDBB+OVV17BokWLMGZMcCjb0UcfjT/+8Y845phjMGfOHKxZswYPP/wwJkyYoCy3cOFCtLS0iL/Pf/7zFdl+nq1hxeMKMehVWfKlc4syHKCUePg0+jyLDpAqgyXLQ7ZfWZI+F9MfSsk8S4REwpJdeUyBiVtqxx5HO1OWSOECpGmzmDJcfb3nn6hQJxwAtLa6ByPDMIRSFgZ+gEkzskTBkW4ZTlX/0j3BZTiRa5XJypwloSzFkSUDrkek6CTmOI58rgOPLHkKoBVTDdrMsyT2C9NAsqpKqEYOZBk3lUqI8qDjOCJniRTGQGUpkxP7aFyX4fqEpvEuEQo6edHvpn7M6ILHqr1xFKVkI5HC6/eG0P/LMUhT676ViAsvVHfArDq6zzBNsV9vYn4jAt+G1QEjSILwxhNPo2Pbdrz49+LCGgcS/u81SFkCgHY2IqXDV5686Qtn4QfzTgxNIY8CVydrGhrF/WEKER3LuK+thiWAVwJCWSqi8lApDCuydOGFF+KOO+7AXXfdhbfeegvnnHMOurq6cOaZZwYu/8UvfhG33XYbXnnlFbz99ts466yzYJom5s6dqyzX09OD1tZW8bejAjVXAp/jxstwwihtqJ4lEmfopCryfDI5sZwwD5uGUtqS0QGcjMVkeYg8S6RA8OGrPjUgl83LMhwzDtsB3XCkJIiRLGyIZcdOrixJYkcH6WKUJSJL6XTpmS/FYsMGeTAa19IUsSSQqpZdIdxPQaWyXC4vlbPelCVRhstIgzepffG4IKD0WIyUJdthY24MGDFJlqx4TPk+LeZZojJczIohkUoqiibtP6lUXHm+IEukXIpHHKFMZbN5MSw4XgQB1ggHESE+UJZA+xvlF3EETajvDdlMMFmiLtXOMjJ02ra4JuyYZYnW7yDil2ZDWul3sC7Ag0PbYNt2UfPPAOCub12CK4/6WEVUj77Cn64eZqzeylS2jn70XpFq0zBurDDgR3VQ0rGMd0xSaGlQ2Gj/bGPxNo1KYdiQpXg8jkMOOQSLF8vJzY7jYPHixZgzZ05R66iurkY8Hsc2X0Db0UcfjdbWVixbtgy33norRo0qPPBwJBIJ1NXVKX+lwoippls5kNYjS979dHVv+vxIGSrDQSbAwjCFeZs/FzCULjcqD9GJ0mGlNznuRI0h6OnJFpThEiyUMrAMR2UY9qPq6eqWw2BZ4CP9GIohS7W17vrSRUz6LhcdHdI8O2F8L/sDC/DjXgxShnK5vFSWhAcsWBWjeIZcJisUGRntYAlliXxAcVGGs5UByq5nyX1e3IoJpdBVoHg3HHnOTMSrqsR+5zjydVOpuGgndhwH9A3R40HTe1yC6LX7amWpT1i37B3s3LQFq5cWDnol/w6d5DiStYUT6ntDVgRD+siSVdqMOY6dm1yyZJimWG+Q0Zo8MoZhCOvA5pXvFSy3asnLAArVleEK/2callO05o23AASPiukLcqROjm4O3I/8yAeUaklZsitElrKZ4huAKoVhc8k3evRoWJaF1lbV8Nfa2oq99967qHX8+Mc/xvr16xXC9dBDD+Hee+/FqlWrsPvuu+Paa6/FwoULMWfOnNAv/tJLL8X3v//9st8L4J34YoVkibKS6ArdHVzriHwl6VminCV5NWiaBjNv+5QlUV6zZHmIPEtcWSoow8F7PVlSE2QpGRd+CENRlrwTPpmRmREwwzJSqtiPjbJGiiFLNUSWuitHlgD3MzMMA2PHNkYuR0NHHcdRTkypJFeWvDEvFNwmxr6o66KOw1wmg3jCWy+pi/E4sllvDpRHliymLMkwUndf4AZvrgzFmAIlDd4mEkmpLLllOOqGS0gV1JHRAbattsbxK69MJocsBclpz1Kf8IdLrwp9jE60QSe5FGUjBbTphyFLZTjfFTz9LjuZsbhYbF/vHrMNwxAG3SBlpHunqqjY+XzgMfitJ5/FL04/BxtWrCx4bDiiw/eZdu0MJkuvPvJ/OPrLXygrRT0Kme5u1DQ1onZUE6rqe8+wI+LCAyKr6jyyVEIzQSnIlWDTqBSGDVnqKy655BJ87nOfw9FHH40edsL+85//LG6//vrrePXVV7Fy5UocffTReOyxxwLXdd111+H6668X/6+rq8O6desClw2DGYuJA5LjOMoVPvfISGWJiI9HlqRsBCdHJR2pLDmOGq9CBnJXWQouw8VY6rPsbpOGcsNfhrNi6PaN8XDvJ4O3p4Kw+WW8TFVVJTsb6CDtjz8IAhnDadhtpZDPOzBNYMyY6KutJDM6ctBMtGy2UFnqyYSU4Qwqs2aQTHh5Ukzty/k8S5bomJMnFdtRc5YsS5bhHMcBVVvzkGTJNE3Eq5Iw2V5DylEyGWdlVkfwI6EsiW2X7yOfzwuCrQ3elQORJf/gW0Dul/4RH1GgtnV/OCz9Lju2lU6WKCUakMeJoJKiv1U9iuSt+s8rJW/HUIXfrB2m3r3/2hv40+U/CDS99wVpTw2vbqgX0Q5R5TQiLjwQl0aflDNouRjQ+SFspupAYNiQpS1btiCXy2HcOLXrY9y4cdi4cWPkc7/97W/ju9/9Lo477ji89tprkcuuWrUKmzdvxh577BFKljKZDDJlGOk4jJipTIanc5RhxpSONn+pw68sAQBIkjUNJJNeBxVYtxKkZykWi4nykDB4e8vEmLJEtWF63R4eHeAtk0jE0BmhLFEZLskGylL3hdu5J39sJP8HJRH7QV6nzq7SRy+Uglwuh3g8htGjo8lSojqELHmkN5vNC08WKUeU4O2HCB3N5kQSusNKqFR+pdIWdYc4tjTg2z6Dt0uWWMSAEh3AynBcWXIkUU8mZTOC40AQKtp/6Dmc9mUyeeGrs6xhU+0fdqAcoqB9kEakBHXRhYECH8NOSsUO5OXIZTLiN0/7aFCYZLqjQywHVGZsxlCEnzhGqXcvPdD/ndr0OY+aMB6jJrrNT3ZEhh01FfCwWRp9Us6g5WJAr1lM5aFSGDZHsWw2iyVLlijmbMMwMHfuXDz77LOhz/vOd76DK664AvPnz8eSJUt6fZ2JEyeiubkZGzZs6HXZviBmxZXhpCI6IGaqZAlq+U0OyWXKku2Zhw1DBk46hk9Z8hSEuCUGm+b8yhLzLJk+NSCbySt+FsANRhTp4QHmcGrt98/zoedzM3rWRyaiQAb1jo7KKkuZjPvemoskS37pmtSfbDYnpXPqmgspIYrvN5NhY2NkCVV4lnzKEmyuLMFTltz/WyyU0u1m454lqVpZiaT8jkElYDdUUpbhpIk7b6vvlyd753J58f37mwU0+g9EOoJmZolspF6mx3OIkSPsO6tpapQDecv0CfmVip2tvSdv+8tTIxWdPrWuP83bxYC+06YJLTj+HLdZKqqcRoofH2ormgkqRZbSmiyVhOuvvx5nn302TjvtNOy999647bbbUFNTgwULFgAA7r77blx77bVi+Ysvvhg/+MEPcOaZZ2L16tUYN24cxo0bhxpPsq6pqcFPfvITHH744ZgyZQqOPfZY3HfffVixYgUWLVpU0fdixkxYbASFmA1nmqJMBkhlSXqWvG4qJncaeanuEJGwmUEXgBIeSeUhOn7ZzNviH7tCyGZzBcqSZcXYXDqmLMVUz5KV8pMl9/mcFJL8X0wZjpSxjvbS04RLAaVsNzXVRi6XoPfnI0tkws70ZKVnichSWDcckaWeHqEe8e+HuujI/C3CQxk1duB+joIImaYgO6rBWypLpmkgwXKW3Me995dkBm/I2XBElsxAZSkrhgXrMlzlIIbpBnQJEYEqhSzxFG0CDeR1HKesMhwgO3YJvDSngP2GdrSGLDPCYNu2cqHV6euOqzQW/s//Ysv7a5TvyN+hx0FlXV6qpdEn5UQXFANReSgxJLg/MWzKcADwl7/8BWPGjMHVV1+NlpYWLF26FPPnz8cmL2hs8uTJiiHw3HPPRTKZxN/+pg4W/P73v4+rrroK+XweBx54IE4//XQ0NjZi/fr1ePjhh3HFFVf0ucwWCgeA4V658Wwi0dofiwljMCAJDZ1EZeifohvRQoKAuKsrzFkyYzFRHsr5c5Z4Gc53guNlIzp5JxKWDKU0C5UlytkRLaYOvSciS8yz5BsmGQUiSzt3lp4mXAqo266xoTpyOQpnc3xKC6k/mWxOHEREiYGVEC3LQo4OVORJy8joAJvtG5kuT62h8TfeAcv0eZbMmAnHkWUwk37pDpgyZCCfl0TMSiYU9ZAM3omEpShLpCCp9gRH8SxlMjnZwTKIB7iRjqDZXgRSHUsJkqSLFr6+ulHNfdlEAJ5SmiQ/pRN6UnUcR+yDNPtuV4BjOzBiRr93uhWDze+twXUfPxUAsNt+e2OvOYfj5YWLQ5cn3yk3W1MTTynNBKWA1lvMxXSlMKzIEgDccsstuOWWWwIfO+aYY5T/T5s2LXJd6XQa8+fP77dtKw4uW3KjA7xhqKaDRs9yYJimEkZIxMTvWeJkyQR1xjGyBIP5nQwWTRAT5aGCUEpFWVKjAzIsLZvWZVkx5HOFColIkqZJ0RScSIGH3mtwBY18FcWQJSIhO3cWf8VcDro8QtPQWGieVbbH84b4O3dI/clkclKeZlEMhOrqBNraPAO4d18u3VMwY8+MSc8SrZvGnXBlyQaV4eT3RFdk3BOSc7jiSJ4l6WOj/ScRt8RBymENcHn2fk2oylIuZ4sypiZLlcPWNXK2VyKVUszcRKS7S5gC39Ph/qb4Sal2VCOAvmXoZNM9qPIiVqLWY+dtcewJCqQcqbDtvPsbjehCGwisfWMZ1r6xLHIZ0QTAyBJdEFeKLAkSP4hkSR/FBhj0UzBj8gT22ek78c05JpKme6BIslIaLS87jsizJNdpCtXJUMpwys9OeKJiojwkPUuyXMPLcHzHzLJcICJw8XhMXAWpBm9PWSJ/DdW2HWo5d184xWrema40vUH0BiIKOyqsLHV2uj/8utpgAzchkSQDewhZ6skiR1dG3mM8UJOXI4Wy1JMVn6MolcVMQbLoMWHEt6XMYzvuvkDnJH83nFCWHJOV0gyfsuQIZSmesNTno1BZMgz1YGLbtihjxgbRZzDSsWPDBjZMd6LyGH1n3SGt6EFId3rz2djvucab+xVl+u0N5IVy1xPuh7HZfryBDcAd6SCFvlI5Rf0JUaplZIkuGDPpylgj6CJgMJUlTZYGGqyzyfRmsY1O5REzgdq4rShLNsArbN6/suOJrvxjZqHfyXbUixSDva5QlqgsxpUl7m1iEQY8RJHKTfGEJdQjpQznU5bIaOoIsuSV4aoKPUvFgNa/bWtlu2U6OtxtolynMFA4m+M7mRCh6QlQlrpYGY4rbATuWaIkdCMWQ09aLW0JsuSpi45XflWjA0xl3AntS7YjT4CkLAV6luKWyP+CI6MDeJOBAWnwpv2uJ0Mlw94J8HDEqlWrCuZKOo6DX/ziFwO2DbZtiw+8aaI6CFVkI4VMjw8C+Zu4wlvT2ACg0HdUCvjMxFzETEciDY7jYP3ywvTukQpS6CuVgN2f6OmkUi0bcSX8cRUiS93FVx4qhbLIUkNDA77yla/g2muvRZM3HXrWrFkFM9c0wmHGXNNtwpRX+jHDJR2CLDmGKF3RMlSGcwzZ7WSKUp0hJtXnfd1wdDINUpZsoSbx2XBqVx5P8LZZGc4JMHjTiZwIFg9OBOTJP8m8WT3dhQfpMND6t2+v7OiC9jZ3m2pqeiNLVIZTr5ipXNjTkxWtrwROPqur1LRkwA3vFN1wbGxMxucDIhJk+lQtwzAVr5MYpGvbIH1LMXjHTFiJuC/B2xDvIxbjyhQpS6wUbDjwf3NkRh+pZbjZs2crMyWPO+44AMA999wzoNtBHalN41uU++kCphTDsBi1wX6HYiBvHzqd+JiRKBNw3sttc2wbuQom9A81ULdsKUOPBwuUGk9NH4C0WvSEjEjpK0qxaVQKJXuWDjjgACxevBg7d+7E1KlTcccdd2D79u04+eSTMXnyZJx++umV2M4RB9OMwYzFUBWTJxzLdGDGTCQTXB3yHOFiJ/HIElhJj6UCppK8G47tWI484VJ5qMCz5CvDcWWJn4rpJByPW+Iqkbf8i/l1ZPAWxk5beX6SK1dMprdSicgDJf1gtm4tffRCKWj3ogl6G6Qbp8/cpywRSehJZwtSd6kDxjAMhTSK0NF0j8yrImXJNEX5jh4T3XDeZyvKtqYkQlbMlKUwx1aSvvn8PsvnWSIuZMVZMwIr43Gy5CpLULahp4dmFo5MsrRli9r+/t3vfhcrVqzAE088MaDbkctkYcXjaBjrG6ZL8xhLyEYKGuJaVV/62BQ/eCp1NiIkk8JbKUpkVwHlsPVFvRso9Hj7CFeWyDtZSudlKSjFplEplHwUu/7663HXXXdhzz33RJrt9A8++CA+/OEP9+vGjUTwHKOYZSEVkyfYmOHAME05sgSQZThSmEhZgiljBWj6Ozvx+j1LBntd4Smy1SgAk5Xh3K45eeVAywKSFMTjMfHjpuRpgJXhPM9SrBhliR2k+WBaP/hQ3s2bK0uWOgRZKiyTcVBCud+LQZ9zmilLQVdGlI3FB1Nme9KwYr4ynGkIskQEJLgMBzFbi7aDAlCpZAu4yhKZtGOmAStuBXqWLCvmU5a8beRkyUCBskT+qpFKljji8Ti++MUv4te//nXoMv0xUzIIRD7qRkuyZKUScnj1th1Fr6u7Xc5no/0xVdcPZIkNJ+cXRn6QehVE2kYyyJNTqVDH/gQpS0pTj0eWKvW9kZduMFHyUWz27Nm4/fbbC+5ft24dWlpaAp6hEQQyeKcsecKhMpyYNu8YgmD4R0rYMEGFD1IDDMOQGUr+MhwzeNNJPC/KcN7rxwyFOCWZATvPVKq8UCxi4sfNfzgyZZzKcF53n/c8QZaUnCV5AOWDaf3gadqbN1c2j6TT8yxx0hgEkqD9ZEkqSxlx5QgUpiNT6jqZJAFSlogseaVOwxAEhNZNvhQqxUplieUsWVJZioGTJd5pZ7qhlCyVUg7wNYVy6DiFOUuA1w3H0r8BTpZGpmeJ46STTkJjYyPuuuuu0GUuvfRStLW1ib9SRySFgUoUdV7XGgDUNct2/46thaNFwsAVICJJlKGT6UOnEw9ajFIfSIEtZwbdcAYR3krlFPUngkq1pHB3VSh1nbxQhmEM2sVXya/a09OD+vrCROM999wTm8OCxjQE5OiKGEwzhlSMkyVXWUok/WU4uZOI+WyGIctnjElRaSvvM3gjgCwJz5ItSzE874mXn7gjxRHKkslCKQujA2SCd0J5HTr58/XTSARADqYNwmg2p23btspebbS1uT/Q3kIVyZPlz0ehz6GrO6O01CaE4d39PylsfIp3tjvNyJKMhqDsJ6EsxVTPEleW+JBcIlUWU5ZsGKwMZyAWt8QBwY0OkMqSCClVuun4/in3EHoFijnYFcjSV77yFSxcuDAy+f+6665DfX29+Js4cWLosqWA/EDVDQ3ivromGSRZ0my4ri7xnVY1uMqXIEsljE3xo32LTP5OR+Q+bVvnfn5r33y77NcajiDCO6zIEgMdX0iZ7G/0dErFKlEdnXtXKZTsWbr//vvx3//93zj1VDfEynEcTJo0CT/+8Y8Lwh81AkAnM9MdIaGU4UxP0aEwQrASGRxYqZQkS6LwopbhBNGCqizRSdCMmbJM5i0gowMMZeAueZscx4GVkCdyIjtW3JKysaIsEVmi5agMpypLYV6gsMG0ADC6WU7FrnSbbVub+wPtjSzRjCS/34A+53R3Bhlm8BYjSrzMLZqRpwwcTqcREzP28sIU1N1NZMlLdPeX4di+wEkwhUqSsuQSZUNGB5gmrESCdco5wrMUi8Vk+ddxxL7ELVqGAWH8Fp6l9K6hLE2ePBnHHXccTj755Mjl+mOmZBAobZmUIACoafKIUx9ye6pq3PXROJ++mHfb2PyzoJMt4dff+A72O+ZIvPbI42W/1nDEC//4F6YcuB/+8+Ajg70pvcJfqs2k08K/VEqmVylIMzUyWVMdSbgrhZKVpW9/+9uora3Fpk2bUFVVhSeeeAIrVqxAe3s7Lr/88kps4wiDPDkVGLwNB4Yhy3C2Y8B2SFVwx2pInzfrhvO+RYMpS7Z3MhRKg0Mz3GLSOCyUJW89zLNksK45QB2nkGdBhmTIVD1LFGRJniUar1IcWQobTAsAzc313rrKPwkUCwq97K2bizxZ/k4WIgnd6QxyGUmWqNwmlSWvDJeSCccAhGeJSKdhGGJMChFSER5KFEWQcQN87hstRyU0Uo04UY7F42I9fJBuLGaK6AB3XIoaAQFQKKW6DaSCDWYHy0DgjDPOwKZNm/Cvf/1rUF6fut1oPhcA1DQ2Aigzt8f7/oh80TifdB/Muzs3bhK3u3aGn1BzmQxeWfTosMgb6k+8dN+/cMkhR+HhW+8c7E3pFTy3q6rBPR5TN3TUd9sXZBhRT9UME2Wpra0Nxx9/PD74wQ/iwAMPRG1tLf7zn//g0UcfrcT2jTjwCfIxv7LkleFIqXAcKJ6leJVUllxPkgHX6u3BkGZkedp21QtpEI+Jls+c7SYJOkxd4Ane3IAtfEeOIw3eVkzkB/HzIREnah0X0QHe8yh/KekjS9QdFk2WXGVpIA6mO3ZQi2w0WaJOEL85k57X3Z1RuvuE0sbGxgCya5BApDOXywEJl3TQmBQiYuRFMoWy5MKNDpDdcKIMZ7j7AxEhIsyGacKKW7Kz0nFYGc6UCeC2DdPb47iPzTV4q8pS2Py7kQTDMHDGGWfg7rvvForrQIOm1ieY562q0buoKCNI0nFsGIgJ8mV5+2W6DyWW7d5YFgDoKiH3SWPoId3RIY7VLXtMw85WSYQrOQRYdA8PlzIc4emnn8bTTz/dn9uya4Cu/L2r9SiDt+3I0pVhuCdZceIxWTccM3jH46b33OATlGHKMpw8YUrfisNKN4l4iLKU58pSUBnOU5YoZylOypJ7MhFhlf7hn0QefIN3ORq9obb5PqQJFwuaPddbGUmSJbUMJ5Qlj+DQj92vIFGeleUnS74Ze4BRoNZQec0I8CwJYh5IligzS3ZZxix/Nxy9DzN43AkT9wzIjkt7F1KWjjvuOEyZMiWyC67S2LnZjTCgixIAqPH8S3a+9FZ0x3aAmFvu4Ovt7oN5t33zFrH/t5c5jFdj6CDb04NEKoUpMw/AqiWviN94ZwXJEmFIe5a+8Y1vFL3Cm2++ueyN2RXgKAqP6fMseQZv5lmyhbLkKAZg2zDFFbw8mRtClfKTJZPKcFZMKhYFJ0weHSDzmADuswFs7yxpxS0WHRDeDSfKcDkfWfIrS95BOhHhWWpsqPHWXfmr+G1Fhl6aHlnK+ZQlMTS3W/WpJJIqWSKfGeU10RcrIxjoM5YERLy2T1myJVtS0rlJGaKKoiTK8rt3y3DeJjhSOeJky3FsoRzatgPHkX4lw+ePSXcXqo4jDY888sigk8EdG1zVhs/qqqp3FVg/gS8Gtm0jBiBV4ylL8b53OrlJ4wAMoH1z8d15GkMTXTvakGhJYcJeM1DLOy8r2cXoHWwS1dEhwZVCUWTpggsuUP4/ZswYVFdXY4eXndHY2Iiuri5s2rRJk6XeUJCzxD1LrtdEJDc7hkzXNtyTrDwwS89STJh6gYRHcOjq3js+AWIZU5SHZHSAVBd46rMc6OuIob8AkCODt2VGRgcIZckiH5VHlmhmXFw1TpO5PJ6MUJa8obY8AbtSoHEqNKDYT1QIdDIpLMO5n0NXl9qNJD1cnrLkfc4WKU6QihAAZLxwRxiGCHqUAiORJek1om3Os1gAWk60/RNR9v4VypLwNDlSuTQNpizJ6ACXbFOZt1DdSqfDs6U0+g9ElniKPpXQyumuog5XKodTJ2Rf/SjvPPcCWvbYHa8/9u8+rUdj8LF9w0Y0tozF6EkTUes1EziOU9HUdcdxjSfJCJtGJVGUwXv69Oni7/LLL8fSpUuxzz77oLm5Gc3Nzdhnn33wn//8B1dccUWlt3fYQ5zMTBNGzERVgWcpxnKWVM+Sm7DsrccwYPtylmBIoiVKJHTCc6RiJIfxkrLEogPY+BJal+OoylI+JxWLXABpofUToaESHhmgKdk77ssbou2IUpbq67025kzlw9u2stlzo0bVhi5H789/YqLPQQzN9b6LuF9Z8r5vKucJQi2S0OV77cmo5JSStWV0QGE3HFeWPG+/IEKcKMeYZ4mHUlIzgvsEWyzDxpK5niVPvaRdr7t76AfsjQRsWbMWgPud09BbIkvlJGETWUoKsuSNTeljieWXXz0fV8/9xLBoj9eIxqZV7wEA6seMRnUjdV5W9jXF8TLi/FBJlNwN94Mf/ADf+MY38M4774j73nnnHVxwwQW45ppr+nXjRiTYidAM8Cy5viNPHYIkEIZBZRrKWZLKkkUnThiitBXmWXJf130sTzPC8lxZYnlMTPnhg1h5KGUu6x34ApUlL0CRPEveQTjrkajCMpy33mThrDRCbZ3XxtxT+RNxW5vMnBk1Kjxtma68/WU4QrsXbkmKkeVTlgRZSqjGb5FX1SMJqf99i644U1WWYBjie1U8S6aqLPEynBljniVbKkuGoSpLYlyKrxuOsryIxHf3IcRQo3h0bNsu9pnm3dzsJiqh+WcSFgOhLHmGcfruS0kC1xjZWPvmWwBcUl7dQHEulfWR0vmBTzoYSJRMlsaPHy/KKhyxWAzjxo3rl40ayZDjTizEE75QSm82HCc8NleWeHSAyTxLQlmCQrS8V3QfoggCkytL7hI2I0vc4J1kHXBUOnIgFSLLigkfksFCK/2KChEtCm3MsudzkMcm6sdQ55Elvw+o0mhsjFCWvPeXC7mK7+r0TlgUCUAhljQjT3iWgslSD1tvujvEs0QJ3kJZkgeXQoO3VB5l/ISrLPEU7jwr0REps21HGLxtGOz1HBi2Woaj70iX4SoP+q5HTRwPQF59ZyNGi4SBysn+K/j2bdprpOHi3SVLAbjHn8YW97xfTudlKSim8lBJlEyWHn30Udx+++2YNWuWuO/ggw/GbbfdhsWLF/frxo1EOKzsMW60qla4OUvcsyQPgqbhIM66XWw2G47ORYZhiNKW7T8ZIrwMl7dljo8gZ2zgruPIpGg4DnI5uS4xIFaJDvCV4Swqw3lkiTxLBWTJI1ERylJNtVvCGiiyRN9XU1M4WaKONH4Vz9PWu7tlNxzAuwPd/9P37Z+hJ4zyrPSW9ilLdNVPhNlmOwUpPzHWzVZYhqPFDXcED+h+W9m/RBOBY4vX4inxBgDYvjJcl/w8Uqnw71Sj76ALmMbx7omLVKFygiTJFF5VX4faUU1iP9bGbA1C64pVortx6swDAJTXeVkKKHpmsAzeJZOlM888Exs3bsRLL72EdDqNdDqNF154Aa2trTjrrLMqsY0jC0xZGjtGJUsxwz35JZQynN+zJKMDaMAEz0y0hMFbvZqXWZamLKN499ps5IVjU3ilKZQfx3HECd5RynAmctlCmZ+2sUeU4UhZUstwlFBNILIUZfCu9siS3zRdKdDn39gUMdzXU21yzEdVXS3JQWent61UNvWNfyElMS7KcFIRAtTSWzYnPUluSdXrchMGb+ZZYt+r6IbzG7yV6ICYyEqybelZMgxDDOJ1B+kSyWazBA0Ads5bxt1WTmjpe9OoDCj0tH6MO0yXOmfLmQK/afX7AICpMw9A3Wi308lxnIoFDmoMT9AIp5YZ0wEUTjDob1CDUHyQynAl5yxt2bIFH//4xzFjxgzsvffeAIBly5Zh+fLl/b5xIxHy5GJi7Cj1BBzzlCVLGKvlVHg3Z0md1SZzlmR0gBWjnCX3tcTJ05HlNYLteF1xnCzlpWdJdqs5YqwGIFv/Y5apEAQ/KJSSyAT9mIhE+bvhiiFLqSqXUHS0DwxZyudtWFZMRBYEgd5fls3gqmZXPx0dpCx5JCiuJpon/Z4lIsgU7sm8PzmmdKdSiQJlyRGmJfa9sm64uEldcO4ysknAgGnGWBnOUXOUKC4gLwfp2KBuOK4sWWKdXUxZqq5OYJscD6bRz8h0p1FVV4e65lEA5G8ozWZqFYsnf/cn7HXEYahpasTEvWb063ZqjBx0bt+BRFUL6seMAVBeTEUpEGHIEeeHSqLsUMrly5drglQGxOyumInmRrX2GjPV8pftMNUHbplG2j+kZ0koS4b0ARUoS8zrJFLAvbvkoFaZ+ux25clykSRwDiNXJvIBZEkoSz1qGY4M0EJZivnIEpEw1nnnRxWRpY7yh3qWglwuj2QyjoaG8CA0UxixJTmoqZE/6I4Ol0QRkSEFiQzYVIaTKemSvAJAujsNol42I0OpVFySJaYIAYXdcLScUJZ8o24Mw4BpxYQCaedtZR+i96gO0nVYN5wDx84BSIr7urqkslRVpZWlSoIUpFqvG45+Q+XM0HrryWeRy2RgJRI48oveDNBdbPyIRu/YvmEjmia0iONW1IVzf4DOD/EIm0YlUTJZ+tWvfhX5+Fe+8pWyN2aXAMsxamrwkSXyLFmyDCeSqg06yXrdcCbLWTLEInJSvbdOv7JksZpd3jFgAspUe5uleRvMs2Rasq2dcpJiMZMFJrplIdu2BTEjBYk8PWTwFl4m38w1Up64N8sPMkO3tw8UWXI/j9racFOhaPFnRuyaGpr/5rjjSiAVI7+ylPBmw8V8A4eJLPV0ZwRZyjECU12dgEEDdX1kCWAz/NggXbKJiW445qHjyhIfpGsYhviubCU6gJXhIL8/2oJcLid8DURyNSoDGm5KbdyW93vtYnO8SsH7r72J6YcchAl77wlAqr4aGoTWlasx/ZCDxMVxOZ2XpSDveaIGS1kq2bPU1NSk/I0dOxbHHnssTj75ZDR6wxs1wiEN3ibqa90v3Wakh2Z0uffzk5GjTIWHYQplSJThDEOoNQUGb09RsGLyZEueJQqZ5J4lwzQFaXMcR3RAuid/Wt6U0QEATF8UAHVuiTJctjiyRGQiCNRmv2Nn+UM9SwGlkNfVh5MlUm145xGRJQ7R5Ubz+9iMPYBHCvjIUkgZLplMiPKYGJArpSKlDCeW8xm8yfdGviYRbmmrZbhkIiA6wFG77wxv3wmacayVpcqii4bpepEBpvd7LXdEyVN//Ku7HgqwzWmypKFizRtvKf+vNFmii+2oBqBKomRl6eSTTy64zzAM3HbbbXj33Xf7ZaNGMsTJxTRRX+NJ5XkD1ZYDy3TcBG9LzuGi4ZyGoQZDusoSnejk+i1LnQ0nXg+cLHknRMpZyjFliZXY4glJkExGnHJsjAZvl7cSSSXBtcfnWaIyHOUv+aMDiCxZEWU4KlnR3LZKQ5ClCGWJyFImLdWuICVF5EiJMpxHljwFT5jomdIHAD3prFBoEJM/2WQqLmfEUWmVNQQIsmRIg7cliI7qXaIsJaEs2Y5ShktSGZYpS3mo0RbIUzdcYVSAVpYqi3YvA4nmuYkgyTJN2a8sehT5H31fdrKGZIhp7LpY+dLLyv+5Z7MSkOeHwTmWlKwsBcFxHFx//fUFY1E0CiGUopiJmipvjEDO62ojgzcvwxGRgSzTuGCeJXZuKlSWvNejtnVLLcMB8qrRMKRHiitLtu1ItcdxROktFjORZWm8/vyttN/g7T1P5C/F1JOquHKIUJbos9mxo3QvRjkgwldTG96BIaIS0oXdX9xwLQzedAIisuSRQ9E16FOWeFyAlUjIAbzJuCjDxcxelKWw6ADmcTJjzLNk24qyJGMkHBYvYKjKZT6rrJtDRwdUFu1bXfd8qtaNuCBFqMsbSVUO1r35tritU7c1/Nj83hrl+JYpI9OrFND5Y1iTJQDYfffdA8MqNXxgylJ1yiNLWSJLhWU4UpZMn7IEQ+YsyUG6PmWJ7ciiDMdkKMcI6IZjZTgeHWCy1vFsTpbtqGUZcOVRni/U45Ei6sSiA26PV4bjnXnu4x6JilCWqHS3ffvAKEvU0VcT0fouuta6pLIkyZJczhbKkr8M55XIhLIkc6/4NgBAnBHmZFIqS8Q784zh8OgAsZxvkC7vhjNMgylLNsA6LinOwsnbwWU4wDN4q++ZHtfKUmWx9KHFcBwH8WQCp151mejo6Evq9jP3/F3crnSJRWN4ghOkcjK9SgFdpEddTFcSJbObn//858r/DcPA+PHj8fGPfxx33313v23YSIX0LMVQlXBPQJ3eRRuFUvL2f6H6wFF2EsXgzciSSFp23GKbYP7klzFleY5O8rmcPDmL1zNNSbyYsuTYjjIbzmaz4eKJhKIgUPI0lQREGY4UJz9ZyqqJ30EgYrh1y8BkvpAKVhVJljyDIy/DBSlLZPAWyhINFCaDN42FUctwfGgwJ5JJNv5G5iNJbwnvWpSz4aj8FlCGM0wRXkrbkHdcop6Ie6VhZuB3Bz3LaAvkyeAt90d6+wOlLH3gAx/AI488AgA477zzcPbZZ+PNN9/E1772NTH4eyRi/bJ38Na/n8G+R30Qh33qBBkk2Ye8hiX3L8Sp378UZixWcdVAY3iic/t2MUOwnEyvUpD3/LFRNo1KomRladasWcrfgQceCAD49re/jfPPP7+/t2/EQaQzx0wkvRNQh0eWYiaUMpzjqLPhTEYiHEOGUjKuJLuWvBWI0EGDHpfLipN8Tna08RKQHKRri/Ke4zjCx0PdbyKZOpFQwhiJaFAJiGIGhJeJbzikLyKKLNE28yG3lQQFK0YqI9T9x04oqaSa0g1ILxKRIiKdFCRKyqz8zlm4JwVaJuKCgLjKkntbKEZMWeKKoeGpe1JZ8siVCJ6kwFJHeS49Lkuytjho5B1D7s/uk7znyI/GPyy40qivrwcA7L///vj5z3+OBx98ENOmTcP1118/IK8/mLj7wsuQ6U4r42U6t24ve322bWPtG8sAADs2bOzz9mmMPGxbL/eLdIXJUs43a3SgUfIR7Nhjj63EduwycNiMtoTntm3zFG7Xs2TCiknPklB94MqPYto8K8OR98dt8aaWcJWIkMOJl+HI70JRAK5niW7LMpxtO4LAOLbNyJLvNeIWUim5I6fTajdc1ivZ0fgPfzccmcVj8eDdMpGwxPvfMkDKUpe3rcWUkbgMXVWtznkDJAmKeZ9rzjcjT3iWmKkfANLdWThwYMDwDhQOAMPNwRJlOO97Zy3eOUaW6Lsiz1LeG3VDW0elOu5ZAmS5Lm6Z6IG7/0pliStTgON5lrhlicgi3y8qiWXL3JP7Kaecgn/+85+4/PLLMWvWLDz44IMD8vqDiVwmg3uuug7/dd33YRhuJ22mj6bb287+Jo4/5ww8vuD3/bSVGiMJre+uxB6zDwYApDsqa40gG0fUxXQlUdZsuIaGhoL76+rq8Oijj/bLRo1kSIN3DJ6whJ3d3knUcAlMjPmOqCxmGnIsBgDA4KGUIWU4pixRmYbIlOiugiRLgCH9Mr4ynCk69NhsOB9ZiscTSLK2TgolFKTMuzJI90gli4PKcKYvrJIwdqzc71pby79iLgVd3qiSZEi7KvdoZdgIFmqVt1mYH5XI6Moo54sOoPctM22oDJeVQ3jjCVna+v/tXXecFOX9fma23F6FoxcRFRULlmDF3jCaaNSfNTERezTGrlFiT4xEI7GiiSXYe6KxIUYlGhVRURQVFFFAyh3letkyM+/vj5nvW2Zn9vbK3sLxPp/PKrc3O/Pu7N7Os8/3+T7fUkFAeCSAVMKzpYiHsOgAoQK5niWeocTLcKQsyQneLmx5kC4YDM+zJHfR0e9LeokslXpDNg855BC8/vrrAIC6ujquOPV1fPLK61wNUsxjXUS6rQ0v/3UaWusbur0vjb6HZV8s5P9ubyrsF9iOvkwXGp0mSwcccADiAW70RCKBfffdt0cW1ZdBZYt4zOQXroZ2j8gYLCsrSVGWpFqtYwjPkimRDlPyO8GXgwOIiyVj4k5LLsPxbjhpoK/DEImSZ8lRynAyIvEYvyi6RE0kgwOCLKVIcfKRLTKRhn1zGDKkP983pWIXGjSyg8Iw/YiXiWTvlDRaojShpnQDwrgtBgvnpyyllG64qCAg0vtBGLyFsuRwf5whErxNUh5pG6kMJylLogznHTcqk2zvsdIwZ9MADCrDSeeHK0u9lI0yZcoUXH311dh9993xyiuvAAC23nprLF++vFeOvz7g/t9cgrXLluPzN98u9lI0+jgWf/wJ/3dXM73yBXVem0VSlvI+6g477MD/vd1226FOMg5GIhEcdthhWLFiRc+urg+CLnSD+rmt6A4DGtpsABFETS9PSYoO4CUyMOXi6IZSeiWYSJCyZCiz4WjQKpVrZGUpw1O4xeRowzR5uchxHKUbzpK64WRE4zEk7GxSQRdqyyND3MvkU5bstFq282PgwMrA+wsJImVhnhvKtQHUmj2RK57ADqHWEFnKUBI6V5ZUEkVIpTLidYzFFB8QL8t6vNWybO6hsvmQXFOKGKDfuf8nKme4bIl7lhzbBqJCWYqTsugIZUkOTTXAeCel7Fni8+9CyGZPw7IsHHfccTj33HOxcuVKAMDhhx+O1157rVeOvz6gtb4BU356fLGXobERoH7FKji2DTMSQd2KVQU9Fl0//GOyegt5k6V58+bxi+9bb72V9fv29nacf/75Pbq4IPzmN7/B5ZdfjmHDhuGzzz7D+eefj48++ih0++OOOw5//OMfsdlmm2HRokW44oorMGPGDGWbG264AWeddRb69++P9957D+eeey6+/fbbgqyfggmrPbKUsg2kMuLqEjMNZb4bJy++6AC1G07sn4cTMgCQBukadOH0Hs8AuqpmMgHKktyV50ihlI6DNPc4GWJnhuunKXECyBKRMo8MkVrjJ0uZVG6yNGBAJV9Pb4HGqsTjwWuKl4qwSkvyh5BHRynDUQwEeZZsn7JEBm/f9O729rQw0cdEzlKpNKw3ylVCG/BeAj4pxxDnmni1GKRL26ieJVobKVA8+Z35u+HEMaiTjkGMvqHXqrfI0gknnIDmZvUb7iWXXNIrx9bQ2Bjx4tS7sOn22+Gb2R8W9Dj8+rC+K0ubb745DMPAd999h9133x1r1qzhv0un01i9erVyYSgETjjhBPz1r3/FOeecgzlz5uCiiy7CzJkzMXbsWGU9hAkTJuDJJ5/E5MmT8fLLL+MXv/gFXnjhBYwfPx5ffvklAOB3v/sdLrjgAkyaNAnff/89/vjHP2LmzJnYbrvtkCpAtghd6Kor3LJE0jaQttxp7QAQjxlcaWBMqA8G/J4lQzHn8rupNRwhniUzQFmSyjyO5FniA31lZclx+CBck++LQjOjSJjZ5RZaEyW8kvHbx5V4Gc4wg6vD1R5ZktWaQoPIUliGWEm5S5bksiMAlCTUlG5ANniryhKRUpOX51RPVyolPEuReEwQkHJB1Eya+SaRJZHDJUIp5SG4gDB6SxNz3MdaajccNQZEDcmwDoMP4jUBGN4+GQOiiQTSbW2SstQ7H3CmaeLYY4/FtttuCwBYsGABXnjhBaU8qaGh0XP436NP98px6PoR9mW60Mj7E2zZsmUAiieBAe43xPvvvx8PPfQQAOCcc87BT3/6U5x++um4+eabs7a/8MIL8dprr+HWW28FAFx77bWYOHEifvvb3+Lcc88FAFx00UW48cYb8eKLLwIATjnlFNTW1uLoo4/G00/37Jtg882HYsvBUTQB6FfuzW6yTaQlZSlqCrLkepY8YmL4vTxSN5zsWeLKkgHGxDd7ukiaXAySyFJaqFe2FIgYCeiGcxyHT38WyhCpHjGURMizJFbKjeSestTOyZLKltLeDLRQZanaTSe2enFOVWOTW1rzj2YhlEieJeV+j9jKayXFiM4lD1mjUEo637allP2SSUlZigrPUkKat8a9SNLxRBlOeJaI4HIOx0mSF0Ph3R2oLDlqWrwNwIF4fxl8jA6QKC9TyNLWO26No3/108Bz1RFSyRRmPPtGXtt++umnGDJkCL7+2k2fvuKKK7BmzRoceeSR/AuShobGhgf6Mm1GOm217hHkRZaOPPJIzJgxA5Zl4cgjj8y57UsvvdQjC/MjFothl112wZQpU/h9jDG88cYbmDBhQuBjJkyYkJWvMnPmTBx99NEAXLVs+PDheOMN8UHc1NSEOXPmYMKECaFkKR6Po0SafFxZ2bGX5qKLjsLUv56BVsvE/V8zVJaJuXCMMThe+F8sKmclGbCIyIDxFGUAgClyliIBypLtM3jT24uXYRyHXyhpVpvSDeefNC/nLGUpS+SniaMEUeU+b2cAhIxKA3b94N8cQpSlfv3dIaGZTO+RpWaPLPljDggUyObvPAr0LFGGFc3KI++X97M8tFQN98yIQMuYUJYUssQ7G0UJj3HztpFVhqNlyRET7nbeWi3VfxTxyJL80jgwwKjUBybIEhPnJR1zCe6Rh47DkYeOQ1fQahmozJMsLViwAOPHj+cBlP3798dDDz2E++67D3vvvXeXjq+hoVF8pPn1YT1Wll544QUMGzYMa9aswQsvvBC6nTydvqcxaNAgRKNR1NbWKvfX1tZim222CXzMsGHDArcfNmwY/z3dF7ZNECZPnozrr7++U+t/4om3MfWvZ6AixjCs1EKF4b7gScsEcxyvO81TlqSONmqnNwy1ZZLJ3XDSBcxQlCXhWeLKEpXpHFlZEsfgypIpPEu27Uht7Q5PlBaeJfd/0VgUcTPAs0TeKO/N3h5GllJq1IAf/aq8C3A6E/j7QqChwe1wCyNL5FliIWRJUZYyqrJE3q8IL8N559iyFLLU1paWCGk0y7PEGOOEOSORJSq1yeNO+OtPoZRCWnL/572YQlmiMpxHtqQUJdmzZBqCtDswEPPOy5d1JehfmnE7PbsIxwl+PwTh+uuvV5K6GxoacNVVV+X0NWpoaKz/yLTntmkUGnkxG7n0Vswy3PqCKVOmKIpVZWVlh52Aq1c3YMmSWmy++TBs2z8FI+mRJa4sMURgIGoakoojma+hloIM0+TmXPlCLgcGyp4lmg0nxmKIixeNJQFEqUgJpbQdLn0yx+Gz4egCzAlZNIqSaEy5jy8eggy1etlFhiGMwACQbm/nzy0IlVVuyUse/1FoEFnylwwJ1A2XD1niRJSUJV8ZTh44XOIL9+RDeGNR4VlKxEG0kbK5ZGVJHpJLBNT0KUsg9cn7kc99y/jKcN5LQn/+DgMMMyLiCcA4uQaAuKd6fbQ6js+aqvDK7ffgrQcfRaExZMiQwPsK1bChoaHRO6CRO2FfpguN4lC0LmDt2rWwLAtDhw5V7h86dChqaoKj+GtqanJuT//vzD4B19De3Nys3PLBA/e7IXlj+6VQkXBPfdKWlCW4F6WIZNLmw1AN8GRvmusmuuFMqYVbdMMxaRQJeZn4vh2HXxnlQa1kLobkWbIdxtvaHdvm2/vJUiQW5V4bP3kAACupJngDUMajkPIURkxoOG1vKkt1dS3emoJ/H0946o6vuYHM8YqyZJOy5CWaZ0RopPt/eoyFslJ5bExamStH5DImZRcRYbYsm597IjqusuQzeHv7c3zObj7KxLY9Eq/GU0T4mBSve1JSloRqBcQTpXy9ANC0tuszynKhsrKS3wDglltuwbHHHouRI0di5MiROPbYY3H77bfjiiuuKMjxNTQ0egf0ZTrMplFo5KUsdSYS4K677uryYnIhk8lg7ty5OPjgg/Hvf/8bgPthffDBB+Puu+8OfMzs2bNx8MEH44477uD3TZw4EbNnzwYAfP/991i1ahUOPvhgfPbZZwDcD9899tgD9957b48/h6lTn8e1fzwFpVGGTavdF7xdUpYAA7GIGiwph1JGYpKCZIpuOKVEJLV1y7PhDKgKkyPl5VBLPyAN7s3yLIkEb38ZjlSPaCzGW+ZlssS7urxBs5TsDQBlZQmeZZRqa1e296O83ItbSPWeslRX18zXFI1GueGeQKGUjq9DL+4pS7K/Sk7UBoRCRufZoPNtWVyZovPIpE46CrqMl8RByU6cLMkeKd7WbwgyRGTJWxZj3rFB20LZj80JuVeOk5Ulw+CE3TAYXwMDEPc8S6SWNfpK3T2FhoYG5b22zTbb4JlnnpEiM9x1v/TSSwWzCGhoaBQeKY8shX5zLTDy+vS4+OKL89oZY6xgZAkA/vrXv+Lhhx/Gxx9/jA8//BAXXXQRysvLMX36dADAww8/jBUrVuD3v/89AOCOO+7A22+/jUsuuQSvvPIKTjrpJOy66644++yz+T5vv/12XH311Vi0aBGPDli5cmVOb1ZXkU5bWLTGwbhhJh91QsoSCRMRU1xMGTMEWTIYIpKxzVWWyDAskSjv/zbUdna6SPLf24y/6SgkEpBCKaWBvrblKKM45BBLd6He2mNRd14ZRAkoKqW9Z9rVnCVAnblGylLYHwNtG2YQLwTq61v4vwcMqMDq1Q3K7+MBY00AEWJpZbK74UyfssQ9S2TwzmSyxqvI6h0diwgZGOOPlY8XZPDmnYncs6SChuj4B+lGfWU8By4B48oSIBFqIJ4ogRkVoZkNNdnRHj2BAw88EABQVlaGGTNm4Kc//Sna2rIHesqhuhoaGhse0h18mS408iJLW2yxRaHXkReeeeYZDB48GH/4wx8wbNgwzJs3D4cddhhWr14NANh0002Vi9bs2bPxi1/8AjfeeCNuuukmLFq0CEcffbTSQnzLLbegvLwc9913H/r37493330Xhx12WEEylgDg3a9bMG6YmFOVtAw4DuNlkagplTMAPofN71mCYQR6logOMc/g7Y8OULrhPGSkVn7qgoLhlvcAwHYcmBFvMKyTbfDmfppoLKsMF02Ijq1MSs1ZAoDyChGsmGptzzpfMsj0LD++0CDPEuAmiPvJUozKcL4cn3iMspQkwzWRTI/0UjmRXm/hWcqgtFQ1ygtlSXTDxWNCfSKylJE9UkEGb64sMcAEmKGy6OzZcO7P9BaLSqU2w5TLcLKyZCCWSKC/VN6urylMuu8777wDQHSkvvfee7wsXlFRgZ///Oc488wzscsuu2DatGkFWYOGhkbhQWSpWNjgdOlp06aFfujRt0wZzz33HJ577rmc+7zuuutw3XXX9cj6OsLC5W1Yl6zGwIR7UUvaJsAcj7xEEDENJYVbKEs+BUm6UEV4DVfM7bI9z5KfLPHfS+WaZLs0Z83JLsPZtsP9NEHKkvDTRDhZ4iZkKeE6Jb3ZKecpUFkKAc1ba+9FsuR4vi/DMFA9oCLr9+RZ8oceRj3PUlomS7aqJPm74fhYmEwmK/GaK4SSZykqZTHxMpysZEldZEJZcn/OeGTJH4YuuuE8suQQyaLoAREPIHuWDDBJEXVJZP/hQ7yfGaxefM323XdfnHHGGTj22GOxcuVK/Otf/8J5553Xa8fX0NDoeaQ8xbhYylKXnFKnn3465s+fj2QyiWQyifnz5+OMM87o6bX1STiOjQUNQm1J2u6IEcv7Ch81GL9oMiZIjQlfnpKc4O1dKOXAQNENp5bhzACylEoKFY326oZSUu6PlLNkO5JnKFtZkofvAm45hmAFkKFS6fdJ6Y8hmshOAqeyU1tr7wzRJZBKRqGYMshk7R9RQudB7tyzKQbCI54iDFQtw1mZXJ6lCH/t6BiusiRFB3ATtlCW/J4li5fZVM8Sf3/wBG/354gplE/AjRTwG7xFPph7XvoNGaSsvZCgLrhPP/0Uzz77LJqamlBSUoKjjz4akydPxscff1zwNWhoaBQOSam8Tl9SexOdJks33HAD7rjjDrz00ks4/vjjcfzxx+Oll17CbbfdhhtuuKEQa+xTYA7DgsYSlwgxoM1yvUd0AYyahgh7BBTPkuwJcc211OFmur4VhSwZajec90qTwVtRlqRv/TRDDj5lyeD/tpGScpnoOQGu+divLEW98E7/OBCCXG5KtYiSV6KsPGtbGpkhe556A/Rc+vfPJkv0/PzKEnXDZWSyRJ4l71ymUmoZzpA8S+T9Iu+yoxi8PbJE2zhM6oZzOIlmHgmTwyaFZ837B/+WpipPlm0DjMGm4FNSliLivSmotdeAwAcPuspS1aBB3vMubIjoiy++iLlz5wIArrzySowYMQIXXHBBQY9JGDFiBB599FGsXbsWbW1t+Pzzz7HLLrv0yrE1NDYmyNeHkors60Oh0eky3LnnnouzzjoLTz31FL/vpZdewueff4677rqr18pZGyoYc9CSieC5z9IAc2DFDDCH8QtgxJRKaY7woBgATMOEZ90GIDxLZsQALGHOBSRlSVKm5P9bls3lzKSk+ESkLqKIIXmWSO1yHGTS6sWPE7JYlJMEUpvkMpz/MYZh8DgAQORoAEC8tAxAvfIYIhCtrb1NltwSaVVV9nOJEVnKqMoS+ctUZYk8S56/KKMmoVN+iJXOoF8iWFmSy3CxqDjXQcqSzXmvUJa4wZuUJZ+kzQ3evgRv4kHyIF5VWWKK1y5WEueqIilqhcLhhx+Ov/3tb/jtb3+LmTNnFnxGJYEGb8+aNQuHH3441qxZg6222gr19fUdP1hDQ6NTSLYKZSlRXobmtet69fidJkuxWCxQ0p47d65uzc0DRF4+XpqCnbEwchv3YkwXr4gB1bMk+YMiUp3NMITqYJruJU5RluAqDrbPs6QYfD0kWwRJMaWkZVPK7qELvGPbXBEh0IU8Go1IYz5UZckPWrucVG2l05xEyUNiCUTEmlt61+hnWQ7icaBfv+xvM9Tt5ycERJZSARlW/ugATpY8cmqlM1IZzn0svW8ikQg3/UeImDq+MpwHER2QXefP2A5MSGU4AwCEOmlZNhgkg7d3v4gOyO6G4wZvZiAWL+Hf/jLJwpLbffbZB+eccw4A4K233sJDDz2kfJkrFK644gr88MMPOP300/l9S5YsCd2+K2OSNDQ0XDiWxa8P8fLgmZyFRKfLcI8++igfQivj7LPPxuOPP94ji+rLIGIhpyozxxFt5KbUZQahLJmA4mWClHFjmoZXhhPmW8Arw0nDVIFgz1K7pOgonqXAcSe2kvgNiBKRERHKkghOFO3tynmgYbAB3iQgWJEiAtLS0rueJSqFVlVl/4GSZykvskTlS+91TKbUgcJ8rl86ndVVyDzjvSl5liJSSCknYBkRSunwuW/e/qUGAJ7HJHEoQ/rRshy3DMdLve79qrIkxxMw8X4GEC2Jo7yf2/WZThaW3M6ZM4eX3f7xj3/gpJNOwsqVK2GaJiZOnIiKiuzyaU/gZz/7GT7++GM888wzqK2txSeffIIzzzwzdPvJkyejqamJ3zpK/dfQ0AhG2ADzQqJLBu8zzjgD8+fPx/3334/7778fn3/+Oc466yw4joOpU6fym0Y2OLEwTUGKpBEiEUPMbHMcodAYhiA8fF/epY0ulHQh454V5sDmBm81lDIjkyWprCXP/pIn2cvKEhE7ef2Aaz4m0zH31SRodpr/PBBZyp4lB4hQQxlExFqae1dZIrWmsjKAwHnt+/4yHO94C/AsGVxZUkMqubJkWZJnySM+VE6NRLk/iggZcxxpzl+4siS/fawM5SypGV3c0+a9plTRMrmyRKU2V1migqyiLAGIxmMo9chSqjU796hQeOyxx7Dvvvtihx12wNSpU3HllVdi9erVPMi2J7HFFlvg3HPPxaJFi/DjH/8Y9957L+68806ccsopgdtPmTIFVVVV/DZy5MgeX5OGRp+G95lWUtr7Bu9O183GjRuHTz75BAAwZswYAO4okrVr12LcODFVPGjchYaqLNFF0nEc3vIdNYXJ1oFUhgPj5TmuNkjKEsmTgLhIOrYjjUvxKUsO41Q5I2VKmZLB21SiA0y+T9kQHo9HFYO3vxtOjOQIVpZKfGSJy6wBfwx0MW5sbM36XSFB5LAigCxFPFJjZVS1jYhMUlKWaBsiSymebwXv/56fKJXi54XOo0OxA9EI71SLREzAdt9TvJPOshGj94fiUzKUEmvaclAmHxxEqry1Wm5zAFeW/DldvMmAHiu/P10vV8Irw7U3i2DP3sI333yDK664ApMnT8aRRx6plMp6CqZp4uOPP8ZVV10FAJg3bx7GjRuHc845B4888kjW9ul0Gul070UoaGj0NTDGYMDgkxN6E50mSwcddFAh1rHRgIiFbLplDkOKJtJL/hLHYWJ+mIGsAYI8OoArS0y531WWfGU473e27fAfrJTwChl8xpwgJxnLhlEidcNJBMAlS1QiivJ8Id7d55ElP3kmha201Odp8rYLIkv0PJuaeldZoudbXpbtvyJlKeMrTZK/LCURS27wpvEvvhl7VAOzUmnEY66fJVtZisCiGXMRUfKk1zedtlBKj5F9zoYaLZEmA7fhU5a8f1uW2wcnRwPIz4sTcibeV6akLEXicS6Vt+c5O7EQcBwH//73vwuiLK1atQpfffWVct+CBQtw7LHH9vixNDQ0qHHIDLw+FBobzCDdvgKHQh9NU1xcHJuXT9wynLctUxOZ6YJFxMavLPFoSllZyspZ8kIHLXElleedKcqSGaQs2UppKZGIi2NETN6hJYITRfK3eh48ZanEn1TtKVIBORpECBobe6+sA0hkqTxA7aKyo08xoBBPeY6dlSZlSRAbQA6MpFJaWopgcM8bEdJINMo71Xgbv1SGS2cs8fpD7Nctsbn3y12SYIJBGQbj0RE0kJeUJV6G895kjpezxKMDDBEdwJiBaCzKP9DaGpqyzltfwHvvvYexY8cq92299dZYunRpkVakodG3QdeHeEiXdSHRaWWppKQE559/Pg488EAMGTIkawKwzhjJDa4smQYMR1zseGeUIWXhOCKR2ZQUJ//F0DV4S6MqvN/LF8WIabqESi7DeZADFWX1wQzyLFmWUoZLJGJKpxZd5IVnSeQsyaDfZ5ElL3IgKHSMnn9jY++WdWh2Xll5trIUiXrKUlo1eJMqJ58rGlhM3qRkSBkuk0oh5surojE0ZiTCDeeyskT7SKczUiil7N42YBrSkF3yJEllOBOSspSxEWWMd8MRiSYfG+1JKEvC4O0AiMRiPFahua5vttLfdttteP/99zF58mQ888wz2H333XH22Wcrsyc1NDR6DvSluxjKUqfJ0oMPPohDDz0Uzz33HD788EPtTeokuMEbBmDIPiD3Yhs1wdmS4zA3HBBqp5Ios7n/dy/MLJssOSLsklQs0RruKRa+10+JDuB5QKrBW1aWYrGokgHEh+9SGU4KTlTPg6csxaO+++mPIfybQ11dL5OldtfTVeYvGcJ9zkD2qBZSfdo7VYbzyGkmw88LnSebBhxHIqIZgJQl25bKcFI3nG/EiTRZUCh9chlO8SzZYEwiQ1xZkspwhiGpV4JIMeaWJyNeibJ5Xe/mofQWPv74YxxzzDGYMmUKrr32Wnz//fe46KKL8MQTTxR7aRoafRK8y7oICd6dJktHHHEEfvKTn+D9998vxHr6PGjgqmGaMBmNlGA8FTtiuAY2gAzeUoI3vxip3iS3JMd4yrJShqPASG7w9sosdjDJlXVCOp5lO6Kt3cpVhotwzxKpH9FYcBmOOrr80QE8s6lEvb+qqkxMsG/oXbJEhMdvRgdcwzXgmrJl0Frb28X9/jJce3twWGMmlZaUJe89YpOyZPJzK5vuuTk8Y0nvD6LX6mvPmDjPzN8NR6GUtgOAZeUsReQyHKQmAzA4pvAsRWMxfm6a1/RNsgQAr7zyCl555ZViL0NDY6MAfQ7KY7R6C532LK1YsYJP9dboPLiyJJfVHNFhZkqeJdtmIuVZ2gcnQ37PksGU++UxKlxZ8vZh+5QeusBKs3qFZ8myRYK3p3DQ9rFYRLqQR7KUJSrF+FOVKRIh7h8YaweX4aqluWx1db3bDdfmRSsEZUJR/lS6XSVLJu94C8hZ8ilLfljJVFYEgy2X4ag0SyqPI9LYU+lsskTvpyDPkuGVZ2k7VVli2cqSYvCWUuQNSGQeMGMxrkY2rl4T+Dw1NDQ0OgPy/BZDWeo0Wbr00ktx8803Y9NNNy3Eevo8iFjAMPkMCce20d7ukqWo4lkS3XCqQdf7v7ddlmfJu5/ZjhRgqKoLmRBliTrq3GgDT62wJOXCN+erpCQudWqZgiyRssTLcMHKUjyrDOc9zqcsEVlijKGtrXdDKVu9wb1+fxUgkaWUnyy556utXfIs8Y45IkvBbeSZVApxHu6pRgeYpqwsecRFUpbSKdmzpP55RySyRN4wMyIrS0KLylg2wJDbs2RIhAyCIDK40Q+0pvpVNYHPU0NDQ6MzIO9mLGQyRCHR6TLcxx9/jEQige+++w5tbW3I+JKLBw4c2GOL64vgOUumAYNJylKre+GMSJ4hh7ndTYD6rd/vWTIMU+mG423djs0vtqZpArY0zsJWyQsvp8iGX2mGGU8Pt/1kKcbvMyMRRGlECpG0GOUF+cmSpyD5yVLIH0P1gMKkMOcDSgz3rxUQZMPvWeJlOGnoL89Z8k4xEWTDMBCNxwXhSSZ5KCUvw1miDCfiJIgsidcknbY4ERLUh0IpRRlOVpbENpKnLaN2w4lxJ6QsEWkSJJxJCd6UscQYQ1OtVpY0NDS6D/qs2yDI0pNPPomRI0fi97//PWpra7XBu5OQc5YM6WLX5l1sI1IopW0zrtAYUqhjkGcJjCFqen4kj5c4tiPKN6ahzI/js+F4wCWRKrFWoSzZiidGRiwe4WqQUobzKUuOj2SFdcM5PmM4oX8/cfHtbdAsuiCyZHgRAek2NfuJXsM2mSyRkkQDjKUyXEWVmDtnpTOIx8n75ZXhuNctoAxn2/x4qVSGv8cciSwBsrLkSKRdvOBSbwEyXhku7XVsxiOq982fsyQnzDMGlEgJ7L012FZDQ6Nvgzq3/ZWH3kCnydJee+2FCRMm4PPPPy/Eevo8iDTIZIk5DlrpgmwKMmD5Qyl9Bm6ay+USoWyypHTDmaZXqmN834A/V1tVtuTSm+iGI8+Se4EsicdUz1JMvciTsuRXpOh5UbmJnx/+x6B+c6C5bI7T+2SJlCUigjJ4ZlJ7iLIkdcNZPhVW9jNV9hPKWSaZRNz7MKCSmyMN4eXzAql7TiKzGdng7Qsx5Z42hwlTfpay5L0/MhbAGNotdx+JCAPAskMpSVmCSAx3IPK1/CRZQ0NDo6ugkVGxePCYrEKi056lhQsXorQIgVB9BcLgbfC8HcdhaPN8MTGJLNm2I8pwEOqS8CwJlYo5DDHe6eYdy7ali6IBuffJskKUpcAynC21tZOyRKGSUYUsUfZPxntT8zKcHexZIiMzv5//MajfHPr1L+PnpLfR1OSGYMZi2WSJG7nbgk3nbdLcPSup+ppk71WFRJbSqSQnkXSe+Fy5iCk6JElZknKyUqmMNHyXVB/vtSdPm8MEaZfJEmRV0x130m6LyIm4yaToAJW4u8qSGPRMXi7bUpVIDQ0Nja6Crj+ReO8rS50mS1deeSWmTp2K/fffHwMGDEBlZaVy08gNSmKGYYgp7baFFo8sRWVlyWY82duQjN/ZniX3XkpXzjiiPGPZgizJoZSWT6DhmU3SO8IIKMPRRZa2j8VEorRhmsKz5ClLfNCsT2EgxSQWDyZLRLIIVZXFI0uUGE5EUIERrCwRyBwOiFBKQjIpiESVRJasZJp3CZICJytLaa+rjpMf6dymUhYvscmBk4BQDR2HKTMK+ftINnhLniWq2JZGJWWJHispS8JTJ1RTKx3c8aehoaHRWZANJFoEstTpMtxrr70GAHjzzTeV+ynrJxrt9C43KjiWdJGSZsA1e8Nh5TKc7Ti+Mpy3D97t5P5smq6yREQrQ56VgDJcxDfuhPmUpYhUmOOlHctG1Kcs0fbxeFTp1Ip4jI3e1DQOxF+OIXXEr9YQWfJ7lioqXDWTzkdvorHBfW1MX1kLkGIA2sQIlmg0yu+XyRJlMdEQZcuy+Oia0gqXDMqRDIAglTIhTWdEKdf9XbCyJHuWTMh+NcenLDEAhpIe75bz3PdIxmaIRA2URhw1lBJitpxfWSL4je8aGhoaXYXtWRmisd4vw3Wa2Rx44IGhv9thhx26tZiNAQ6Ty3BElhy0eJ6lmKTs2A5TWvX57DdQCUQqwzHGS3jEJ5hti7Z+T1niZZYsZckjS9K8E1KWMmkLZRRKKXmWAH83nMnHfPCRHNFgsiQ8S/5uOI8sxfxkKeHtt/fLOvX1bgimf7SPjFSLIEu0VkB0vAFAWirDReNxpCUiUV6hTtGOUTJ4xleGM02evcVfS8tSsptEWrrPj+T923EcX86St420z0zG5owonWFIRA2URpiU0k2db1Tqk0JTpeeRbu/doccaGhp9F+T79FceegOdJkvvvPOO8nNFRQV+/vOf48wzz8Quu+yCadOm9dji+iIYlZFkg7dto8k3HNZmAHOgpGVHTFUFomsidcORZ0mU4RxehhMp3+5jhAlc9UFF5NwdSVkizYGCFWkN0WhEjGQxI/zxGZ/B2/GRHLrgR31kico2Eb+yVFlEZclT/YxsYSlQWaqoEOZ0IsGASPAGgFhpQiFLZb4hvdR5Rwqdw8mSwUuzXOhyxDlJp0UZjkkLNiDM27Y8YFlSywxFWRJjU5IZB1WlJkqjDifTvJnSEGGnVPaTyVKqtXeHHmtoaPRd0Geo/7rRG+i0Z4mw77774qGHHsKqVatw2WWX4a233sKee+7Zk2vrk7Clbji6+jq2jeYmdYQHY26Ld0Zq1efKUoC5lknRAcQnHMeBbcldT4yPsxDjTlQCFotGFMUKcEtmvOTDPUsigVuOJyBfDy/DRYONvtTR5e8wsy2PLPnKueVlLgEJS70uJOrq3MR6Kp8REhXCZ5SUSEGpNEOurU0KpZR8TTFfXH/Ce36QSCggcrbofJqGqQSVAoApteanUmnhWZIG6ZoGkzxLUnSAISV4Q1aWRFddW8rdNhFxhLLk7Vcuw/m7NQGgvbl3R9NoaGj0XdgeWVrvlaWhQ4fi1FNPxRlnnIGqqio888wzKCkpwdFHH40FCxYUao19CorB2xAKUEOdOkLGYQaY46jKEoUK8m140pLnWXJ/SisGbylnSTJ4k8Dl9yzJ5IVfOCWDN9WMZXIlVA+hLNG6eRnOCi7DxXxkiStLPrJU5pEJ+Xz0FtatE6/NgAEVWLu2CQBQUi5KZzIpKPdUIsaYkjGkKEueQZE8S2XkWeK/97oKA8pwaZ+yZECc22QyI0Ip5SG5EDlLlhXkWXJLaYbnX7JtmxOq1pS7bVlUlOFsXoYzAdhegre7f9kr1dbYBA0NDY2eQCbk+tAbyFtZevHFF/H1119jxx13xEUXXYQRI0bgggsuKOTa+iS4UVfxLNloalRbzx24F1KZHPDuJyrDSQGXjDlZniVH8ixRvIB/3IkgS+5jVLLkdXqlMlzGoPUHGbwN0+RlHZ4FFNJCnk6RUS+YLJl+slReTGVJEKGBA0XHZ0IiS2mpDEdr9cNxHEFKvRwpOu+J0mBliUpuRFINw8jyLMlluGQyzd8XzFSJryjD2dJrZqjKkre9XIZrbveGHkccToZ5fIVh8P1TFIasLLU2NAaeCw0NDY3OgoJ9/deH3kDeRzz88MNx55134t5778W3335byDX1aTBpkC5VSZjjoKlJNcI6zL2futYAaTYcqCOJiX1JBu80T/C2+ePd+XFqdEAUyMpZksmLgezoANsb2UEX5Hg8KpXhhMGbFBH6BuAPZKTyUjSq8nVSXyI+xanUG2KbbA+ep1ZIEMkxDAMDBgiyVFIenCpOJcNckJUlQAzp9St8RJapPGmYBk/+ptfEZOI9kkwKzxJ8nqVAZUmKDjAltpSWynBNbe4aSqNMqEc860vkMDn8/SnQUlff4bnQ0NDQyAcZr6PYf33oDeStLO2zzz6orKzE3Llz8cEHH+C8887Tc+C6ABHOKJQl27J58CGBeWRJVZZUFUhU9LwyHFeNsstwZPAW6hQdR1WpAstwGcngnVGVpahShjMgz5MDANPbX5bBm8p0vuwi8ceg8ngiE3Iidm+Cznm/fmIsSUl5cDhrIkGqEQv8PQBE/Z6lhCjdAdmeJR4GahgiZ8l7rMGEsmRZljTKRPjPTElZsiwb6mw4WVmiDkhRhuNkKeIgQknu1JFJyhKCPUvNa9eGngMNDQ2NzoCuD2ZQ5l2BkTdZmjNnDs4++2wMHz4cf//733HSSSdh5cqVME0TEydORIVkdtUIB40LcS8s3sXFuyjJeYsODDgOU1rlxWwv9/+2pCgw5nCDt1CWHLUMxxxu8ObxAkGeJUmxAoBUWpThLJ+yFItHJdVDKsORr4bKcL6ZctzTFFHfgmTg8/8xJBKuoU8eTNubIO9RdbV4n5eUqdlIhLIyUonC9xflA4Y9hc57ftSdSOeFyo4WL8OZSKeJABMR8pVUqdNN7myE1Alp2WDS+1A0CogFywbvhlahLEV8OUsiOgCB0QFNa9aFnwQNDQ2NToBy2zoiS7++7w7c+P5/cPQVF/fYsTvdDdfW1obp06dj3333xQ477ICpU6fiyiuvxOrVq/Hvf/+7xxbWVyGiA6AoS4AwzQKiDAfIo0gobNDbxhGkxi3DufcrCd7yIF0nwODNowO8xO2oKcdSAvC64aj05/csxSKcCBmGIZXhVLKUVYZLUxnOrywFkyVKtG4tGllyn2+//pKy5JElPysiM3rgHDvuWQorw9Hr4CvDSeeY/F6iG041zztBZMmQA0ltHlZqGIYo50IQ5HTG4u+N+lb3eKURJ2A2nCk9Vs1gAoCG2tXZ50BDQ0OjC6CsOiNH5h0ADNp0E5RWVqD/iGE9duwuRwcAwDfffIMrrrgCm2yyCX7+85/31Jr6NGx+YROhNtQhJ48gkckSwfQpSw5v/1fLcGmbSJilkiW5G47HDwSU4aRIAsAjPqRKeCUgeXu5pMNN4RmfwdunLJHvxq8skczq/2OIe7lL8qy13gRFJvTrJ0zdcW9GouN7nUpLVeIjgxvpYypZosG5tAFXlryyo2zwzuqG8x1HLsMRDGl7twznvQ9Ng7/eckC5bYkyXEMLGbwZX1eQssTJkrSW+pU1WedAQ0NDoysQylJu6sK9sqmeu150iywRHMfBv//9bxx11FE9sbs+DSewG84rwynKkpF1Efb7jWzZLO6Ibrg0dcNZFmxb6phzHOFb4dEBXiYPkZ9IBOrlTu1Ao5Ibrc2dDSfMx3ywrPcY0wxRljhZUpMe6ZtDlrLkhTS2thYnEZqM8pUVwqdUUub+m/kUpBJPJQpUlrxzGytRt6EZeY6/DEfKEs1YM7yyKASZ9ZMl2oecCSUrS5m0JXxmhinG5kgvRTotxp3Ut4nuuzKPCHLPEilLIjaMK5+MMbTWNwScAw0NDY3Og2ZwGkZu6kLdcpnkekaWegPV1dV47LHH0NjYiPr6ejzwwAMoLy/Puf2dd96JhQsXoq2tDUuXLsUdd9yBqqoqZTvGWNbtxBNPLNjzEDlL/D+8rV6+tjJkK0s0t413w9mqZ4lHBzgm/70lkbOgMhx4GY6UIimkUDF4e4/zKUuxWJQHJhpGkGfJG3/iGyJLJMA/QoTPT/PNYaNZac3NxSFLVFasrBJkKVbqmbJ9ZbDSHGSJj5WJ+zxLcfIsecnnlFeV5VnKLsNFDN+cP0d0JxJMiNc+Y/kiJYgsQbyfMhmLb8OMCJKeWpkoiXrHcrej1O5Ag3cu05aGhoZGJ5Fqcz///dcHP+jLdibVc7MpN5ipt48//jiGDx+OiRMnIhaLYfr06bjvvvtw8sknB24/YsQIjBgxApdddhm++uorjB49Gn/7298wYsQIHH/88cq2p556Kh8QDAANDQ0Fex48ZwkGQMZch9SeYM8SwV+Gc1O4hdxEXfgZT6GyJc8SGbwjPnXKX4YLaslMSyU0MpyLMpyp+Gl4GS4tTN+ApIzQPrnypJIlriz57icPT3NLcQazUulLVpZiXgebTFoBUYaz7YAyHJ23OBEqT6HzlCVuzvaefzKpkiUYBlIptQwnkt3hrcd7zSMmjzxQlKWMDceR3hfe46OKsmSLkmA0inbLcMtw/kG6VLKF0CPp/7ZvHqCGhoZGd5AmstSRskRkqQe7pzcIsrTNNtvg8MMPx6677oq5c+cCAM4//3y8+uqruOyyy7Bq1aqsx3z55Zc47rjj+M/fffcdrrrqKjz22GOIRCLKB3lDQwNqa2sL/0QgDZQ1wIOWHK+MJQ+3dZghvtkzNVSQLsGu/8l9CWMRqZPJce3YbhlOlOrcco2n9JBnyfF5liLy+AvRRs7N6GnqhgsowxkGV5Z4x5Z30acuOgINmM3yLHk1ab9nibYrlrJEZEkekltSSmRJJQXUuecvowJS8nlcVZ+IDAqy5J5HKmfSeTfgBk+6//bIDHxlOO4hC/YsuaqRIEtEeGj2ID1fWn8kGkW7baIajigd5/IsEVn3+dQ0NDQ0ugMazE2fNWEgspTqwUHeG0QZbsKECaivr+dECQDeeOMNOI6DPfbYI+/99OvXD01NTVnfeKdNm4Y1a9Zgzpw5OO200zrcTzweR2VlpXLLF0xSG+RxJ4A6y8tN8ObuDwBSdIB3ry0FVpZIglBQN5xhGJD73MgfRRdE+n80amaVTzLSmknhIBIWiZoinTtAWRJlOFVZSlHXm09ODftjILLU2KAmnfcWiLSUSwNvue/I936izj05UJRAr2kkRh4lQTrln+n5tre7SpuqLHnn1udZyooOMOVYAKEspVMZrnBCUpYiUMkSk8mSpX5U8ARv72elDEfzB9PFycTS0NDom+ADy3NzJZH3l9zIynDDhg3D6tVqC7Jt26irq8OwYfm1Bg4cOBDXXHMN7rvvPuX+a665Bm+99Rba2tpw6KGH4p577kFFRQXuuuuu0H1NnjwZ119/faefh7tuKd8GpOqQwVtsx1h2eUeU4USZjfaViHn3OQA8idK2bD52xDAMrkwBgEUGXZ/BOxKJeBdCxj1L8jL83XCxaCSkDCd8TICIBCAkU3LelACvSfvupze/P7yzt0AEpVRK544l3JKc7Zt7lyhRS2wy/GU4Ip3kyZK9RIA4TzLZTKVUgzd5jURJlaIDBIM2Id4/6Yyt5H0R8SHvE0DKkmcUj0bRbquvB71XieDLBm/aX7oHP6g0NDQ06PrQEagykW7vuc+goipLU6ZMCTRYy7exY8d2+ziVlZV45ZVX8NVXX2WRnBtvvBHvv/8+5s2bh1tuuQW33HILLr/88g7XXVVVxW8jR47Mey1+AgQADqU0+8pwImfJvc8/SFc2Xpd6Q5htJitWahlOHotB13HmU5YiXiilfGl0JOJi+5SlaCyqtLXTpuS1ISOe7Td4J4OVJf5NIIssuT83NhZHWaIxK9QNBoisJCqjEkoSpCxle3a4wTumdr9RGc7h5mz3+VIIp+z5otgF+uOlSmaWZ8mUzfpM6obLiMHGhuhsi8pk2rIAJt4TSZ+y5C/DucdQowPSrcUhthoaGn0TqVb3898wjJzz4ei6ky+5ygdFVZamTp2Khx56KOc23333HWpqajBkyBDl/kgkggEDBqCmJneOS0VFBV577TU0NzfjmGOOURKxgzBnzhxce+21iMfjSIeUEdLpdOjvOoIjZpTwywzdZ8sGbwgCI4+sAAA74qobKlnySAkDJxqOZcPKCGVJVg4cI6Ls2+9ZUjJ3JBZHCgcnSxFTaWunC6ZQPzxlyXe+2jwSkKUsdRAN0NBQnAtwm1cO4wNvAcS8Djb/kGDqGAssw1G5M6aqTzT2hUlqISD8SfL5SyVlZYnx8qq/DOeSJfcxsmcpnbaVCAseHeDbDxF7MxLJUpZEgwD4WvxNcMnW4hBbDQ2NvomU9AUsUV6GtsamwO3oupPuK2Rp7dq1WJvH7KjZs2ejuroa48ePxyeffAIAOOigg2CaJubMmRP6uMrKSsycOROpVAo/+9nPkMojoGrnnXdGXV1dl8lQR+AlK8jeI0rwFts5LNsLQ2W0FGJgjOHjF14GjnC7Abmy5AhRxrbVMpwBh++bSjTcLyV5ZVgOZcmyVIN3NBpRSos8ATqtKksZ37nnypMRoixJiMejfLu6uuas3/cGKAyTzNsAEC1xiZPlMzITiQpUliQfkLuN5BVzAspw1A2XFucrJZU0TcmLRISX3jcURApAGaSbTGU4wXPLwe4vIpKyJK/VjESyPEsiwZsg54a5v2xvbsl6/hoaGhpdRbJNfAErqSjPQZY8O8jGZvBeuHAhZsyYgfvvvx+77bYb9tprL9x999146qmneCfciBEjsGDBAuy2224AXKL0+uuvo7y8HGeccQaqqqowdOhQDB06lPtfjjjiCJxxxhnYfvvtMWbMGJxzzjn4/e9/n9Ov1F0wmQDxi0s2WaJBuu6/fQZvBnz84qv44PlX+PbkWbIcab9WRspAEq3hDMJ4zctwtiBLYEyZE2Y74m3iUEgiL8NFFPMxOe+EsuStK4sspeVTIO73DHyGYSDq5RUNGCAM9PX1xbkAt7a6JK6kRCJLpCz5AjdLvBiAoNZ5TpbiasdcJErZWKqyRAqc3E0oC1YmRFecXxGSh+TKg3TTqYy0Nqkbzt9VJ5Vms5Qlns9Fe5Geo/f/tobgDzINDQ2NrsBKpsWIqLKy8A3pi2Frz10vNgiDNwCcfPLJuPvuu/Hmm2/CcRz885//xAUXXMB/H4vFsM0226DMO4Hjx4/HnnvuCQBYvHixsq/NNtsMS5cuRSaTwXnnnYfbbrsNhmHg22+/xSWXXIL777+/YM9D7kKiKw11yKllOINfOHlooHexi1mteOrqG5U29lKJLHGCkrGkrB9DGrgqlCUxxFfkLDHGFBZNk+UZY1ndcxGpDGdAkB+e+m1Q/IAvOoCTJV83nCSblpSWwUqmleG1DUXqhqOZdJQkDohSmj9Dirrh5DIpwclSltxtIqafLLnbE6m0JDUpLc3FMSUvEleWgspwhhikm1ISvDtWlowAZcnmCd6yZ4ke5+5Hp3draGgUCiW5yJKHjmwdncEGQ5bq6+tDAygBYOnSpcqF9+233+4wi2HmzJmYOXNmj60xH8gGb1odN01nleHU6ADynCSXfwdAdJwBPmWJ9pGx+AXbMOSuKdEtkGXw5kGGYj8ZO/s82rx8FBGdWtKDKDiRZzW1+5Sl9uAyp1yTLikrR2t9A/p7w2tlstbbaPHynShpGxDqkJ8IUmdbEFniylKM1Cc1KsDfWdfqlf/kY8jhpaYBHkYqlCU1iBQgz5JQlvh5NAThCVOWTNNEu+0rwxExkz1LTH1c45o1Wc9fQ0NDoycQLysNvD8ajwvvbA+SpQ2iDNeX4DhBZbjs6ACHyQZv974Kw71wEolSyJJXY8tIypJtW3xMh2EYPEfHgeRZomPbFB1gujPkpDVHAroOLMng7Z/7Boh8IGKEfs8SlbWy9psWMmtJmauckbJUzOkZFIZJRAiQ1CG/suQRoUxAKCMvd3qPJdLJB9Ta6mN4zlJanD8zFhWmf4jyLH+/BHbDAbTy9mSad2AqoZQ+Tsy9T5EI2i1fdACV4aT76H33zX//i9rvluC9J57Lev59Cdddd11W9+6CBQuKvSwNjT4NPny8NBH4+0SFGIOWbOk5j+sGoyz1FTgBF1A7Q91w4j6mlOG88hssABFljAaNsyBlSRYz7IytbCsP4s0yeNNF3CRlSfhgzFj220T2OInnxLK64Qj+gYaU4O2mfpuBihHJrP36CWWpWKB8p6g0DoY8S/7wRRpdYgUqS17ZLeY+lozw0Ygow0WjwtBOpNKRiDGlfwNueY2/rtzgTSZxtRtOLpHaEilzlDKcMIVTOc0wTaQcl1SJ9xCVZrOeIub889+Y9dYfs3/RB/HFF1/gkEMO4T931G2roaHRTXRAlkrKRXku2YPxJZos9TL8HW6AUJssn7LEfGSJjOlOwBWqRFKWuGKlKEvywFWxLyrT2HIZLqNGB0RjovRE4F6baASZjBjFQaAuLoK/y61dKsuVlcXREjDzjWTWKm94bdCstd5Ck6csyeNZ+GRrn2pGylI6iBj7lCVSB6OerGNbtuJFI1LpOA4nxlGJLMnGba4SWqITMUiBSiUznKDDMCSy5EDoT/6BvAaStoGyqLs/22FeRlM2/KXEvgzLsnptVJKGhob3JS4CxEuDy3Al5ZJtowe/vOgyXC/DdgLIkvct3/YN0pVnwwFyeS1AhfHIkmWrXijZNyOrApws+ZUlrwwnEx8+XFciaZYtjMmkrMhlnFQqA1NSSPxpzm1tQo0pK1O/IfhlVlKWikmWaMyKTJYoG8nf6Ufqk1wmJXBlibbxCBUfUGtZKCsTZIi64WRE4jFe/jINIEaPzVKWpOgAg3FSlUxllHKfMHh7P/NwS7mrDorJm5fhpBE99FoHebX6KrbaaiusWLECixcvxmOPPYZRo0aFbtudMUkaGhou6At+rKQk8PdyGa4noclSLyOoDOfwMpwgI+4gXXdboSypF0UZcY8spSVlybZspRuONAMGwKCyD8UW8ADCbIN3xFMy5KPKs+GsgDlvyWQG8YQgQf4yXEuLMN6Vl/ve9D6yVFlJylLxLsINDW4LqvwcuTrke25Rz9eUTmV7uSgMklQpKleSSdu2LGX+nEwq+f7jMf5imGA8wTs7Z8nk98mhlO1tKZG6Dn8ZTg4qVYchJyWjP70UQYXRoDDOvog5c+bg1FNPxWGHHYZzzz0Xm2++Of73v/+hoqIicPvJkyejqamJ31asWNHLK9bQ2PBBCnqoskTluR62bWiy1Mvw5+gAQm2y/AnePDCSKY8JUljIViR3rtmWxZULwxBT5VXPEhE18iwZYI6cCi0ZvGVlibrhIqIbTh7Um0ymlZpy2qe+yKqLZH3+3wAAcWJJREFUPG/NPYzn0fLIFpWliqlY1Hn5TvLrRufQX4YjE3hQGU4ZKwORxi0rS6XeSBXGWKAHJhorUeIk/EN4uWokh1IaUjdlMq0O0uUGb390AHmWvIBM+b1Fxwr4PAoytvdFvPbaa3juuecwf/58vP766/jJT36C/v3744QTTgjcvjtjkjQ0NFxQNSSWCFaW4p7Xtac9rtqz1MuQPUs88di7uFiKsoQsgzddp2UzNGPu/XGvhpKWDd5WBpm02Jbn8UjRAUTIVGXJkTxLLNiz5K3ZjBhcpZB9TslkGuWDxZs5KHaePDil0rw1QLTXkzJVXuF+gygmWaqvy0GWfCVGXoYLUJaIpJgRT1nySCMpVpZlK8qSAu/FjsZj3hBmw40O8MgZvYaOJRu8hWdJJUsBBu+wGXNGQBmOqSn0MoKSyzcGNDY24ptvvsGWW24Z+PvujEnS0NBwQde/sDIcGbx7mixpZamXEaQU0EVJrl4wZvCykyBLZNyWlSX3d1EaKyJdp5yMrZSuTIksmb6cJVvuhpM8S4wBZlSdI6dsHzGFssQ9L14ZzSM7HRntSn3fEPgfg3e/UJaKp1jIyeH9+7tlFiplpttUskReJsqakkGmfdqGQieJqNiZDBI+8sgf6/0/Go8JZQmik87mxFfOWZKVJc+zlMxwEzggyJL/9RMDebOVJUsq7/o/kzYWZcmP8vJyjBkzhk8V0NDQ6HnQ51IsEfw5SeU51sOZfJos9TKcgG/dohQm3YfsbjiCGh3g/p/ifzLSPiypDAeIC7KqLHXsWaKkankdNHPOJUsUA6CuM4z5+9fu9ywxTpY8Zckr0/njCHoT8ky6gQNdYy4RTv/8oahnQEqng5QlT0nySmcUzknmajuTQWki+3x7d7jbxmK8I9IEQzSkDGcYhuRZElnbra0prj4BIgYgIqmJ7n7UkrGctSQPV/Z/JAUZ2/si/vKXv2C//fbD6NGjMWHCBDz//POwbRtPPvlksZemodFnQZ9L0XhIGc77kt3TAca6DNfL8M8RA4TaZMkXICYUAr+hO8jgTRe6tC0GmtrpNKSRYvzFdpiRTZaoPGQabiilnLMU0A3HyZXUDedn3rGQHAwBt5QkD6d116SW4UrXA7KUTlu8bDhgQCUWL17Fz2HKR5aoY84fnwCo5mvA7UwDhKpjZyyUec83myt5KmJMUpYMhliUlKVskkPvFVPyLLUnU7BtKSIgpBuOjzuhOXUSWZJLxsx9GcXviti12JvYZJNN8OSTT2LgwIFYs2YN3n33Xey55555DQfX0NDoGriyFPJlvFDKkiZLvYzAnCWPqMiik8MMXrryG7wtRVny1AaPqSjKUiYDy7soGoYBr/LjJniHeZY8siTKcMKzJF+8uWeJ5zWp2UyA9GYOKR3T/hI+OZW6sKIl7v1lpR5ZCiAfvQnyhw0Y4JXhKBahzU+W1BKbDK4seaZ5ylEypW64RJiyRPuPx7ix2jQY90j5iS/kMhwkstSehpOJ8efAE7yzxqY4fD+A8Cwxxrj5G8h+eTMbibL085//vNhL0NDY6EDXRbo++EEViaBrbXegyVIvwwn41k1qU8ZRSxt+gzf/nZNdhiOkpI4627KQSYsNolKCN1eW/NEBXru5KakMwrMkjpvJqGM6AChqFCDezCyELfHp0X6yZKnfHMjD096enTnUm2CehEKz6jhZ8ilLZNYOUpY4WaLsIi9HSSnDec/XryASQYkq405EGU4oS9llOLnTrbUlCUvuxuzIs8SVJf+5cOGW8eROyY3T4K2hoVF40JfBoMYjQHhdg6613YH2LPUyLCtbbaCLUkYqwzEm3hT+i6ackOwnUhaTOpYyluIfiVFKNJMym7w3lCUrS7atKEs09FXmPJYtynYEkz/G/T/VjsPyLuh5hZXhaJxIosT9f3uAUtObIEJZVeXF6Xskwh+pTwQyqGzIc5Y89YlCJ+k0WulMqLLEVcSoqizR8eg1oWPIBm+J06K9PQ1b8rJRsCS9lv6BuISGpOHFGTg5laWNxbOkoaHR+6AvnNF4MFninqUe/tKmyVIvwwkI7CNykLHVb+sO9yypj7EV8qReqjKOTJYySmcScR6HGbzuk+1Zcue0KZ4lr81dVZZU7w2QrUxES0qUn7Oet/e8Skt93XBcZnXvL/HIVHtAmnVvgshSv/5qQmyqTSVLXDXKWYaLKNtwspRJS8qS+rrT+VfKcBCGchrKy4mQpCxFJWWprS2pdMPZnHjRcVRlidCaMXH6aXfgJ4dfp7wX/C/vxhJKqaGh0fugz9BImLLkXTfsHp7TqMlSLyOohZ7UpowlkyXBjP0XI9sKv1BlJGXJyljKhYuPxZCiA4RfKpdnKcr/zY/DPUuiXieG77p30QwzFpRcCKEslflCKcnYTjJr3PsGQUNliwUqL/WrKlNHubT6yZLn8WkPJ0tUBm3znpMow1ko8ZS0LCO/pCyJ6ACGqKdS2TwGgpQlQbiipkyW0kqjAfOV4XgSeNZ7leHhh9/Em29+prwXtLKkoaHRW6DPrjBliewfmiz1AWR5kDxCk/a1Y9Nk+GxlKdvgTchIs7ocSy3D0bBWhxlSZpM3l84K9iw5DuMlI5n0WJZahmOQy3BezlIHyhLto7xC7ZqjPwaqPcfjLllrbS2uskRdi5WVpUhIk63bm1uU7ThZClDCeICn6Z5Tek6k5FnpNCdL/qR2Ov+RWFSNDvBUKl62JdVI8Sx5+2AMjuMoeV/06ogynGrwpveK8jLm8M0FZYlpaGho9AQo1y8SCzF4a2Wp74K+wWcUxcjgL3ZnPEsZJlrCrXQ60LMUlOAte5CYY/OcJXnciaIspVWjMhjLKuPwmXIhLZykgJT7lKWMN2uO3vTxuPucWoqsLFHpsaIigRJpWGOyrVXZjshFcDecWr70e5Yy6TT3cGUZvHl0QFT1LHllOFIRbcmzxMer+DKwHCkDSuzLR5b8Q59lU7fiWTKkTUJaHzU0NDR6ALwMF40E/p4Up6CYnu5Ak6UiQw16DC7D5fIs+S+oGUe94Mnf8mNRYfAWylJAzpLtwOCz4Rhvc5dJDxEHZfyHvxsuTpEDwWRJJh/K/d74EGoBjXrHb27KHpnSm6BE7oqKBBLlLllijMHykSIe4hhUhqMBtp7jutVfhlOUJZWs0PmPRGNc2DHBeFSB5Y8OgHh/RH1/6UHKkuEvw/mPLxXcWA5lSUNDQ6NQoFy/MM8ShShrstSHIStLDmSy5Ot4U5Ql6X5HKEYEpQxnSmU4k0zBGWWfpEbIZbggZSmrDMdYluclVpLbs0RkyT9Il5Ml7/FkYG5uKTZZcs9VeXkCJeXBE68BqdU+qAzHPUvuNvScSPnJpNIo8brh5JRsAHDI4B31KUsRMVcOEGU4I8DgzVUjK7sbjhNo7zG2v5tE9inJBu+Ac6ChoaFRCHCyFA1OPqKKhhUwQaE70GRpPUJSSpR0E7yDy3BOQCgl4KpKstLj34aUJUdWljyCZlnC4O04juQ/ciTPkjhu2jcAljHGH8Mv0B7DDwsHo3Eg/m64tEeWyCBOyklzk2qk7m2kvPJgWXkCifKK0O3oJQjyWPE5etzgrZbh7EyGe7SylSUqb4puuIghlCU+G46THKkMZ6rme/ff3n2+NQrPkuW7X/xbeQ9mPUsNDQ2NwoB/hoaV4byGJKuHh1ZrsrQ+gTl8mC5jBpxMxwZvmUhZzBBX6gCQsmQzgysbdEG2rGDPkqssZZMlWYnyFsy74fgFmspwIZ4lIlxlvsGxNJiWynhEyJqKXIajkMmy0hIpUj+cKrQncyhLhqeWNbvPyTTc+W2ZdBqJEu+P3deCL8pwUSU6gOcsZagMR9EBgGOTsuTtI6BmFjZWhfmULaUDTvl31i41NDQ0CgIr5QX5RoLJUkSTpb4Px2GwvZKI2g3nL8N1TlkiULnGgbhYk3ogyI8JR/Isud1w2WW4NFdIsstw8gwzdx/BZIk8QAkfWaLcIqpJ0zEaGtSus94GJYgnEjHEyzyyFODH4mW4QGXJGzpsqmQJcH1LVjKFWLwjz1JEZCPBEWSJl+E8QgZBrCO+MpyyX9+6eRnOpywpZThHK0saGhq9D64shZIl9/Mzo8twfQAhVxfmOPwi6DDA9pQCf2y7XNZSgiLlzQKOEfUuqrakQDlcWRJt4o6tepZI7nSUMpyqLKllOErgzl2GS3nG6FLfuJOUl1tENWk6RkND18tw0UQcV838F/788duoHjm8S/sg8pMojaOkLFhZKisTZvWg7j07LfxEANDSIraJGAyZVAbxmGfY9nmG6LyaimdJKEsZy68sSZ4lU5BfP/x30XH8rbcsD7KkVSYNDY1CIuMp9qFkybufvK89BU2WioLgKwpjkrLEDJGB5FNmZGVJKcM5sqqUfYyoFEpJF2tKew4vwwnPkpytk/GV4ZjDeDccGZNJDg0jS0nPME3dX/z+VrcVn8p/gix1TVkyTRO/e/5JDBgxHLGSOA487Zdd2k+rZ9guKYkhXuqSIn+JsaxMEL/WlgCyRN1wJpnAZbLkSsxx73xkleHsYIM3KW803JhINiCIdkQiv37Irf/yNlklxrDoAGUzzZY0NDQKh3QqN1mi7m0rpctwGzzUa4v6bZ1EJAfiwuq/aMlhhX7PEicvAceNBIRSkhlY9iDZlq0ETBJTV5SlFCkk4nn4u+EEWQouw1EOUdxPlryQRzMSEXPYANTVNQfupyNc+NR0DNxkBP956z1369J+SFkqKYmJydY+slReLpSloG64DJXhDPGnJ+a3MWQyacS88yaPqpGP5SpLXuo2GDeLi5wlaZQJqXw+P5kMvxokErwzvu3k96qkbubYl4aGhkZPgjxL/s5vApGoTEorSxs+cpThkrb7kqRtgxOZbGUpOJQyIytLAQbcSICylO1Zci+oBleJHJhemSeoG04pw0lqFCB5lvzeFw9tXKlRW0DbW1xlyTBNDBxYye+vq+u8snTmtFuxybZbAwBWf78UABTi1BlQm38sFkWJZ/D2q2ZyGnlgKGVGLcPJIM9SnAyKlt+z5P4ciURyl+HkwElSlry/dEVZ6qAbzh8doJAlpSMz66loaGhoFATULW1GcpOldLsmS30ALOBf7sVo1qpy/HdVOWrao9wz4h97EaYsKWQp4Hj03rIheZa8C2JGKsM5tq3EAJCsKStEpHqIMpwDE4JgAUIODZv+TKGNpKQQks2ugmSYJqqr3RZ9xlgg+ciFeCKBbfbdCwAw/823cdevzvYGA0ew1Z67dmpfgDBjx2IRxBLBfiwaghs64oWkYYXXeq+PwZBOpRAjz1LG51ni51UiS5KyRLlVcuCkP2fJCfAaZStL/giC7A2D9iM/Fw0NDY1CgDxLsjovg5OlgG7k7kCTpWLDV4araY/h03WlAAxeTvGXsayAhGYAkC0uQa3dQcqS5SkdlkR+mK16lkjuDFKW+DqYwx9jS94a9+cQsuQpS36y1NbUzNfSr3951uPyxdZ77+E+H8bw0EVXoq2xiZf4dj/6yE7vj3KeotEIYokQZckXsOmHFaAs0WmNGECmPcnPRzqsDBcR3XARU3QLEoG1pVBK/lqYKpEFwFmOE+ZZ8nfjhZElzY80NDR6Cel290sr+T794F8etcF7w0fYt2+/N8mh3JycypKUfaSU4bL3b0o5S3R99CtL1A0nRwdEArrhUj7PEpOG79L6RBkumCxRtxgpKYT2xib+7+r+FXwdncVWu+/irrVVdNH98NVCAMAWu+zc6f01NkpkKWSyNXXDhREInv0hkyVJWbLSGUS985HJUpa8Mlw04vMseWTJI7CORLJsrix5PyvvpeAyXH7dcMGvqSZOGhoahQSV18JicujLfaqtZ3P5NFkqMtRv6+oFiMopju8KlAlRljIseKAp/ZsGpSoGb/IsZSTPkm0pxMcwPbLU6TKclywdMqOHDNNRXxJra0Mj3/fAwf2znk++GOl5lRprV/P7Ppv5JgCg35BBYghwnmjylKVIxETUG/LrZJGlkpzrpYwQA7KyRK+PW48n8kgmer6dna0sud1was5SrjKcHZD+nlWGoyRwf4K3HIYqE3bFBqXZkoaGRuFAilE4WXLv156lPoB8lSUqp2QrSzJZknOWckcH8DKZ9CtSIYSK4SlLUhkuwsediOOmfBdyJs+T89ZHYZZZ3hcP5AGK+Ix6bc1CWRowdIC7j5COulwYuMlIAEDN4u/5fR+/PAOMMRimiR0PPahT+6PoAtM0uLJk+UpliQQNDw5+jTNeJ4dc+eLdg6YDx7JETohv34yf1wgvnZmGXIbLNnjbvNPO+zngPPpXSmqU7T++TIp0KKWGhkYRwBWjMLLkeZnSG6uyVF1djcceewyNjY2or6/HAw88gPLy3H6WWbNmgTGm3O69915lm1GjRuHll19Ga2sramtrccstt4TGqPcYQq4u/rZuIjL+C5xs/JV/J5fhgpUlb78IUJaUMpxk8LYZlzVVZSk7XVqoUb7oACu4G66l1X0z+5UlK5nma64e2F9ZX2dQXu0+9vt5nyv7bqmrBwCM/+mPO7W/+nqXLBmGwQM3/apZR8qSHZAq6y+V0eDglN8XJpMl8ixJZIl8ZLYyJFc9VlAnZda4k1DPUnD5F1pZ0tDQ6CXQhIcwCGWpZ8lS8Nje9RCPP/44hg8fjokTJyIWi2H69Om47777cPLJJ+d83H333Ydrr72W/9wmnWjTNPHKK6+gpqYGe+21F4YPH45HHnkEmUwGV111VcGei9INF5KKDIhySr7dcB0ZvEnOcBg4KyfDcUYqw9m2zQMmLdvm5TQW4FkS63D4Y3hnXYS6uoLLcC3NXgtoiFEPAPpVu9EB/oDGjlBe3Z8bzBf+7wPld0s++wI7HLQfRu+4faf2KUcXkB/L7+uhocBhHisKVJPhH0lC5NFvorcVZcklVKbBOPHlBu9MdhlO7KNjg7cd0g2nRgfIpCt4Gw0NDY2eRqYDzxIh2dqz47E2CGVpm222weGHH44zzzwTH374Id577z2cf/75OOmkkzB8eO7RFW1tbaitreW35mYRbHjooYdiu+22wy9/+Ut89tlneO2113DNNdfgvPPOQywWy7HX7kG5noSUNgChQvgvWmEGb9mzFHQQUYYTjhmbl+F83XC0f9tBzFNRUhJTT/rLcEzkQMsXdfkYfpAHKMg7ROeioqpcWV++2HafCe76HQdrlixVfjf35RkAXEIVTySyHhsGKsMZhsEVJH9KLEUHhM3DE22v4rWyfcNuqSyZ1XEYoCyZyFaWLEusye6CssQ9S35FMMyzhCBirqGhodHzSEoNO/GystDtUq0bYRluwoQJqK+vx9y5c/l9b7zxBhzHwR577JHzsSeffDLWrFmD+fPn46abbkKpFyZI+50/fz5WrxYG4JkzZ6Jfv37Yfvtw1SEej6OyslK5dQoh09v9F1i6WPnVgYwyzkJWlsLKcOrh3d35cpaU0p6IDrAdxkd7JL2wSEB0XhmGAdM0lXlytqcCUTkz66LrgTxLQd8QqBRUXlnmra9zZGmLXX/krrk5+9vFl2++4wVvGtj1qMPz3ufatYJol5V6I0l8qhmNbglTlqyMIDJRL6vJIs+ST1lKJX3qnXceTdNUPEtcWaJBuhLJsrN8cB13w3HPUo4E7/DoAM2WNDQ0Cgf5SzvN6CREE3H+ebhRkqVhw4YphAZwL+h1dXUYNmxY6OOeeOIJ/PKXv8SBBx6IKVOm4Fe/+hUee+wxZb+1tbXKY+jnXPudPHkympqa+G3FihWdej4MwdJSlrIU4lmSf7ZDDN5BniWCI0UH0AVRLsM5liV5lhze+dXeJMiCrCwlEnEwRyrd8TKc16WVDg6TJGUpSE2lzsDycvePwa+ydIQRY7cEANSvqgnYt4PW+gYAwOgdx+W9z6TkpSor88iS77klPGUpzJCekTo04iUJb1uVLJHSlk77u+G81ygiogMipiBLdI5kImPGVeVMJp0dKUuOfzadTJZCynBdiXjQ0NDQyBdp6Ut7olxVlhJlwsecbOnaeKwwFJUsTZkyJcuA7b+NHTu2y/u///778frrr+OLL77AE088gVNOOQX/93//hy222KLb666qquK3kSNHdm4HislD+meWZ8m9EFu+C698wVNM1zJZcnKQJfkYaSJLtE8DtmXxcSeWZXMzc1tjI3+crHrE41FXWaJ9Shd1IDw6oKHBG2sSwJZI8SIPkN8j1REGjHDLs6u++Tbw92TyHjiqk6+dh1JPQcr4ynCJRO4ynCURIDqv2cqSeyb9ieU2T1k3RXQAJLIknSN6zUuHqqNd5NgJeu9lKUt5RQcEj9zRZTgNDY1CwnEc/pkT95GlEulnuVzXEyiqwXvq1Kl46KGHcm7z3XffoaamBkOGDFHuj0QiGDBgAGpqspWDMMyZMwcAsOWWW/L97r777so2Q4cOBYCc+02n00iHqCX5IMwQ60/qdnh3U7hnSVaWLEWwylWGk/wyWZ4lKIN0bcdB1CMGlH8EqEpPIhFzO+i83ZIZmxSSMM9SY6P4hlBVVcaVJkCU7kq8cldnyVJplVsa/e6TzwJ/X7+yBsO3GoN+QwZ3ar+OwxCJGEjEI0hBDHUkUHRAmCE9LaXKxhKe74k8S6aqLKVSYZ4lqQxnZnuWZBgV1QDEuZM7KYWy5E/w9pSlrOiAjpUlbfDW0NDoLfg9p4lKMR4rrAu7qygqWVq7di3Wrl3b4XazZ89GdXU1xo8fj08++QQAcNBBB8E0TU6A8sHOO+8MAFi1ahXf71VXXYXBgwdjzZo1AICJEyeisbERX331VSefTScQ4vD2K0s8SdnXwi0rS52JDuD7ZciKDlDVKksZXULdcKTGAKrqUVIS86IDmLIv3g0XQiwbGgQ56te/PJAsJbw8IxqNkg+qRw7nx17wzvuB26xesgzb7b83yvr1y3u/AOVOmSiJe1lIvvlDJXEa8RJMluQ/4CilgGeV4dyTn60seYTWNDnBkRsJg8hSxoxDJkvpgDKcf6VEwP3J6zKZZyGeJU2WNDQ0Cg4GwABKfAZv/889iQ3Cs7Rw4ULMmDED999/P3bbbTfstddeuPvuu/HUU09x4jNixAgsWLAAu+22GwBgiy22wNVXX43x48dj9OjROPLII/HII4/g7bffxvz58wEAr7/+Or766is8+uij2HHHHXHooYfixhtvxLRp07qlHHWEMCKjmmbF/VkmXbkTKawM15Fnif6dFUrplsCESmRzpaNlXR3fRr4wx+NRzzDtPYb8T5QsHZAtBABtbUmRp+SbAUfG6bhHSmg0Sj7Ydp89AbjkomlNMBlf9fUid/+l+XfDAeLcl3ilskxKXVdJSW7PEiBej5jnBctwsuT+ns63v+PQkctwpCwBWdEByrF8sQDKNiGeJVp7VuRDiArq5HivaWhoaPQ0+GdoqTqLs4Q+zwvwObRBkCXA7WpbuHAh3nzzTbz66qt49913cfbZZ/Pfx2IxbLPNNijzmGU6ncYhhxyC119/HQsXLsTUqVPxz3/+E0ceKQaoOo6DI444ArZtY/bs2XjsscfwyCOPKLlMhUCYxyPM52Jbfs9ScCil6lkKzmIC1PEUpPrIioNj2Xw2nG073IHdJJEluW5cUhJzCRbt0/KRpUzHxLOqSiVLtreuuDf6gzrn8sHmP9oZgGpI92Pp/K/4GnO1n/pB5bU4kSWf+lNSEvW26zhEMxr3SnY8OkBVltrb/cpShq9ZLsMRSfWX7QD1tQZEFyMgQiZDPUs+GdvJy7OkyZKGhkZhQZ9dJQm1G67EC6ouxOfQBhNKWV9fnzOAcunSpYpRePny5TjggAM63O+yZcvw05/+tCeW2AkodQvxz5CBs/4Lr/yz6lnKU1lS9uUpS3K7uSXKcHLad9PqYJWmxOdZykgKCBCuLNHaDMNAVZX6pifjNJESCrDMB8O2cg38dctXhm6zZslSfuxNx22Hbz/8OK990/nywsmVNlZARAfkQ5ZIWQojSykfEXOkMpyjlOHIsySdZ8YC2wxlos2Tun3bcLKUw7Nka7Kk4IorrsCf//xn3H777bj44ouLvRwNjT4NbvAuUysDcS9KoBCfQxuMstSXENap5jd4E3J1w6meJfkYwSU9wGfw9i6wdAzDMNwEb9rWjPJ9tEqeJRnxWNQjS14HHZnFaWZZQGo1X4t3Lvr185XhPLIU9eIHZDN4R6ge5pr0V3iltjBQl94m2+ffcUlkI+rVzDJJlcTFPBblnxmnwHs9KAWcjPmmZ/Amcpr05SxZEglVc5bc38smeHrF/cpSKqBjzm/wJiXT71lS3lPKfEIW+O+NBbvuuit+/etf47PPgpsJNDQ0ehZ0DY2V+MiSl6Po9//2BDRZKgJYiLLkOHkqS3I3nPdvxpjiT8lNlsS/7QBlyZT8R4YpxMewMmFJScz1LHk/ZzKCeAG5lSW6uFZUqG966hojUtLYlH8baKLCJV6LP/4k53YUsjlszOZ575u8WjHvL8c/2TrOy3A5PEve/6MJ1bNECd503tp8pnYnk60syeKR0jHoveaGo5K2IIO3n97wxoIuKEsbG1kqLy/H448/jrPOOgv19cFfJjQ0NHoWdH3L9iy5ZCnsWtUdaLJUDOQTHZBDccqksz1L2fEA4RcweQQGXRBlw7ZhMJi0yKirfgQxdTpELBaBY1m8mysjXdSB7PZ6ZZ3efrPKcESWvHcoDbHtCIM3G+11izEsePeDnNs2ex6sgaM2yWvfgCAkUSqV+SZbx71uuJyJ435lyXs56fwRAQrvhjMkZUmwpXTAMdP169SfZc8Sdb2FGbwt9fhMNnVLfiYn+G27UWDatGl45ZVX8Oabb3a4bbeT/zU0NAAIYcEfHUBxLCxHg01XoclSERCm+ij3S9v7lSX5Wz0vmfjJTA6Dt1x2IYO3fHE3DIeTFAs0siRI9ZIM3tKIFPLO8C6tZDhZogtzeYVKllLtKlmqW5dfGusm223trowxJHMYvAGgwUv37kzWEoVx0rrSfrIUI7IU7lmi11yEUrr3RzpQlrjB21DLcP61AaKTbd1iNZQznepYWSLl0vFFEYSFUjoseFZhX8eJJ56I8ePHY/LkyXlt393kfw0NDRdEhmi6BCHmkaewKk13oMlSEaCUxUKC/uQrmJ8syeoAESd/vICj+KLU48t7491w0j4jYKiKu1vV1Lu/D5rvRvuNx2NukCUZvDlRIM9SeDccPbfyct9YDs84HemksjRk883c/eZQswirl/4AACjrV5XXvgGg3VN7KEAy1aZ6qaIeWco1nkVEB7hkKeOooZT8WL5uONkLxgfpSuNO5DLcwxf/Hq9Nux+rF6m+raT8WhBZ8vEbIsZ+4qN2w8mZSxufwXuTTTbBHXfcgZNPPhmpPN5rQA8k/2toaAAQ18qYjyxRFEyY/7c70GSpCMgnZ0lmS37/i2Lq5m3e4WbcrIseyz62fHE3DaBfzH3MD3UeWQoYWcIv+rEIHEeMO0lLc+YAwEqHX0yIWPk9S6k216NEHWJr1jSF7kPGoE3dkpo89DcMK792VRf/MMZcSHoEhlQgWich5kUdZHKlx3rnLRKlMpyh7JPQ6suWsnnKugmHuWdbLsPJuUwL352N//ztH9lEWzZ4OxQdoBIc2ROnvldDlKWN0OC9yy67YOjQofjkk0+QyWSQyWRwwAEH4IILLkAmk+GdoDLS6TSam5uVm4aGRudBZIjUeQJ9AQ0b3t4dbDDRAX0KIWSJhZhmc0YHcH+Jjyyx4AseoHbDEWSytMmwKsQj7mNWNjroj9wdbfGSmDt8lzxLtC+aWdYe/lhad1mZ+g0h2doOgPFy17p1+ZGl/l4nnDyaJQw/zP/SXaZpIp5IKKNIwtDmPReuLPkmW8fyUZZISSrJLsNFo1GuFIXmLBmSZ0mqw6WS2YQ243tfyFlM5GvL8rSFmNNlBUkm52Fhqn0Zb775JsaNU4cwT58+HQsXLsTNN9+8UZUjNTR6GzR5gsgRgZQmJ4/ols5Ck6UiIMyn5G/VJvjToJUynPem8BuKlYTlHKGUQfvcYaw7hLY1Y8AscVUXf4u8/DxK4lG0S9lM/rXkKonRtmWl6ps+1dLKO84AoLa2IXQfMqoGDQCA0ORuGbXfLeFZS6N22A6LP8rdPQcItYdIXLLVV4bzRsOkc8yyo/MWoZgBIksmQ1mZOA/tPpJJMQ8wDJ6V1dG4EyvjJ0vSukhZ8g9wDnkfqmU4uRS88SlLLS0t+PLLL5X7WltbsW7duqz7NTQ0ehbUYJLlWfJ+LoSypMtwRQAL8RM5IeWPXAbvdk9NSCYzOcp7PoN3wJrkC+HWY1zDc2MmwhNRU21BZMn9fzQW9brh3J/9F+10DrJESodfWWpvaUHMpBwghrq6/EoWpVWu/6huxaq8tqfy4qjttslr+9YWjyx5KlqqxU+WvCG4OZUlT0KOeZ4l7zxGDLUc2dLiK8NJypIdMBvO3z0HqKGlgPBcAeJ9kTXAOaTerxB7Sxu8NTQ0igMSCcgjSuDzNgNsI92FJktFgFwig3KhydfgLX6+9S//wtKlq/GXv/xTPUaIZ8m9PmaX4dx1uQfddJNqAEBT2kRJuTsKJNWa7QHiKarxCGxpREoq5Xo28umGo5JdwpeXkWxu5mSpMyD/0VrPvN0RyNs0dMst8tq+tdV9LrS2ZKvqWeLKUh4Gb64sScSnVDoPbW3hBm86M3JqfbCypN4nl+roPeIPPQ3LiHKUfC878P6NpQwXhAMPPFCnd2to9AJIOfJ7lmiElFaW+gpk1SekG06+6Ph9JzJ5+uKLpdh8szNw5x0vKduEXcAUkSnkujZ0kJv/0piO8ETUIMM0KRPxuDruJJ22EJXyL9Lt4XPdqDsrkYgp97c3CbLUmdJOxMsuqln8fV7bt3ip5AM3GZHX9s3NnvHcZGCMKXlDgCBLqRxlOIcrS57B2xEG71KvHMkY46NVCLYU7un3nTHGAlUd/3tHVp+ItNu+sltYGU4xeFtiLbZCojZesqShodE7IOWIPu8JRJ60stRHoFz85U4i5Ru+VIbL+JWljt8IyoXNCSFLIWypf5VLdBrTJuJeyFd7QOcO74aLRmBblkSWMvxxQLDfiUBKRyKhfkNob2pB3CNLfs9WGKoGD+JKy4qF3+T1mHrKWho6JK/tm7yBvtFgcQ4RL+vAP9dNBik6wrNEyhLLilCQQdlJssG7I/jfO3LHHL3f/IRPUTJDGhAUg3cIydfQ0NAoBKgzOOojSxHP2pBrakRXoclSEZBPO7Y6WiK/MolyDDukDCePRAm5rsW99vfGTIQz9fbGHGQpHnXJkke+0mkL8dIyvl06FU6W6OJNA2gJrY1NvOMsTOnwY+Q2W/F1Na9d18HWLtYsWQYAKO/fL6/tmxpdZSlmssATyMlSjjIczwjxJmZnWLayFAQ7I4VS5slJ/OGY7VLQJb1+/m3k95d8GIV0y8Qp5L2moaGhUQhYYcoSfQFNh39Z7So0WSoCwhK8w8ad+EspufwwYl/BOTgsD2WJ1JmmtCBLrY3Zrfi031g0AjuTEQNd0xZi0kXfyqGy0MXbT5baGhu5skSz5joC+Y46861i1bffucfPM2upqUktw/lBZMk/BFcGxTCUVlYAACihyjSE0T1o3/x5GcEdjUHwE22lDEeeJd/5UpUl8U8nxOBt5+i81NDQ0OhpiDKcavCOaLLUt6BGB8hkKXsUBZBt0g399q5c2EJCA5XwcP8YFHW75ozJ33ytAUNCOVmKRWFnpG64VIa3cHZUlqHuLJqpxu9vbOKeJT9ZDMOQ0aPc4+fwSPnxw/yvAIispY7Q0OB6tzokS+3hf6w0fJcG/ooynChHBp02Sxojw7I8S8HH8p87ObuJyFKu2An5TSWTfNlAqZi9tbKkoaFRYBAZikT9ZMn90p3RZbi+AVVZkv4dYsqWyyS5yUewSqX8O881NmdMMBgwI25JrrkumyzR2mPxqDcbzusQS6a5MbwjtHsdXzHfNwTHcbiylErnt+r+w918qLbG/AIsAWDVosU8a2mTcdt2uH19gzt2JWoEt9hTcnNQGz8h7XXQJbxYBstL4zY6UpYyooQWMNY48Fh+z5IcHUCEh+bw8ceEkFO19Jad9eXer5UlDQ2NwoK+OGYpS971KpdPtqvQZKkICFOW5G/r8v05J9jL+5X/LasACjmTPUt+ZUn8uzHtvumoJBfkAaILYzRqws5Y/M2USllZyaphaPUSsGlMiIy46a47nYdHCwCqBg8MXWsukFkwn6yl+jqXLMVMBtvKJkSUqJ3M0Q2X9EakxL3Sny0NxS0vDydL8ow9f7UrVFnyvXfaWgXh+u9DT6B5XR3m/PMF9TFWMDlX3lPSfmVPmT/gUkNDQ6OnQcoSfZknmJ7SZOWYR9pV6ATvIiDUs+QEe5by7QYLG8rLwrrhcpThGtMqj25aXRdwOLkM18K74VLpDGIl5Vn7DEIrV5aCyJKnVOWpLJVX9wcANNSszmt7QrK1FRXx/hiWR9bSOi8c0zQAlgkiS+55848qUY7nxTBQx6DNxLnuX+35mAK8P3IdPig6IAh+siSngs977Q3Me+0NjNp0MIAzxXEyIZ4ludwmq0nS9v6BzhoaGho9DfriGImoFMb0olsyOZqKugqtLBUBoeNOQr7R+7uV8oEToiwpbpQc17WmjEpemtatCT1GPBaBJc2GS6UyiFF0QAdkqcVrxY9EcpClPA3eVNZasyy/QEpCmzdHrv/woR1uWy8liUfsbPWIlCW568yP9iZ3HxTVb0lkqbp/DrIkK0u+34WdZj/RbgsgcZl0eHRAqLIk5SzJ5Ep7ljQ0NAoNoSypFMY0vVDgdk2W+gTClaXukaWwoby24oVSHhD6eFlZYowFdrTRBT0SjaBlXR0PJUilMryLrkNliWatRbPfilSGS1n5qRUUdb/6uyV5bU+gYMrKgQM63rYlyU+bYWcTIipbtuUYHtzmdRbyc2RIZIkrS9mkw1JCKdXfhStL4dEBBH93pWoKl9+fcslYzlyShvPmq4JqaGhodBHUUZxVhvN+TueYGtFVaLJUBITFBcgXIJlQ5etZkqEkeOfdDSf+3ZSOhG7H1+sdIxaNoGFVrSjDJTPcs9QRWWppIWUp+63IR4rk8fTjiQQvga1YuKjjB0hoqHXLdmX98staIg9zNEBZoviEZHu4Z6nVU7J4oFokAnq5+vVzfUwdleEAQ3m9ws5z2vfe8c+bA3LPHlSOYcukSPxbfn/q6AANDY1CgwzcRhZZMpXf9yQ0WSoCwrre5BESqrIkRwrk2G+I/ylMWcoVHdCYEW8Np4Mp9LFYBA01giw5kRgipJp0cPFsanLJEhEdGfGIV9bLgyyN2FYEUq5ZsrTjB0ioX+kO3U2Ul3WwpQsiSxEnW23jylLA4GECKVlUXzdNkw/Grax01xA4usRnWlRLqiHKUlp97YK69PzKkupZClaWHGkbOdrCP7hXQ0NDo6fBlSXfdcPwVPpUW/7xMflCk6UiQOkYUhK8ncBt7JDcm+wdi38qbd5Zg3S9zUPIEmMMrRlhIHbCWsmlMly6WbTrl/avRrwk4e0r98WTZq2R10dGZ5Sl4Vtu6a4pz7RvGWu8obuxREkHW7qgXKRoAFkitOXwLLWsc83y9IdumCYnYBWVrrIUlNLuD1rLR1lSiXaI+uQvw8lRFUochdQBJ5XeMkrmkiZLGhoahUXGszkYfrLkXUe0Z6mPILQMFxJK6S+l5NiztN+QUEp1IQj60b14CvJihQwllMtw8iDcRPUARLzpzx0qS57BmxQZGTxnye54DtrgzTd1196FP5LaxUvcNQSoW0EgHhNlOUptreHr4JlV3nOWlSWaDRekLPlnuCkjBkPOcz6jYvzHCp0Np3iWJIN3WpfhNDQ0eg/0OW/4vmTTZ3haK0t9A6qROySUUs5ZSgd7SPxQ5smFfNtX1Qj1IkmPb2xsVe63UsEqCe03EjEVslTav78wL3dQlmlsaA39Xcx7d6acjt+mAzcZAQBINrd0uK0fNYsWA3AJ22AvBTwXaJZb1FHJUjQa5aQvV3RA0+q1/HiJigpFWaJQyrBgSIVoS4Q2jKT4O93CkE8IqpLULRF4OS1XK0saGhqFBvcs+b5k08+ptvDrSlehyVIRoI44kYP+JM9SVwzeShkuuIynVgCDy3A1NQ3K/ZkQskSKRDQaUWa7JfpXI8aVpQ7IkjeY1jCMrJEnNEg35WTHCvjRb8hgAMIP1Bmkk0m+zqF5ZC1lvDJcHCqhqagQ41JyKUtUhgOAfkMGeWTJ3ScN0s2HdLA8lKX809/lxwQrnDKZV8pwUgCnjg7Q0NAoNFJJryIRUg1IecG/PQlNlooARU0KMWXL26Tz8J34f6d0LimeJRa4vfzz99/XKFfisNKW7dWjorEIn2kGAGX9+3ODd0cXT1nFqqpSDdaUJpBhHb9NKwZUAwAaVmfnQeUDKjUO3XyzDrflZMlUn9smm7gJ4oyxLMIpw3Ecfq4rBw2CYRpcWSLSGaYsyVBTIILPs+xHypMrqUSNyfdLPjhJTUqn5REqmixpaGgUFtyzhGCLRqpVl+H6BEKN3Jlgn1FXSim2EkkQYvD2ERkqHc39+FvlQpxqDWbpllSG44oIA8oHVPO2+I4M1w0NYt+UMUSIUhRBHspSaWUlAKBuxcoOtw0C1bgHbjK8w20FWVKf28iRA/m/OyKJdO4rB1XDMAzY3j4FWeqYdOTlWQoJmMwFVVmS36vB2UpprSxpaGj0IrhyJHGlaCLOy3DJVl2G6xNQQill1ccJzlnK/4IXbPBWvCY5OqgmnXIbHnt0Fm666VlFUQh74xHpk8twDgPKqqoQzbMMZ1kWX0dVP6EsmaYJil7KGB2TJepk62wgJaG92U3V7jcsd4q3aZpIc7Kknr8RI9xQy3xKaPT6VFRXwzCEZ4lKkXYYyVSUQWl/oWW4zpuvldJdSBBlpj3JX7eUlGmiPUsaGhqFRlA0QKKsXPy+pefJkp4NVwSEld5k02yYZynvnCUr+CKZS1l67bW5eO21ufRbfn+YaZo6raIRmSwZSFRWILLW/Tn0oh8AuQw3aFAV/3eaxYI25zBNkye31iz6Lu/jyWheV49Bm45C5cCBOberHDyIRweU+DjckKH9AeTnMbMzFqLxOMqr+3tlOM80TrONQlLbGRNfpuS3Qpiio5bhuulZko6RTibx1dvvIRKLItEgRsBYmixpaGgUGJl20UVtRqNwLAullaIykQyphnQHWlkqApyQKe1h96fT+SlLYcZxSzF4B1/8svYlHaetqTlwG0cqwxFZYgxIVJQj4pXhWF6t6+6x+vcT3wwGDa7i+7PN3MrS4M02hWEYYIxh5dedS+8mNK1xO9TKq3OnePeTyFJpQv2uMWRIfwBAKo8UTfJIlfWrdMtwFHTpyWlW6IgbmfgKDTpM0Umng71rWXsNG6+jEHB1Tf84/3Lcf87FyngUPe5EQ0Oj0JDJULzMzaaLe6HCjLGsmJWewAZDlqqrq/HYY4+hsbER9fX1eOCBB1BeXh66/ejRo8EYC7wdd9xxfLug35944okFfS4shLBYVvCFzR8amGPP/F+KGVe+mEnXMidPpYFmmflBvppI1ETcK7s5cEePRGMukcgnJJIu1BTICABDBrukJeMAkWhuZWn41lvy/aS7GHNfv7IGgBjGG4aqIYNg8c41NcRy4EDXNxWUku0HxTGUVrmkkJQlIkth6hTrZBku3YUMpLCGArlMLENJ8O5CKKiGhoZGZyCX4UpK3etGSVl+Exi6ig2mDPf4449j+PDhmDhxImKxGKZPn4777rsPJ598cuD2P/zwA4YNG6bcd/bZZ+Pyyy/HjBkzlPtPPfVUvPbaa/znhoaGHl+/jDBvEgtVlvLshnOCy3CKsqReYcP3JW3XUt8QuA2V4SKRCEpKPHLEDMQSJYhEPe9NHl1dtu0gGo2gUmq9HzDAJR4Zx+D7CsOQzUe760l1TFLCsHbZcgAdp3hXDKjmBu9SqQMQAAYOcGXgXLEBBBr0WFpZAcMwsgbjhpfhggNGw1Qj2Siey08kvy2UXC+Z2Ic8Xl6rrUMpNTQ0Coy0FA2QKC9DI6RxVfm2/XYSGwRZ2mabbXD44Ydj1113xdy5rqfm/PPPx6uvvorLLrsMq1atynqM4ziora1V7jvmmGPwzDPPoNVnWG5oaMjatpAILZeFmHFlxSknWQpL8JY74+Rj57qwScdpDckuEqGUBo8OcBgQicUQ6YSyRBf6SsmzRCpNhhl8hloYKJAyrGsvH9Qsdr1O/inWflQMrOYJ3vES9c+nX39XlWoNGFbrR9qruScqygFDeJaomyM0tT1EWQojQlaIdy0X1EG6cldl8JpkFUxHB2hoaPQGGGMwDIMrSnFPYcrXm9lZbBBluAkTJqC+vp4TJQB444034DgO9thjj7z2MX78ePzoRz/Cgw8+mPW7adOmYc2aNZgzZw5OO+20DvcVj8dRWVmp3DqDsNwjefaW3Kadd1ZOSOeSFUKWWEhZxX+cZilEUQZ16UUiEd7F5Xg/U+ksH2WJ1I+KcklZIrJkGzA78Cz19zrYwsqF+WDVNyLFu3pkeHxARf9qnuAtB3ECQFWVS5YamzombUTs6A/dzzE6W4bLrRqxvLcBwpXMMPVK9izpQboaGhq9iVipe90g79JGTZaGDRuG1atXK/fZto26urqsUlsYzjjjDHz11VeYPXu2cv8111yDE044ARMnTsQ///lP3HPPPTj//PNz7mvy5MloamritxUrVnTq+TBF9QnOrvGXPOQht6H7VcadSCMoZM9SyBT5gJ3xfzatXRe4CZmQTdNAXOqGg2EIZSkPox2RLjkBm8zeGcfImv/jR+VAt2U/jNTlg2RLCz9/w3OkeJf2q+QGb/JpEWj9uUa4iOO529C3IdmsDajZRTIUsqR41DomKXmX4ZSuzHCDN0E2o+dDjjU0NDS6De9Dq8QjSeRd6iiupqsoKlmaMmVKqAmbbmPHju32cRKJBH7xi18Eqko33ngj3n//fcybNw+33HILbrnlFlx++eUdrruqqorfRo4c2an1OGE5S4oRO/gF79JsOCf4oppvN1yjN8vMD3k23DHH7AkAaM2YfOaZu47wYbMEIktlZYIsUUkrw4wOB9yW9XfN4A013Sul0riZIZuNDj9WVZVEllTFi+a6rasL7h6UQblOsYT7nG3f65oO8yyFxEDkR5ZyEZkQZSkkB0yGTK7ySR7X0NDQ6C7oGkWfofyLZ4HIUlE9S1OnTsVDDz2Uc5vvvvsONTU1GDJkiHJ/JBLBgAEDUFNT0+FxjjvuOJSVleGRRx7pcNs5c+bg2muvRTweV8Y4yEin06G/ywdhoZR2SDec8ticBu9g4mUpZZLORQcwxpAMiQ6g8kssFsWBB+4IAPiy3iUMlHmRj9JABmEiGwBQ5XXGpe3cqhIgSlnrlnctvZuQam9HNB7HgFHh5DdRUQ7LO4VRn/GcUszXrW3q8FjtTUSWSrzoAPV5ysNpZYR3wxVIWZLVq5DXUhu8NTQ0ehv0WRj3ynDUnBPWiNJdFJUsrV27FmvXBqsWMmbPno3q6mqMHz8en3zyCQDgoIMOgmmamDNnToePP+OMM/Diiy/mdaydd94ZdXV13SJDHcEJK8Mp3XAdd0Pl+p1MlpQynCRh5DRf075yXPvIkL7JJoNgmgYcx8HC+ihgCpZv5xHQmPaIQVm5RJY8s7fFDBiGgWgiDiukJT9a4pKU1d8v7fBYuZBsbkF5v34YMDw8xbukvJx3w0WjquJFvq3Vqzv2TrU2uNvESsSYGGUtIVlNLMTvlo+xOn/PUsfdmjLSWlnS0NDoZZDKTtca8iyFKeDdxQbhWVq4cCFmzJiB+++/H7vtthv22msv3H333Xjqqad4J9yIESOwYMEC7Lbbbspjx4wZg/322w8PPPBA1n6POOIInHHGGdh+++0xZswYnHPOOfj973+Pu+66q6DPJyxnyZHUhLBwv7w9S7acfdNxQGXYvnK98Whfpucp+ujDRUhnvBEonp+HSlu5QGUfuRW/wqcslVVWZT8Q6jygVd8u7vBYudBa1wDATekOQ0lZKR93EvV16cU8n1ZtbUPHx/LIEo9Y8HuWQrK1FEIsvXy5krPpIWFxBP79KuN1QpRPGXLUgA6l1NDQ6A1Qpy4pSrES9/+F+gzaIMgSAJx88slYuHAh3nzzTbz66qt49913cfbZZ/Pfx2IxbLPNNijzBVOdfvrpWL58OV5//fWsfWYyGZx33nmYPXs25s2bh1//+te45JJLcMMNNxT0uYS19Stdcl0hSyGjU5QynOJZ6vjimUt9UmaIMYYrrpgOy1PkyGcUdoGVkfLMzIlSQZbKvZKcx71Q3j84WXvYmC14evea77qnLDV6RvbyfuEp3rFEAu2W+9woQJJAP69cGWyIl9HixTHw8+R7uVMhKppawhX35y53Ujdcft2PaZm0h8RcyNCeJQ0Njd4GfR7FPc8SV+kLkN4NbCA5SwBQX18fGkAJAEuXLuUKg4yrrroKV111VeBjZs6ciZkzZ/bYGvOFavCWvEVS6c9PZChTIh81CFCVJTmY0LIdPlwsV22Xt5vnKKPJF+g1a5rwzjtf4sBUigctuo/vWFkisiQrS1SS42nZ/YKVpWFbjnHX6zjdNvbVr3A9T4nK8BTvWEkcbR5ZMgwDI0YMwMqVdTAlE/qKlR135VHnHj9PPmUpFdYNl1WGcx+Xi6TQ2yL3NnkYvO0QZSkT/F7r6zjnnHNw7rnnYrPNNgMAfPnll/jDH/6gBNxqaGgUBvTZlKUsFegL2wajLPUlyEQojPx0TVmSyJJiug1Occ6pNHiPsXJ4t+SL5N/ufRWAmqza0eMJRAzk3CIKuaSnUVYVnGU1ZLNR7nbe+JDuYO0PbgQEdVcEIRqPwWIicXvrrV0z+IgR1Zz4LP+hY29c8xp1myzPUjKMLMkGb+n1zoMohs+byzNnKcyzlA4u+fZ1LF++HFdeeSV22WUX7Lrrrnjrrbfw73//G9ttt12xl6ah0edBn0exuEqWCqUsabJUBDhW+Lf1MK8QXbNyKkshKoB8kZS/+efTDZdJhpOQ5uZ2b582brzxGQDZ057zUZba211CFUSWqPMsERL8OWCkm96dbOn+lOnV3y8BgJzjVUzvd+QR2nxz1ww+atRgAO55a8ojlLJxjVqq87+sYcqSUqpVUt7zeC1zkiV1W35/Pp6ljbQM9/LLL2PGjBn49ttvsWjRIlx99dVoaWnBnnvuWeylaWj0eXCy5ClL1OiTzzWnK9hgynB9CQ6TCUtnlaXw/SpKg/SGkS9gmTyynNx1ub/LNZj2T396FgcfvDPuvfdVPlajrVFtm7fyeOMmPbIkjw8h4kTX4dKK4NJYv6FDvON2Pb2bIKd4Vw4aiOaAME4ah5JO24hHTYwe7R5/+HA3GDPvYbVtbby0CnSxDKeQpXwiGsK/cYUplioB18pSGEzTxPHHH4/y8vKs4FtCPB5HSYno+Oxs8r+GhoYAfR5RMxFvKtrYPUt9CSyPUpj/wpRXgreiAgSbuq1Mxxc/+ThpabqzHw0NLRg//kLlvmyy1PEbt73dVa+o9V7+d9qrTyW83CY/KgdWAwCa1mQTm86ipa6eE5jhW40JJEtEbtra06goi2GTTQYCAIaPcMlS7uBHFTJZ8nMsUtuyHhNSws2nxJbJ07MkQxu8c2PcuHGYPXs2EokEWlpacMwxx2DBggWB206ePBnXX3997y5QQ6OPgj5ro94XkGi8sMqSLsMVAUqeUsgFKJsseffnoQYBKruWL2CWHWzezd6Xe8Bka8ejO2S0+IbuWnl4iVpb3W2o9d79t6fgeOQuUR6sLJVWucbv7qZ3E8jQPmSLzbJ+Fy8r4+SmudkttQ0b5pK1IYPdDjo5o6gjKK+X76VIhnTDOcpjJBKch8E73+gAdY1yXlfwh5D8nDc2Zenrr7/GzjvvjD322AP33nsvHn74YWy77baB23Y3+V9DQ0OARmnFPJIUiXk+11RhMhK1slQEqOpAZ5WlHPuVy3BS+7esKMhjNHLNbaMLOc0wyxfN61Q1xgpJopbR1kZkSeQWRbxyV8ojSyXlZdkPhJgLtO6Hzs3nC0MmmUQ0HsPgTTfJ+l2/IYP5v+vXNgKbDcZgjyQNHuL+P4zkBMG2LO6PsvJUlpyQnKxcqhFFB4TNm/PvS3mkfLwQX5Rchsu9jr6HTCaDxYvd8u0nn3yC3XbbDRdeeCHOOeecrG27m/yvoaEhQNWTCJXhvC/bWlnqQ1AueKFluBDFKYca5ChKg+RZkg3eeQYIfvzSq0i2tuHdJ54L3SYI/nJYPt1wrR5ZkkMeKbOo3bsQl5QFk6VozP1DqfXM2d1FsqUFANA/IMWbyBJjDGvXuB6p6gFueXCg9/8wkhME+Y86b2XJDlZxcuUsEYdOd8WzFBJHIUMmS7nKgRsDTNNUfEkaGhqFAX1+Rrmy5F4L8rnmdAVaWSoCwkIpAbhXNsMAC+mSy9uzlJFNt7Ky1PH8OQCYceffMePOv4f+PgwNq9RyWK5uOkKL11UnkyVKBW9vt4AYEC/LbuePl5XxUMdV33zb6bUGrqW+AdUjhqP/0CFZv6sa7PqSmOOgpsYtN9JYluoBrlm3tTXcEO+HlcoAnsfXP1ON1DY/VIO3+Hc+fqRMSCq4u6/g95esfIbll6gG742HLN10002YMWMGli1bhsrKSvziF7/AAQccgB//+MfFXpqGRp8HWU1InY94ypIuw/Uh5FKWKGbQ7/0QkQL5zoaTSiPSt335gplzNlwXUe8jS/mU4Vo8gkFqkhzw2NKWQrxKpLTKGDHWC6RkrMfKcHUrVmHU9tuictDArN+VD3D9SY5tY8UKV0Er80hcP480EfHLB5mUIFb+Cld7HsqSPOIkHz9SKmTenLxN9vHkMlzw462Q91pfx5AhQ/DII49g+PDhaGxsxOeff44f//jHeOONN4q9NA2NPg+hLLmKElk3eiJzLwiaLBUBcgZSaLktxLOUkywpXW/B0QHptMVf9EK0WNavXKX8nMlDEm32comIJA0YIBLAm1tSGIjgoMhhY7YA0LOkr2bx99gJQGlAW3elR5asjIWlS1cDEBEHlR5ZamjM3+OVbhdkya8sJcM8S06whyhX1yEvw+UgrmGeuHyiA+jxhmFsVAbvM888s9hL0NDYaEFfxKn8xjPwCqQsac9SESCTmqz5bESKLH8Zzv1/bs+S3Lkk+Uik46UlElUIZclKpxWVIpMjp4lA4ZakLJFpWv5dvDSbLA0eval3jJ77JrH8q4UARNCZjDJvZpydTmPxdzUAgGjUXXO5N56lob4l72OlpLRzf4UrrJznKJEQwcZ9P7iylEcZLvt+2QfXMbne2AzeGhoaxQEpS1SGM6OkLOVvhegMNFkqAuw8fCB+xSk/z5IcShlsuk0lZbJUGBVAJmH5SKJEiGi03+DBbhwAYwxN61xvUHl1/6zHVY8cDqDzHXu5sOzzL721GFkm7zJvPl06lcKib1aI7fpXoLTUJUtr1zXnfSw5dTzjey3Cu+GCA0ZzGbyJCOXTDZcrwTufmUu5B/pqaGho9Ay4suSRJbJqNK7ufuZeEDRZKgIUdSBgYC6QbZTlZbgcBEfJ4JEUJDk0UJ455jeR9xQUVSsPSZRKV1R6GzTIVXAch6F28fcAgLKq7EG6/b3utNaGhm6tV0ZLXT0/j6N3HKf8rtQLxky3tWP58nX8NRk7diQSCVcKXrdWDeXMBTnDKuPLDghVluxggpRLWSIDdl0O1SusDKccL4+WXK0saWho9AbI4kFkibriln8VHArbXWiyVASwfJQlX8mDvvnnmqYhqwCW0g0nleEkD1Gh/CUyQUonOzY8NzWqs9QGeG34juNg+YKvAYghiTLIcN3kG0rbXVBZb+S2Y5X7KRgz3d7urc99McaMGcYDNWtqG/I+TrJJEKuMz+Hd1paHwVt6jXN1uv3u8n/gnXe+wF+nPh+6DRHErG64PGIuZGzs0QEaGhq9A8oSNKMRDN1iMxiGAcYYln72ZUGOp8lSEeDk8CwJBanzypJaMpE7lMS/2+UyXIFm6Mjz5PJp42z0DN6GYaCsLIEBXhu+ZTlY8unn7u9Mg8+BI5RWuaTK34HXXdCcuSGbj1bup2BMKvuRYXqzzYby2IPaGjXBPBdapdEw/jJcS0uwsiSrSUqXYw6D9/Tpb+CA/SeH7hOQPUu+MhzrnIk810BfDQ0NjZ4CWTzMSASb7rg9APcaSFl5PQ1NlooAuUyVnbNE24SQpRyeJUV1kBQk+aKabBceokJl4qRaJeNyHubr+jrh8xkwoBz9+rsKTiZjufPaPBK42c47KI8rKfXSu5ct7/aaZTStdpWqASOGK/eTyZzIEqk/m4waxHOhKFIgH7Q2iOG/aWlmH2Ms1Ewtd1LKBCmdQ1nKB8Kz5D+enOsUfowvvliKlpZ2vPnmZ91ah4aGhkY+kMnSyLFbAwBSOWaZdheaLBUByiDdrIsiKUjBoZT55Cz5SylydIBMlgqlLMnMPp2HwVtWPKr6laO/RJYAIB1SFqOW0drvvu/egn1Yt3yluxZf1hLFF9Cw4JYW9w9z882GcL/V8k6QpZa6Bv5v22Y5zfsEuWxr9eAA2/AynFwyDleNdt7pfFRVnoC2tsJ0omhoaGjIILuHGYlg8OZuZ7T8BbSnoclSESCPjfAP0iWHf2PtauV+7lnKZfAOUYoUg7dkHC5EdAAAtDcJpSidJ9Oni3S/qjJUVbrlLgpRpLLY0C1EWay8uj8nKCu/Wdz9RUuo+fY7AECiUh3eSwZCMpRTTMDmmw/lz2HF8k6QpXV1/N9hMwL9kNVA2aeUK0MpH+TXDVcYcq2hoaHRWZDdw4yYqB4+DADQWNuzlgwZOpSyCFBLG+pF8tHLr8G2+07AJ6+8rj7GyacMF0yk5DJcW6tQenJ5ULoDmd1n2vNTGrwpL+jXrxxVVW55jeajNa1ei+rhw5Sy2PCttvQex7KIZXexfIGbtUTkiEBx+vT8KCZgyNBqvk2uHCw/mtYKYsVsG4yZMIzcw5IVL5pUak2ne0pZ8t3vkbN8VC8NDQ2N3gIpS4ZpomKg+xm8ZskPBTueVpaKADU8Ur3ILXx3Np6f8tesx+Rl8GbBv5NNt8mkrCwVhiw1rxMm53QeoZSAeH6VVaWoqPTIkpc1tPYH15MkjyAZOmYzAIVJIaduCsMwMHj0KH4/tai2rHUVITJzV3rr7Wx3YbNElhzbyStLS36+SbnrsEDKUqHURw0NDY3ugLqSTdPkncore2hGaBA0WSoCbGWYbX4XI64s5UrwDlWWxPHk2WX5hAx2Bc3rXBLQGTWCnldlRSnKy9yYABomu2qRW2ZLVFTw7TfbyTV7p3owkJKQbGnhJEHOWqKhvc11LllasdL9PyWPd3YuWmtdvdL9mBdZkk3dSZksddfg7Xj/D48O0NDQ0FhfQF/EDdOE6c2F+2H+VwU7niZLRQBTgv7yu8iJsMo8PEu+a229561hjCGZlA3ehSFLXSmL0fOqqirDkKH9AQCtnln4hy+oLBbj248atw0AoPa7Jd1YaThobtuIbd0uC3m4L3XLLVu2Rn1MJ9Udxzd3LUzdkSErS+mkHDzavdfStjv2LGloaGisL8hwz1KEZywtX/hNwY6nPUtFgHyRZHmWOfLxLIkLm7rN0qWr8czT72BdXQvsjFwCLEwZbulnX4ExllfiM1+LR5auufZEVFe7OUsfzHYDKZd9/gUf1Dp0y81R++336D/MNVUv/vjTHl69i9aGRiQqyjHEK8NVDBzADeX1Hhn83psPRwgbUZILzHFgRCKwLTtU3ZGhluEE8U11swzHQrrhChUvoaGhodEd0Bda+ly2LaugTSiaLBUBMmHJ1xBM2+WjLAVdak866S8AgM1+JLKKbKt7F9gw1K1Ygb+ffYFiYO4I5KsiovTGG/MwefLDAFy5lUjF6B3HobWugZuvP3v9rR5evYvG2tUYuMkIVHum8qohgwB46pzX7bdo0UrlMVQ27Axsy4YZiYA5Nn9t8yVLaSkGItfct7zWEdYNp8mShobGeoi0r3moEJYMGZosFQGKwTvP8onwLOWhLOXqmMuEm8t7Eos++LhT21NOEGMMTz7xNn75y6nK71NtbSitrMTIsVshVlICwzDg2DZWFcjQt/aHFdhil51R4Y1UqRrskiX53C5eXMMVLyA8dTsXbMtCrCQO27IkshROiGW1LillGlHMQlfhhBA1rSxpaGisj/DH0jTX5T89oSvQnqUiQO5Cy9/gnY+y1LFKJbebr08T4t9990s4joPbb38xiygBQGt9AwBg8GabYuxeewBQu8l6GjU+U3nlwAEAfD4jx1GUmKamzn+zsb3Xw7byVJaUocg9V4YLKwHyHDAdHaChobEeIdWmzhStX7mqoMfTylIRIKs7Tp4G7/y64TrOxJFruk6BynBdwTFH/ynn7xtqVmPQpqPQf9hQxMvcVv1Cton+8JVrKo/EojBNExUDXLLk93ml0xYSCbck2NjQebJEs/OcfJUl6fhtzeLDItPNnCU6dphnSVMlDQ2N9Qkp37SA1UuWFfR4WlkqAmxJTco3x4ZUoFxT3cNGVsiwpDKO1c12897EmqVu2FjFwGo+hqSzpb7OYNkXX0qm8i0wdq/dAYggNEJSat+vr+88WaLRMKnWNl6KzKUeymW4thZBllLd9iyFRAcQOdNsSUNDYz1Cqk39vF25oHCdcIAmS0WBrCbZeZbh7rr7Faxd24Tbb/93+H5DogNkWFK5plChlIUAqUhllZWIRKNgjGHezDcLdjwrmebn84hLzsMWu+wMINtQ3twsvt2sWdvU6eM8P+U2LJk3H6/cfg9v/89NltzXjDGmZCulUp3vxJMRGkoZ0mGpoaGhUUzIA9sB4Pt5nxf0eLoMVwQow0nzLMNNu/tlTLv75dz7tcSFNAyyMtGZ1v5iY9l8L1XbyzuyM5keH3PiR7qtHaVVldhm7z0BuOrWc3+4WdmmsbEVo0a55u+1azo/xPHbDz/GXb9yFbJ8lCVZGZRN3d1WlkL8UhsSodbQ0Nh4YKXTXP1njGHdDysKejytLBUBClnqwW4jcaHLUYaTlKX1yeDdEVYu+EYhgQ01hSVKANDimcoBIJNK4c6Tz8zaZt06oSbV1HSvG4OS1q0cr4tMcOUQzGSyp8iSStQcq2MfnIaGhkYx4bdHFAIbDFn6/e9/j/feew+tra2or8//onTDDTdg5cqVaGtrw3/+8x9sueWWyu+rq6vx2GOPobGxEfX19XjggQdQXl4esreegSWZdK0eVHdIBcjpWbLEm6onj11oOI6jmJuXewbsQqKhxp1gzRjD9AuvQFtjdpltdW0D//eqVT1DlnIrS8JDJKtJmW4ORQ6LDihUyruGhoZGT6G9ubngx9hgyFI8Hsezzz6Le++9N+/H/O53v8MFF1yAc845B3vssQdaW1sxc+ZMlJSU8G0ef/xxbL/99pg4cSKOOOII7LfffrjvvvsK8RQ45AtQZ6bUd7hf7lnK0Q0n+VzyLQGuL5BDxxa8+0HBj/fatPvQvLYOr95xL75+b07gNiu9+XAAsHz52m4djzracitLLtllYApZKpSyRJ46rSxpaGisb6DPpc4EIHcVG4xn6frrrwcATJo0Ke/HXHTRRbjxxhvx4osvAgBOOeUU1NbW4uijj8bTTz+NbbbZBocffjh23XVXzJ07FwBw/vnn49VXX8Vll12GVasKk9uglOF68Jt78zpX2ZCzlLKO7WUDGYYBaz2KDsgHzXX1KK/uD8YYPv/PrIIfb8mn83H9gT/Nuc2yHwRBWr68e3+wVFbLRZaWzXdHySSbW3qULFH6uH8gL83BK+QYAQ0NDY0uwSNL65av7GDD7mODIUudxeabb47hw4fjjTfe4Pc1NTVhzpw5mDBhAp5++mlMmDAB9fX1nCgBwBtvvAHHcbDHHnvghRdeCNx3PB5X1KnKyspOrS2TTHHCQsMAewLvP/0vbDpu2w67xKx0GpFYDGuXLu+xY/cG6leuwrAxmyPdnkTaF0hWLCz5XpTqGhpaurWvpEd+cg3FXffDCtx0+PFoWbcOYzYfzO/3k5zO4oYbnsS2247CDX94Urn/s5lv4sO998Q3H3zYrf1raGho9DRIWar59ruCH6vPkqVhw4YBAGpra5X7a2tr+e+GDRuG1atVo7Bt26irq+PbBGHy5Mlc6eoKki0t+Pr9OTAMM9AH01U4loUnJt/Q4XbXH3Qk4iUlPONnQ8H7zzyPrffcvWDz4LqCGTPmorGxtdt+JQC4955XsfPOW+Dvf38t53Z1K9yujwULfsDatU1obU0qPriu4IsvlmLcuPMCf/f0tbkDQzU0NDSKgaWff4lR22+DD59/qVeOx4p1mzJlCusIY8eOVR4zadIkVl9f3+G+J0yYwBhjbNiwYcr9Tz/9NHvqqacYADZ58mS2cOHCrMfW1tayc845J3Tf8XicVVZW8tuIESMYY4xVVlYW7Vzqm75tzLfKysoN7m9wQ1yzvulbX7vl+3dYVGVp6tSpeOihh3Ju8913XZPXampqAABDhw7l/6af582bx7cZMmSI8rhIJIIBAwYoj/EjnU4jncMXpKGhoaGhodF3UFSytHbtWqxd270OojB8//33WLVqFQ4++GB89tlnAFxv0R577ME76mbPno3q6mqMHz8en3zyCQDgoIMOgmmamDMnuPtJQ0NDQ0NDY+PCBhMdMGrUKOy0007YdNNNEYlEsNNOO2GnnXZSMpEWLFiAo48+mv98++234+qrr8aRRx6JcePG4ZFHHsHKlSu5cXvhwoWYMWMG7r//fuy2227Ya6+9cPfdd+Opp54qWCechoaGhoaGxoaHotcM87lNnz490NO0//77820YY2zSpEnK42644Qa2atUq1t7ezv7zn/+wrbbaSvl9dXU1e/zxx1lTUxNraGhgDz74ICsvLy9IzVPf9E3fCnMrxt/glVdeyT788EPW1NTEamtr2fPPP8+23nrr9XrN+qZv+qbe8v07NLx/aHQDlZWVaGpqQlVVFZp7IUlUQ0NDRTH+BmfMmIGnnnoKH330EaLRKG666SaMGzcO2223HdryiLbQnxsaGsVHvn+HfTY6QENDQ6OQOPzww5WfTz31VKxZswa77LIL/ve//xVpVRoaGoWAJksaGhoaPYB+/foBAOrq6gJ/390wWw0NjeJhgzF4a2hoaKyvMAwDt99+O9599118+eWXgdtMnjwZTU1N/LbCCxfV0NBY/6HJkoaGhkY3MW3aNIwbNw4nnXRS6DZTpkxBVVUVv40cObIXV6ihodEd6DKchoaGRjdw11134YgjjsB+++2XUy3SYbYaGhsuNFnS0NDQ6CLuuusuHHPMMTjggAOwZMmSYi9HQ0OjQNBkSUNDQ6MLmDZtGn7xi1/gqKOOQnNzM4YOHQoAaGxsRDKZLPLqNDQ0ehLas6ShoaHRBfzmN79B//798fbbb6OmpobfTjzxxGIvTUNDo4ehlSUNDQ2NLsAwjGIvQUNDo5egyVIPQuemaGgUBxvy396GvHYNjQ0d+f79abLUA6CTrXNTNDSKi8rKyg1mdIj+3NDQWH/Q0WeHng3XQxgxYkSHH9KVlZVYsWIFRo4cucF8oMvYkNe/Ia8d0OvP9xgrV64syL4LhXw+N9YnbOjvw56GPh8qNtTzkc9nh1aWegid+ZBubm7eoN5IfmzI69+Q1w7o9Xe07w0NGxq5I2zo78Oehj4fKja085HPWnU3nIaGhoaGhoZGDmiypKGhoaGhoaGRA5os9SJSqRSuv/56pFKpYi+lS9iQ178hrx3Q69dYP6BfRxX6fKjoy+dDG7w1NDQ0NDQ0NHJAK0saGhoaGhoaGjmgyZKGhoaGhoaGRg5osqShoaGhoaGhkQOaLGloaGhoaGho5IAmSz2M3/zmN/j+++/R3t6ODz74ALvttlvO7Y877jgsWLAA7e3t+Pzzz3H44Yf30kqD0Zn1T5o0CYwx5dbe3t6LqxXYd9998eKLL2LFihVgjOGoo47q8DH7778/5s6di2QyiUWLFmHSpEm9sNJgdHb9+++/f9a5Z4xh6NChvbRigSuvvBIffvghmpqaUFtbi+effx5bb711h49b3977Gp3D73//e7z33ntobW1FfX19sZfT6+jsZ31fRlc+fzc0aLLUgzjhhBPw17/+FTfccAPGjx+Pzz77DDNnzsTgwYMDt58wYQKefPJJPPjgg/jRj36EF154AS+88AK23377Xl65i86uHwAaGxsxbNgwfhs9enQvrligvLwcn332Gc4777y8tt9ss83wyiuvYNasWdh5551x++2344EHHsChhx5a4JUGo7PrJ2y99dbK+V+9enWBVhiO/fffH9OmTcOee+6JiRMnIhaL4fXXX0dZWVnoY9a3975G5xGPx/Hss8/i3nvvLfZSeh1d+azsy+jq59eGBqZvPXP74IMP2F133cV/NgyDLV++nF1xxRWB2z/11FPspZdeUu6bPXs2u/feezeI9U+aNInV19cX/bz7b4wxdtRRR+Xc5s9//jObP3++ct+TTz7JZsyYsUGsf//992eMMdavX7+ir9d/GzRoEGOMsX333Td0m/Xtva9vXb+tr58Dhbx19rNyY7rl8/m1Id60stRDiMVi2GWXXfDGG2/w+xhjeOONNzBhwoTAx0yYMEHZHgBmzpwZun0h0ZX1A0BFRQWWLFmCZcuW4YUXXsB2223XG8vtNtanc98dzJs3DytXrsTrr7+Ovfbaq9jLAQD069cPAFBXVxe6TV85/xobH7r6WamxYUOTpR7CoEGDEI1GUVtbq9xfW1uLYcOGBT5m2LBhndq+kOjK+r/++mucfvrpOOqoo/DLX/4Spmni/fffx8iRI3tjyd1C2Lnv168fEolEkVaVP1atWoVf//rXOPbYY3Hsscfihx9+wH//+1/86Ec/Kuq6DMPA7bffjnfffRdffvll6Hbr03tfQ6Mz6MpnpcaGj2ixF6Cx4eKDDz7ABx98wH9+//33sWDBAvz617/GtddeW8SV9X188803+Oabb/jPs2fPxpgxY3DxxRfjlFNOKdq6pk2bhnHjxmGfffYp2ho0uo4pU6bgyiuvzLnNNttsg6+//rqXVqShsX5Ak6Uewtq1a2FZVlY30tChQ1FTUxP4mJqamk5tX0h0Zf1+WJaFTz/9FFtuuWUhltijCDv3jY2NSCaTRVpV9/Dhhx8WlaTcddddOOKII7DffvthxYoVObddn977GgJTp07FQw89lHOb7777rncWs56iJz4rNTY86DJcDyGTyWDu3Lk4+OCD+X2GYeDggw/G7NmzAx8ze/ZsZXsAmDhxYuj2hURX1u+HaZrYYYcdsGrVqkIts8ewPp37nsLOO+9ctHN/11134ZhjjsFBBx2EJUuWdLh9Xzz/fQFr167F119/nfOWyWSKvcyioic+KzU2TBTdZd5XbieccAJrb29np5xyCttmm23Y3/72N1ZXV8eGDBnCALCHH36Y3XTTTXz7CRMmsHQ6zS655BI2duxYdt1117FUKsW23377DWL911xzDZs4cSLbfPPN2Y9+9CP2xBNPsLa2Nrbtttv2+trLy8vZTjvtxHbaaSfGGGMXXXQR22mnndioUaMYAHbTTTexhx9+mG+/2WabsZaWFnbzzTezsWPHsnPPPZdlMhl26KGHFuXcd3b9F154IfvZz37GxowZw7bffnt22223Mcuy2EEHHdTra582bRqrr69n++23Hxs6dCi/JRIJvs36/t7Xt87fRo0axXbaaSd2zTXXsKamJv7+LS8vL/raCn3r6LNyY7t19PnVR25FX0Cfup133nlsyZIlLJlMsg8++IDtvvvu/HezZs1i06dPV7Y/7rjj2MKFC1kymWTz589nhx9++Aaz/r/+9a9821WrVrGXX36Z7bzzzkVZN7XS+0HrnT59Ops1a1bWYz755BOWTCbZt99+yyZNmlS0897Z9V9++eVs0aJFrK2tja1du5a99dZb7IADDijK2sMgn88N4b2vb527TZ8+PfB133///Yu+tt645fqs3NhuHX1+9YWb4f1DQ0NDQ0NDQ0MjANqzpKGhoaGhoaGRA5osaWhoaGhoaGjkgCZLGhoaGhoaGho5oMmShoaGhoaGhkYOaLKkoaGhoaGhoZEDmixpaGhoaGhoaOSAJksaGhoaGhoaGjmgyZKGhkaXsO++++LFF1/EihUrwBjDUUcdVdDjmaaJP/zhD/juu+/Q1taGb7/9FldffXVBj6mhoVFc9MTnzPHHH49PP/0Ura2tWLJkCS677LJO70OTJY0ewfTp0/H8888XexnrLa677jp8+umn3d4HYwyMMVx44YV5PWbWrFn8MTvttFO3ju9HeXk5PvvsM5x33nk9ut8wXHHFFTj33HPx29/+Fttuuy2uuOIK/O53v8P555/fK8fX0NhQ0BNfXuhzo76+vodWJTB9+nS+/47W2d3PmcMOOwyPP/44/va3v2HcuHH4zW9+g4svvrhL+yt6jLi+rd+3jnDdddexqqoq1q9fv6Ksb9asWXwtyWSSLV++nL344ovsmGOOKfq5o1t5eTkbMGBAt/Zx3XXXsfnz57OhQ4ey0tLSvB5TXV3Ndt11V8YYYzvttFNB3yNHHXWUcl88Hmd/+ctf2PLly1lLSwv74IMPujUK46WXXmIPPPCAct9zzz3HHn300aK/vhvqLWxkyZgxY4q+tvXxJo/1sG2bNTQ0sE8++YTdfPPNbNiwYUVfH92GDh3K4vF4t/ZBI4sGDx7M75s0aRKrr68P3d7/GRB2q6qqYkOHDu3UY8KO0dHnzOOPP86eeeYZ5TG//e1v2bJlyzp1PrSypNEhhg0bxm8XXnghGhsblftuvfVWNDU1obGxsWhrvO+++zBs2DCMGTMGxx57LL766is89dRT+Pvf/160NclobW1FXV1dt/djWRZqa2vR3t6e1/b19fVYs2ZNt4/bFdx9992YMGECTjrpJOy444549tln8dprr2HLLbfs0v7ef/99HHzwwdhqq60AADvuuCP22WcfzJgxoyeXvdFhxowZyt/zsGHD8P3332dtF4vFirC69RNbb701RowYgd122w0333wzDjnkEHzxxRcYN25csZcGAKitrUU6ne72fhoaGgry+dHU1ITa2toe2VdHnzMlJSVIJpPKY9rb2zFq1CiMHj26U8cqOgvWtw3nFvbNYvr06ez555/nP8+aNYvdeeed7LbbbmN1dXWspqaGnXnmmaysrIz94x//YE1NTWzRokXssMMOU/az/fbbs1dffZU1Nzezmpoa9sgjj7CBAwfmXNOsWbPYbbfdlnX/qaeeyhhj7OCDD+b3jRs3jr355pt8AO3f//53ZUo6PY/JkyezmpoaVl9fz6655hoWiUTYLbfcwtatW8d++OEHduqppyrH+vOf/8y+/vpr1trayhYvXsz+8Ic/sGg0yn9/3XXXsU8//TTrOJdeeilbuXIlW7t2Lbv77ruVx/hv/n3I9y9dupQlk0m2YsUKdscddyi/Hz16dK8rS6NGjWKZTIYNHz5c2e4///kP+9Of/tSlYxiGwaZMmcJs22bpdJrZts2uvPLKov9NbMg3/9+tfJs1axa766672G233cbWrFnD3nrrLQZ0/DdaVlbGHn74Ydbc3MxWrlzJLrnkkqy/0SCFoL6+Xhm+vMkmm7Cnn36a1dfXs3Xr1rEXXniBjR49Omvtuf6G4vE4+/Of/8yWLVvGkskkW7RoETv99NMZALZo0SJ26aWXKmvYaaedciprpCz5VfREIsEWLFjA/ve//ynv12uuuYb98MMPLJlMsk8//ZT9+Mc/5r+nv8vjjz+evfPOO6ytrY19+OGHbKuttmK77ror++ijj1hzczN79dVX2aBBg/jjdt11V/b666+zNWvWsIaGBvbf//6X/ehHP1LWI59fOs4xxxzD3nrrLdba2srmzZvH9txzz5zvjaDXKF9l6brrrgtULP3DyrurLOXzOXPWWWexlpYWdtBBBzHDMNhWW23FvvrqK8YY6/AcyDetLGkUDJMmTcLatWux++6746677sK9996LZ599Fu+//z7Gjx+P119/HY8++ihKS0sBAP369cNbb72FTz/9FLvuuisOO+wwDB06FM8880yXjv/www+jrq4O//d//wcAKCsrw8yZM1FfX4/ddtsNxx9/PA455BDcfffdyuMOOuggjBgxAvvttx8uueQS/OEPf8DLL7+M+vp67LHHHvjb3/6Gv//97xg5ciR/THNzM0499VRst912uPDCC3HWWWfh4osvzrm+Aw88EGPGjMGBBx6ISZMm4dRTT8Wpp57aqed47LHH4uKLL8avf/1rbLXVVjj66KMxf/78Tu2jENhhhx0QjUbxzTffoLm5md/2339/jBkzBgAwduxY7lsIu02ZMoXv84QTTsDJJ5+MX/ziFxg/fjwmTZqEyy67DKecckqxnmafx6RJk5BOp7H33nvjnHPOyetv9C9/+Qv2339/HHXUUTj00ENxwAEHYPz48Z06bjQaxcyZM9Hc3Ix9990Xe++9N1paWvDaa68pCldHf0OPPPIIfv7zn+OCCy7Atttui1//+tdoaWkBAPzjH//Aaaedphz3tNNOw9tvv43Fixd3ar3JZBJ/+9vfsM8++2Dw4MEAgAsvvBCXXnopLrvsMuy4446YOXMmXnzxxSxl9YYbbsCNN96I8ePHw7IsPPHEE7jllltw4YUXYt9998WWW26JP/zhD3z7yspKPPzww9hnn32w5557YtGiRXj11VdRUVGRc41/+tOfcOutt2LnnXfGN998gyeffBKRSKRTzzNf3HrrrYpSeemll6K1tRUff/xxjx4nn8+Z+++/H3fffTdefvllpNNpfPDBB3jqqacAAI7jdOp4Rf92o28bzq0zytI777zDfzZNkzU3N7OHH36Y30c16z322IMBYFdddRV77bXXlP2OHDmSMcbYVlttFbqmMGUJAJs9ezZ75ZVXGAB25plnsnXr1rGysjL++8MPP5xZlsWGDBnCn8f333/PDMPg2yxYsIC9/fbbWc/lxBNPDF3TpZdeyj766CP+c5Cy9P333zPTNPl9Tz/9NHvyySdD9xmkLF188cVs4cKFORWpYihLJ5xwAstkMmzrrbdmY8aMUW5Dhw5lAFgsFmNjx47NeZO/US9btoz95je/UY571VVXsQULFhT972JDvU2fPp1lMhnW3NzMb+TvmDVrFps7d27W+c71N1peXs6SySQ77rjj+O+rq6tZa2trp5Slk08+Oet1jcVirLW1lU2cOJGvPdff0FZbbZWlLMu34cOHs0wmw3bbbTcGgEWjUbZ69Wp2yimnhJ6vMGUJAPvxj3/MGGN8f8uXL2eTJ09WtpkzZw67++67GSD+LknpAsBOPPFExhhjBx54IL/viiuuyPkeNwyDNTY2sp/+9KeB5zfoONtuuy1jjLGxY8eG7jdMWWKMKe8XuoWpRHvssQdra2tjxx9/fF7HyHXryucM3UzTZCNGjGCxWIwddthhjDGmfL50dItCQ6NA+Pzzz/m/HcfBunXrFNWDatZDhgwBAOy000448MAD0dzcnLWvMWPGYLfddlM8SIcffjjefffdnGswDAOMMQDAtttui88++wxtbW389++99x4ikQjGjh2L1atXAwC+/PJL/hha5xdffJH1XGjdgKt6XHDBBRgzZgwqKioQjUbR1NSUc21ffvml8s1m1apV2GGHHXI+xo9nn30WF110Eb777ju89tprePXVV/HSSy/Btu1O7aen8emnnyIajWLIkCGhr1Emk8HXX3+d9z7Lysqyvgnatg3T1AJ5dzBr1iyce+65/OfW1lb+77lz5yrbdvQ3WlpaipKSEsyZM4ffX19f36nXmY6z5ZZbZh0nkUhgzJgx+M9//gMg99/QzjvvDMuy8PbbbwceY9WqVXjllVdw+umn46OPPsKRRx6JkpISPPvsswCAL774gnta/ve//+EnP/lJzjUbhgEAYIyhsrISI0eOxHvvvads895772V1pcqfk/SZ6P+clD9rhgwZghtvvBEHHHAAhgwZgkgkgrKyMmy66aY51ycfZ9WqVXxfnX1tmpqaApXCb7/9Nuu+UaNG4YUXXsCtt97Kz2tPIp/PGYLjOFi5ciUA4Oc//znef/99rF27Nu9jabKkUTBkMhnlZ8ZY1n0A+MWuoqICL730Eq644oqsbVatWgXTNJUP4RUrVuQ8vmma2GqrrfDRRx/1+LoZY3zde+65Jx5//HFcd911mDlzJhobG3HSSSfh0ksv7fRxOnvhX758OcaOHYtDDjkEEydOxD333IPLL78c+++/PyzL6tS+Oovy8nKlpLD55ptjp512Ql1dHRYtWoTHHnsMjzzyCC699FJ8+umnGDx4MA4++GB8/vnnePXVVzt9vJdeeglXXXUVli1bhi+//BI/+tGPcMkll+Af//hHTz6tjQ6tra2hZSeZOAEd/43ma953HIeTC4JcXquoqMDcuXNx8sknZz1WNhzn+hvKpwnigQcewKOPPoqLL74Yp512Gp5++mn+uJ/85Cd8Tfnsa9tttwUALFmypMNtZcjPgb6k+e+TPxcefvhhDBw4EBdeeCGWLl2KVCqF2bNnIx6Pd/o4Xfmi4ThOXmXKsrIyvPjii5g9ezauvfbaTh+H0N3PmYEDB+K4447Df//7XyQSCZx22mk4/vjjsf/++3dqHZosaaw3+OSTT3DsscdiyZIlocoI+Q3ywaRJkzBgwAD885//BAAsWLAAp556KsrKyri6tPfee8O27U5/u5Kx1157YenSpbjpppv4fZ3tsugOkskkXn75Zbz88suYNm0avv76a+ywww7dznXqCLvuuiv++9//8p9vu+02AMBDDz2E0047DaeddhquvvpqTJ06FSNHjsTatWvxwQcf4OWXX+7S8c4//3z88Y9/xD333IMhQ4Zg5cqV+Pvf/674OTQKi47+RhcvXox0Oo099tgDP/zwAwCgf//+2HrrrRWFZ82aNRg+fDj/ecstt0R5eblynBNPPBGrV68OVLHywfz582GaJvbff3+8+eabgdu8+uqraG1txbnnnovDDjsM++23H//dsmXL8j5WIpHA2WefjbfffpurFStWrMDee++Nd955h2+3995748MPP+zS85H38Zvf/IZ3gW6yySbcJ7U+4bHHHoNpmvjVr37Vrf30xOfMpEmTcOutt8IwDMyePRsHHHBAp79Ea7Kksd5g2rRpOOuss/Dkk0/illtuQV1dHbbcckucdNJJOPPMM3Oa8crKyjB06FBEo1FssskmOOaYY3DxxRfjnnvu4X9ojz/+OG644QY8/PDDuP766zF48GDcddddePTRR3kJritYtGgRNt10U5x44on46KOP8NOf/hTHHHNMl/fXGUyaNAmRSARz5sxBW1sbfvnLX6KtrQ1Lly4t+LHffvvtLHVAhmVZuP7663H99df3yPFaWlpw8cUXd2ic1ygcOvobbW1txYMPPoi//OUvWLduHVavXo0//elPWX+7b731Fn77299i9uzZiEQiuPnmm5VW98cffxyXX345/v3vf+Paa6/F8uXLMXr0aPzf//0fbrnllg5VZQBYunQpHn74YfzjH//ABRdcgM8++wyjR4/GkCFDeEnIcRw89NBDmDJlChYtWoQPPvggr/MwZMgQJBIJVFZWYpdddsHvfvc7DBo0iDeTAK7R/YYbbsDixYsxb948nHbaadh5550D1bLOYNGiRfjVr36Fjz/+GFVVVfjLX/6iWAvWB1x//fU45JBDcOihh6KiooKbzxsbG7Pa+DtCdz9n1q1bh7322qtTxwyCLvZrrDdYtWoV9t57b0QiEbz++uuYP38+br/9djQ0NHTYtXD22WejpqYGixcvxr/+9S9st912OPHEE5WU1vb2dvz4xz/GgAED8NFHH+G5557Dm2++id/+9rfdWvdLL72E2267DXfffTfmzZuHvfbaC3/84x+7tc980dDQgLPOOgvvvfcePv/8cxxyyCE48sgjeyTTSUPDj3z+Ri+//HL873//w0svvYQ33ngD7777bpb36dJLL8UPP/yA//3vf3jiiSdw6623Khf89vZ27Lfffli2bBn+9a9/YcGCBXjwwQeRSCQ69ALKOPfcc/Hcc8/hnnvuwcKFC3H//fcrChYAPPjggygpKcH06dPz3u8333yDlStXYu7cubjyyivxxhtvYNy4cViwYAHf5s4778Rf//pXTJ06FfPnz8dhhx2Gn/3sZ4Hens7gjDPOQHV1NT755BM8+uijuPPOO7v1Za8Q2H///VFZWYnZs2ejpqaG30488cRiL61b6HZHhb7pm74V/haWs9TRrTe64fRN33LdcnWsFvu2zz77sFQqxTti9c29dbZTbX09Rk/dtLKkobEBYYcddkBzc7PSvZQLr776Kr788ssCr0pDY8NDPB7HyJEjcf311+PZZ59d79SZ9QFPPvkk9571JO69994ue9GKBQMua9LQ0FjPUV1djQEDBgBwDbL5lCNGjBjBQz+XLVsW2I2ooVFozJo1C/PmzVuv/GaTJk3Cgw8+iHnz5uFnP/sZbyvXcEGhjrZtd7rDryMMHjwYVVVVANzS7vrmuQqCJksaGhoaGhoaGjmgy3AaGhoaGhoaGjmgyZKGhoaGhoaGRg5osqShoaGhoaGhkQOaLGloaGhoaGho5IAmSxoaGhoaGhoaOaDJkoaGhoaGhoZGDmiypKGhoaGhoaGRA5osaWhoaGhoaGjkwP8DHlVFj4ej9s0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAIYCAYAAAB9p6hbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9eZgcZbn9qerqZfaZTJZJQlYIO4QAAYMiSwhGRUFQ1KuCIPwE3AARBOQiiODKchG4CBpwVxQFlBAIcJF9iYQ9kJAEsk72zNrTS9Xvj6r3+96vuqqmu2d6tnzneeZJp7u6urq7uurUec97XgOAAw0NDQ0NDQ0NjUCYg70BGhoaGhoaGhpDGZosaWhoaGhoaGhEQJMlDQ0NDQ0NDY0IaLKkoaGhoaGhoREBTZY0NDQ0NDQ0NCKgyZKGhoaGhoaGRgQ0WdLQ0NDQ0NDQiIAmSxoaGhoaGhoaEdBkSUNDQ0NDQ0MjAposaWhoaGhoaGhEQJMlDQ0NDQ0NDY0IaLKkoaGhoaGhoREBTZY0NDQ0NDQ0NCKgyZKGhoaGhoaGRgQ0WdLQ0NDQ0NDQiIAmSxrDEgsWLMDf//73wd4MDQ0NDY1dAJosafQ7FixYAMdx4DgOMpkMVq5ciR//+MdIJpODvWm7DDSZ1NDQ0Og/WIO9ARojEwsXLsQZZ5yBeDyOQw45BHfffTccx8F3v/vdwd40DQ0NDQ2NkqCVpWGGRFVqUP5KRU9PD1pbW7F27Vrcd999WLx4MebNmwcAMAwD3/3ud7Fy5Up0dXVh6dKlOOWUU8RzTdPEnXfeKR5ftmwZvvnNb/bbZ9hXVFcnB+WvXDz++OP4n//5H9xwww3Ytm0bNm7ciLPOOgvV1dX49a9/jba2Nixfvhzz588XzynmO4jFYrjpppuwfft2bNmyBT/60Y9w1113aUVLQ0NjxEErS8MIiaoUrnvh8UF57UsPOwaZ7nRZz91vv/1wxBFH4L333nPXdeml+OIXv4hzzjkHy5cvx4c//GH87ne/w+bNm/Hvf/8bpmli7dq1+MxnPoOtW7fiiCOOwC9/+Uts2LAB99xzT3++rZJRXZ1ER+dfB+W1a2s+ja6unrKee/rpp+MnP/kJDjvsMHz2s5/Fbbfdhk996lP4+9//jmuvvRYXXHABfvvb32Ly5Mno7u4u6ju45JJL8IUvfAFnnHEG3nrrLXzrW9/CSSedhMcfH5x9VENDQ6NSMAA4g70RGsVhuJClBQsW4Itf/CLS6TQsy0IqlUI+n8epp56Kf/7zn9i2bRuOO+44PPfcc+I5d9xxB6qrq/GFL3whcJ0333wzWlpa8JnPfEa8RmNjIz71qU/1/c2VgOFClvjn8/jjjyMWi+HDH/4wAFc12rlzJ+69916cfvrpAIBx48Zh48aN+MAHPoDnn38+cJ3+72DDhg342c9+hp///OdivStXrsTLL7884N+LhoaGRiWhlaVhhEx3GpcedsygvXYpePzxx3HuueeipqYGF1xwAXK5HO69917su+++qKmpwSOPPKIsn0gk8PLLL4v/n3feeTjzzDMxefJkVFVVIZFIYOnSpf3xVvqErq4e1NZ8etBeu1y8+uqr4rZt29i6dStee+01cV9raysAYOzYseK+qO+gvr4eLS0teOGFF5T1LlmyBKapq/saGhojC5osDTOUWwobaHR2duLdd98FAJx55pl45ZVXcOaZZ+L1118HAHz84x/HunXrlOf09Lhk4LOf/Sx+9rOf4dvf/jaeffZZtLe34zvf+Q4OP/zwgX0TIegLaRksZLNZ5f+O4xTcB0AQnaH+HWhoaGgMJDRZ0qg4HMfBtddei+uvvx577rkn0uk0Jk+ejH//+9+By3/wgx/EM888g9tuu03ct/vuuw/U5mqg9++gra0NGzduxOzZs/Hkk08CcInWwQcfPCQUQA0NDY3+hNbLNQYE99xzD/L5PL761a/iZz/7GW644QacdtppmD59OmbNmoWvf/3rOO200wAAy5cvx6GHHorjjz8eM2bMwNVXX43Zs2cP8jvYtVDMd3DzzTfj0ksvxSc/+UnsueeeuOmmm9DU1ATH0TZIDQ2NkQWtLGkMCPL5PH7xi1/g4osvxrRp07B582ZceumlmD59Onbs2IH//Oc/uPbaawEAt99+O2bNmoU///nPcBwHf/zjH3Hrrbfiox/96CC/i10HxXwHP/7xj9HS0oLf/OY3yOfz+OUvf4lFixYhn88P4pZraGho9D90N5yGhka/wDAMvPXWW/jLX/6C//7v/x7szdHQ0NDoN2hlSUNDoyxMnjwZxx9/PJ544gkkk0l8/etfx7Rp0/CHP/xhsDdNQ0NDo1+hPUsaGhplwbZtfPnLX8aLL76Ip59+GgcccACOO+44LFu2bLA3TUNDQ6NfoctwGhoaGhoaGhoR0MqShoaGhoaGhkYENFnS0NDQ0NDQ0IiAJksaGhoaGhoaGhHQZElDQ0NDQ0NDIwKaLGloaGhoaGhoRECTJQ0NDQ0NDQ2NCGiypKGhoaGhoaERAU2WNDQ0NDQ0NDQioMmShoaGhoaGhkYENFnS0NDQ0NDQ0IiAJksaGhoaGhoaGhHQZElDQ0NDQ0NDIwKaLGloaGhoaGhoRECTJQ0NDQ0NDQ2NCGiypKGhoaGhoaERAU2WNDQ0NDQ0NDQioMmShoaGhoaGhkYENFnS0NDQ0NDQ0IiAJksaGhoaGhoaGhHQZElDQ0NDQ0NDIwKaLGloaGhoaGhoRECTJQ0NDQ0NDQ2NCGiypKGhoaGhoaERAU2WNDQ0NDQ0NDQioMmShoaGhoaGhkYENFnS0NDQ0NDQ0IiAJksaGhoaGhoaGhHQZElDQ0NDQ0NDIwKaLGloaGhoaGhoRECTJQ0NDQ0NDQ2NCGiypKGhoaGhoaERAU2WNDQ0NDQ0NDQioMmShoaGhoaGhkYENFnS0NDQ0NDQ0IiAJksaGhoaGhoaGhHQZElDYxfGqlWrsGDBgoq+xlFHHQXHcXDUUUdV9HUqhYH4jMrBggUL0N7eXtSyjuPgyiuvrPAWaWiMXGiypKExArH//vvjnnvuwerVq9Hd3Y21a9fi4Ycfxte//vXB3rQ+Y8qUKXAcR/zl83ls3boVDz74ID7wgQ8M9ub1GclkEueffz6ee+457NixA93d3Xj77bdx8803Y8aMGYO9eRoauySswd4ADQ2N/sWcOXPw+OOP4/3338cdd9yBjRs3YtKkSfjABz6Ab33rW/jFL34hlt1rr71g2/Ygbm35+MMf/oAHH3wQsVgMe+65J8477zw8/vjjmD17Nl5//fXB3ryy0NzcjIceegiHHnooHnjgAfzhD39AR0cH9tprL3zuc5/D//t//w/JZLLk9aZSKeRyuQpssYbGrgFNljQ0Rhguv/xy7Ny5E7Nnz8bOnTuVx8aMGaP8P5PJDOSm9Sv+85//4Pe//734/5NPPomHHnoI5557Lr72ta8N4paFI5lMIpPJwHGcwMfvuusuzJo1C6eccgruvfde5bErrrgCP/zhD8t63Z6enl6Xqa6uRldXV1nr19AY6dBlOA2NEYbdd98db7zxRgFRAoDNmzcr//f7cU4//XQ4joMjjjgCP//5z7Fp0yZ0dHTg3nvvxejRo5XnGoaBK6+8EuvWrUNnZycee+wx7LPPPkV7fA477DAsXLgQO3bsQGdnJ/7v//4PRxxxRJnv2iVLgPv+Ob785S/j0UcfRWtrK9LpNN544w2cc845geu4/PLLsWbNGvF+9t1334Jlmpqa8NOf/hSvvvoq2tvbsXPnTjz44IM48MADleXIq/XZz34WP/jBD7B27Vp0dXWhvr4+8LUPO+wwnHDCCfjVr35VQJQAl9h+5zvfKbh/woQJ+Pvf/4729nZs2rQJP/3pT2Ga6qHd71m68sor4TgO9tlnH/z+97/Htm3b8NRTTwGQXqhp06bhoYceQkdHB9atW4crrrgicLs1NHYFaGVJQ2OE4b333sOcOXOw33774Y033ihrHTfffDO2b9+Oq666ClOnTsX555+PX/ziF/jc5z4nlrnuuutwySWX4P7778eiRYswc+ZMLFq0CKlUqtf1H3PMMVi4cCGWLFmCq666CrZt44wzzsBjjz2GI488Ei+++GLJ2zx16lQAwPbt25X7zz33XLzxxhu4//77kcvl8IlPfAK33XYbTNPErbfeKpa7+uqrccUVV+Bf//oXHnzwQRx88MF4+OGHkUgklPVNnz4dJ510Eu655x6sWrUK48aNw1e/+lU88cQT2HfffbFhwwZl+SuuuAKZTAY/+9nPhLIUhE9+8pMAgN/+9rdFv+dYLIZFixbh+eefx0UXXYTjjjsOF110Ed5991387//+b6/Pv+eee7B8+XJcdtllMAxDWe9DDz2E5557DhdffDHmz5+Pq6++GpZlaaO4xi4LR//pP/03cv6OO+44J5vNOtls1nn66aedH/3oR868efMcy7IKll21apWzYMEC8f/TTz/dcRzHefjhh5Xlfv7znzvZbNapr693ADhjx451MpmMc++99yrL/fd//7fjOI6yzqOOOspxHMc56qijxH1vv/22s3DhQuW5qVTKeffdd51FixZFvr8pU6Y4juM4V1xxhdPc3OyMHTvW+eAHP+g8//zzjuM4zimnnFKwXv86Fi5c6KxYsUL8f/To0U46nXYeeOABZblrrrmm4P0kEgnHMIyCberu7na+973vFbzvFStWBG6D/+9vf/ub4ziO09DQUNT3vGDBAsdxHOU1AThLlixxXnzxReU+x3GcK6+8Uvz/yiuvdBzHcX7/+9+Hrvemm25S7n/ggQecdDrtNDc3D/o+rv/030D/6TKchsYIw+LFizFnzhzcf//9mDlzJi655BI8/PDDWLduHT7xiU8UtY5f/vKXyv+ffPJJWJaFKVOmAADmzp2LeDyuKDOAq0j1hoMOOgh77rkn/vCHP6C5uVn81dTU4NFHH8WHP/xhReUIw9VXX40tW7agtbUVTz31FPbZZx9ceOGF+Nvf/qYsl06nxe36+no0NzfjiSeewO677y5KYscddxySyWTB9t94440Fr8s9R6ZpYtSoUejo6MDbb7+Ngw8+uGD5u+++W9mGMNC2FBsHQPArSE8++SSmT59e1nM5eCMA/T+ZTOK4444rafs0NEYCdBlOQ2ME4qWXXsIpp5yCeDyOmTNn4lOf+hQuuOAC/PWvf8VBBx2Et956K/L577//vvJ/Km01NTUBgCBNK1asKFhu27Ztkeum9vff/OY3ocs0NDRgx44dkeu5/fbbcc899yCVSuHYY4/FN7/5TcRisYLljjjiCFx11VWYM2cOampqCl6nra1NvJ/ly5crj2/ZsqXg/RiGgW9961s477zzMG3aNFiWPIxu3bq14PVXrVoV+T4IbW1tAIC6urpAv1kQuru7sWXLFuW+7du3Y9SoUUU9P2zb8vk8Vq5cqdz3zjvvAJDlTg2NXQmaLGlojGBks1m89NJLeOmll/DOO+/grrvuwmc+8xlcffXVkc/L5/OB9xej+PQGMh9fdNFFWLp0aeAyHR0dva5n+fLlePTRRwEA//rXv5DP5/GjH/0Ijz/+OJYsWQLA9Rc9+uijWLZsGS688EKsWbMGmUwGH/vYx3DhhRcWGKGLwWWXXYZrrrkGv/rVr3DFFVdg27ZtsG0bN954Y+D6uru7i1rvsmXLAAAHHHCAMFv3hrDvqVgUu20aGrs6NFnS0NhF8NJLLwEAxo8f3+d1vffeewCAPfbYA6tXrxb3jxo1qldV49133wXgKilEdvoDP/zhD3H22WfjmmuuwUc/+lEAwCc+8QmkUil88pOfxJo1a8SyxxxzjPJcej8zZsxQ1JbRo0cXvJ9Pf/rTeOyxx3DWWWcp9zc2NhaoPKXggQcewGWXXYYvfvGLRZOlSiEWi2H69OmK0rbnnnsCgPJ9a2jsKtCeJQ2NEYajjz468P6PfexjAIC33367z6/x6KOPIpvN4txzz1XuLyYhfMmSJVixYgUuuuiigrIYgIKIgmKxc+dO3H777Zg/fz5mzpwJQCovXBGrr6/HGWecoTx38eLFyGQy+MY3vqHcf/755xe8Tj6fL1DYPv3pT2O33XYra7sJzz33HBYuXIizzjoLJ554YsHj8XgcP/3pT/v0GqXA/11+/etfRyaT6VeCq6ExXKCVJQ2NEYabb74Z1dXV+Pvf/45ly5YhkUjgiCOOwGc/+9l+m3O2adMm3HTTTbjoootw33334aGHHsLMmTPx0Y9+FJs3bw4NXQQAx3Fw1llnYeHChXjjjTewYMECrFu3DhMnTsQxxxyDtrY20UZfKm666Sacf/75+O53v4vPf/7zePjhh9HT04MHHngAt99+O2pra3H22Wdj06ZNmDBhgnjeli1b8LOf/QyXXXYZ/vnPf+LBBx/ErFmzxPvh+Oc//4krr7wSv/71r/HMM8/ggAMOwBe+8AWhmPUFp512Gh5++GHce++9eOCBB/Doo4+is7MTM2bMwOc+9zmMHz8+MGupv9Hd3Y358+fjrrvuwvPPP4+PfvSjOOGEE/DDH/6wT+qZhsZwxqC35Ok//af/+u/vIx/5iHPnnXc6b775ptPW1uak02nnnXfecW666SZnzJgxyrJh0QGHHHKIslxQ+79pms5VV13lrF+/3uns7HQWL17s7LXXXs7mzZudW2+9NfK5AJyZM2c6f/3rX53Nmzc73d3dzqpVq5w//elPzjHHHBP5/ig64Nvf/nbg47/+9a+dbDbrTJ8+3QHgnHDCCc7SpUudrq4uZ+XKlc53vvMd58tf/rLjOI4zZcoU8TzDMJwrrrjCWbdundPZ2ek89thjzr777lvwGSUSCeenP/2pWO7JJ590Dj/8cOfxxx93Hn/88YL37Y8y6O0vlUo5F154ofP888+L7+/tt992brrpJvGeALfFv729veD5FAvA7wuLDgiKAaD1Tps2zXnooYecjo4OZ8OGDc6VV15ZEJmg//TfLvQ36Bug//Sf/hshfw0NDY7jOM5ll1026Nui/8r7CyNh+k//7cp/2rOkoaFRFoKSusnj83//938DuzEaGhoaFYT2LGloaJSFz372s/jyl7+MBx98EB0dHfjQhz6E//qv/8KiRYvwzDPPDPbmaWhoaPQbNFnS0NAoC6+++ipyuRwuvvhi1NfXo7W1FTfeeCO+973vDfamaWhoaPQrDLj1OA0NDQ0NDQ0NjQBoz5KGhoaGhoaGRgQ0WdLQ0NDQ0NDQiIAmSxoaGhoaGhoaEdBkSUNDQ0NDQ0MjAposaWhoaGhoaGhEQJMlDQ0NDQ0NDY0IaLKkoaGhoaGhoREBTZY0NDQ0NDQ0NCKgyZKGhoaGhoaGRgQ0WdLQ0NDQ0NDQiIAmSxoaGhoaGhoaEdBkSUNDQ0NDQ0MjAposaWhoaGhoaGhEQJMlDQ0NDQ0NDY0IaLKkoaGhoaGhoREBTZY0NDQ0NDQ0NCKgyZKGhoaGhoaGRgQ0WdLQ0NDQ0NDQiIAmSxoaGhoaGhoaEdBkSUNDQ0NDQ0MjAposaWhoaGhoaGhEQJMlDQ0NDQ0NDY0IaLKkoaGhoaGhoREBTZY0NDQ0NDQ0NCKgyZKGhoaGhoaGRgQ0WdLQ0NDQ0NDQiIAmSxoaGhoaGhoaEbAGewNGCiZMmID29vbB3gwNjV0WdXV1WL9+/WBvRknQxw0NjcFHMccOTZb6ARMmTMC6desGezM0NHZ5TJw4cdgQJn3c0NAYOujt2KHJUj+ArgwnTpyorxI1NAYBdXV1WLdu3bD6/enjhobG4KPYY4cmS/2I9vZ2fdDT0NAoCfq4oaEx9KEN3hoaGhoaGhoaEdBkSUNDQ0NDQ0MjAposaWhoaGhoaGhEQJMlDQ0NDQ0NDY0IaLKkoaGhoaGhoREBTZY0NDQ0NDQ0NCKgyZKGhoaGhoaGRgQ0WdLQ0NDQ0NDQiIAmSxoaGhoaGhoaEdBkSUNDQ0NDQ0MjAsOKLB155JG4//77sW7dOjiOgxNPPLHX5xx11FFYsmQJ0uk0li9fjtNPP71gmfPOOw+rVq1Cd3c3nnvuOcyePbsSm6+hoaGhoaExDDGsyFJNTQ1eeeUVfO1rXytq+alTp+Jf//oXHn/8cRx00EG48cYbceedd+L4448Xy5x66qm4/vrrcdVVV+Hggw/GK6+8gkWLFmHMmDGVehsaGhoaGhoawwzOcPxzHMc58cQTI5f50Y9+5Lz22mvKfX/84x+dhQsXiv8/99xzzs033yz+bxiGs3btWueSSy4pelvq6uocx3Gcurq60GWsVMKZfMB+zuQD9hv0z07/6b+R9lfMb3Co/Q2FbU7VD5/PS//pv0r8Ffs7HFbKUqmYM2cOFi9erNy3aNEizJkzBwAQj8dxyCGHKMs4joPFixeLZYKQSCRQV1en/PWG6bMOwrf+cCe++fs7ynw3wxfbtv8RO3b+GaY5one3YYHP//AK/OyVp3HICfMHe1M0BhlXPHIfrnlqEcZNnzrYm6KhMeQxos9eLS0taG1tVe5rbW1FQ0MDUqkURo8eDcuyApdpaWkJXe+ll16KtrY28bdu3bpet8XO2+W9iWGOlpYmNDbWor6+GlOm7FqlzU9deiHOW3BLWc8dM2USvvvPP2POZz7Vr9u0x2GHwjBN7Hfsh/t1vRrDDw3jxsAwDOz5wcMHe1M0NIY8RjRZqhSuu+461NfXi7+JEyf2+hzbzg/Alg091NVVidujmntX4EYSPvi5U7D7oQdjxgcOLfm5x37lNIyZMhnzvvplAMCECaP6ZZsMT90zY7F+WZ/G8MTEffeCYRgAgNqmxsHdGA2NYYARTZY2btyIcePGKfeNGzcOO3fuRDqdxpYtW5DL5QKX2bhxY+h6M5kM2tvblb/eYGdzoY995Gtn47Trr+11HcMR9Q3V4vaoptpB3JKBhWlZgpjUNZdOdBLVLsmMxeM4+ugDsGbtXVi27LY+b5dhuidIXRLdtTH9kIPE7eqGhsHbEA2NYYIRfcR89tlnMXfuXOW+efPm4dlnnwUAZLNZLFmyRFnGMAzMnTtXLNNfsPPhytJxZ5+OmfOOwdSZB/Traw4F1NdLstS4C5GlpvGSgCera0p+fiweB+AqQMcccyAMw8Buk/pexiQ1wYyN6J++Ri/YbZ+9xO3q+l1L8dXQKAfD6ohZU1ODmTNnYubMmQCAadOmYebMmZg0aRIA4Nprr8Xdd98tlv/f//1fTJ8+HT/+8Y+x11574dxzz8Wpp56KG264QSxz/fXX4+yzz8Zpp52GvffeG7fddhtqamqwYMGCft32XC5cWSIForqxvl9fcyigtkaW4RobSicNwxWjJo4Xt5PVVRFLBsOy3DKZYZpIJj3i5KlCYfjeI//Atc8/CtOyQpfRZTgNABg3baq4narbdS5iNDTKxbAiS4ceeiiWLl2KpUuXAgBuuOEGLF26FFdffTUAYPz48Zg8ebJYfvXq1fj4xz+OefPm4ZVXXsG3v/1tnHXWWXj44YfFMn/5y19w0UUX4eqrr8bSpUtx0EEHYf78+di0aVO/brsToSwRij2BXXzxKcjl78ePf3JGXzer4qirS4nbDY27DllqYKXdRE11xJLBMC0iSCbiCUvcjkLjuLFIVlcrqoEfpCwZugy3S6OhZay4narZdX6XGhrlIvwSdAjiiSeeEAf7IJxxRiF5eOKJJ3DwwQdHrveWW27BLbeU17VULKgMF7X9Zqy4r+OET8yGaRqYP/9gXHJx/ypg/Q1u8G6oL500DFc0jJUls2RV6cpSLO7uC4ZpIhH3VKaIfYc/Ts+NWqaSytJf/nIJjps3C/vucy42btxesdfRKB+89JYoQ/nU0NjVoC8vBwi5bFbcDiuTFOsjMQ13udgwUAeqa6SyxInTSEf9aGnqjlelIpYMRoyV4eIeWYoqwyVS8jVinioVBFGGq+C+8/ETDkNjYw1O//Lc3hfWGHBYiYTwxAFAogwyr6Gxq2Hon21HCGxb5iyZVvDHHovwmijLxch3MvS/vtpdlCzVsHbsZDlkKUbKkoFEwj2xRQlLnJDF4uGq0UCU4Wg7q1KJir2GRvmYMnN/RaVMpJKDuDUaGsMDQ/9sO0Jg56RnybKCTyJGkaURU7R/R5dlhgKqq+WBeJciS42yHTueKp0smZYsvcWpJBfBluLshBdFukUZrqJkyX0NMqZrDC1MPehA5f9WQpNaDY3eoMnSACHPy3A+RUh4TawiyVKs8qWU/kJ1jTyJ19SUThqGK6qYJySeLP3KnTxFLlnq/XuOJ+VnG9UNhz4qSx/52tmYfdLHI5eh/TkxjMnSkUceifvvvx/r1q2D4zg48cQTC5a56qqrsH79enR1deGRRx7BHnvsMQhbWjom7rMnAHe0EwBYieH7PWloDBSG/tl2hIDnLHG/ACc8plmashSLDX1lqYYpS5w4AcCXfvoDXP3vhagd1TTQm1VxpGplO3a8jDIHER7DMGBFGLaDXqMoZamMEu646VMx76tn4NTvXxq5HAlgycSw6h9RUFNTg1deeQVf+9rXAh+/+OKL8c1vfhPnnHMODj/8cHR2dmLRokVIlkGMBxpjprhRKz2dXQB6IdcaGhoAhlk33HBGjiV4804kfqAyi1SWYgNg0u0vpJhvpbpKPZHMPP5YGKaJ2Sd9HI//+ncDvWkVBc9WKqfMIfYRw0CCleFM01T8b+I1GAGPUij74lmqHzvafX4vz6XXiBdB8oYqHnroITz00EOhj59//vm45pprcP/99wMATjvtNLS2tuKkk07Cn//858DnJBIJhUwVM4C7EmgYMxoAsHXtOkzce0+duaWhUQSG/tl2hMC2GVmyQshSkScwYxh5lqqYspSqkqRh7w/NESfskdiNw31KZSlL7ARmsf2lujqYePHXMCO64fpShovqsgtCIjl8yVIUpk2bhvHjx2Px4sXivra2Njz//POYM2dO6PPKGcBdCVAI5fuvvQmg90gKDQ0NTZYGDHZOqgFWiJpUdDfcMFKWeEcUV5kOmi/bykciWeI+ECseh2maGDu2sejnx1iZzIpzshTs++K+qGKUpXL2nWJLd8KzNIzLcFFoaWkBALS2tir3t7a2iseCUM4A7v5GqrZWEPE3n3gKgFfq1SZvDY1IDP2z7QiBnQsuw3HiZBR7MhpGylIyJUkD746aNkt25CTKaK0vFXPm7I0337oN769ZgJaWynukOPGNxeNY9vb/YsPG3+BDH9qvqOcbzODN95GammCVykrKk11ko4C3y5SjLHHTeTFIDOMyXCVQzgDu/sb0Q2bCMAw4joMVzy8R99eNaR7wbdHQGE7QZGkAQd0nimdJuV2ssuSVUoaBfJ5iBIkrDU3j5ey0Sua8zJgxAS8tuRFPPf0T7L33bthtt9G4+zcXVOz1CJyMWPE4dtutGYZh4LTTjy3q+Vz54V1lYR2FcUaWospwffEs8f0zSpmi3XKkKksbN24EAIxjI23o//TYUMXUg9xh3dl0Gpl0WhyTGkaPHszN0tAY8tBkaRBgxoPLcEWXOYZRGS7JSm908hy/5x7KSI54hcpwpmnilVdvxsEH7w7DMNDT48Y3zJ17ECZMGNXLs8tHqrZWIbKxuCW+q/33mxz2NAWK+shKelVVIcoSK6PEijDslqNK8v3TLIIIDWeDdxRWrVqFDRs2YO5cWUquq6vD4YcfjmeffXYQt6x3TNjTjTfo2L4DgLyAqx1dud+DhsZIwNA/245AxMxgn1KxXSn9GUq5227NOObYA3tfsExwdYFOnod+4qPqMsnK+CVOP/1YpFIJOI6DSy+9G3W1p6KnJwvTNLDgrvMr8poA0DRB9a2YliW+qylTxwY9pQCqMiX3i7AyHFeWipkNB6Mcg7dcb1iwqrdyd5uGsbJUU1ODmTNnYubMmQBcU/fMmTMxaZLbdn/jjTfie9/7Hj7xiU9g//33x29+8xusX78e//jHPwZxq3vHqN1cn9S2dRsAAE7e9VLWjdJkSUMjCposDQLMeHDprejZcP1Yhnvt9VuwePE1OPjg3fu8riBwsmR5Y172OPxQZRmrQtk0NJts7dqt+PGP/opcLoc771gEAJg7d2bF1KWm8Wp5JmbFxHfV3FxcuzhXDS1WVuOJ6MprJHgZLop0l0+0ecJ8NCFz/41HjF0Z6jj00EOxdOlSLF26FABwww03YOnSpbj66qsBAD/5yU9w880345e//CVefPFF1NbWYv78+ejp6RnEre4d9Z43qfXdlQCAvOelrBnVEPocDQ0NTZYGBZwg8cDBYpUl2dHUd7JUW1sFwzAwc+a00GU+//mjsGHjb3HiiYeXvH5Olqg8NHaqe3Vue1e1lerEOfTQGQCARYv+I+674IJfeeqSiV//+lsVed3GFlU9MmMxJXsorKONI0xZSoXMW+M5S1HeNyEslaUslda5GS8yN2wo4oknnoBhGAV/Z5xxhljmyiuvxPjx41FVVYV58+Zh+fLlg7jFxSFZXQMAeP9VNzaAJgvUNGiypKERBU2WBgE8qZtfrRef4E2epb6TJTp5WhEntgu/fRLGjWvEJZd8GqMmTsR5C27FjA8cGro8B/etxGIm6kY3iwyi7RtcM2y8AmW4gw6aLlSYG2+8T9yfy+XwqzsfBgAcN++ginTG1fnMsqYZYyTFwNy5M3tdBydL3IMUpiwpnqUilKWyDN68fFzEiIyR6lkazqBO2vXL3wUAZDMZAOp4Hg0NjUJosjQIiMWDTd2l5tj0RxlOKh7hJ1g66dXWVeHjF5yL3Q+dhZMvu6io9fP1GoaBQz/5URiGgXwuJ8gSH//SX/jW+Z8EAHR0dOPNN95XHjv//DuRyeRgmiYuueSUfn/tuma3vEfmWX8kxIeO3LfXdRiMCHPyU1UVoiwluLJUTHRAGQZv3oxQBNmKIuAaA49EdbX4vXd6Bu9s2i0barKkoRENTZYGEhQdEOJHKdXg3Z/RAVYEWaIZdNXVSaRqXRm/2IMrP2EaBrDPkW7C8Y6Nrcim0+4yFRjkOW/eLADACy+8U/BYLpfDuytcg+uhs2f0+2vTrDvyg5imoXxXs2ZN73UdvEzGlaXwMhzzLBURQVHOvmP64hB6Q9Q+pTHwqGmSpbbOnTsAAJnubgDqLEMNDY1CaLI0COClN646GIPQDUeI8pfQybqqKiFOmPEiTdn8RG8YBibu6RrJVy99DdketwTQ38pSbW0K48e7hOXXv3okcJnXX18NANh99/GBj/cF1Q0ukSQyGPN9T8W8phI9wPaRYpSlYqIDyht3wiMveidkWlkaWqhpdMmS4zjIpd3fXqbLI0s11YO2XRoawwGaLA0gHO9f3knE520VPRuuyDLcz68/C5///FGhj1uWJdYRNdmeSFkiERcnyWLVIOqAI9TVu1ewbz7xtCQT/Tz1/GtfP8Et9eVt/OlPTwYu89RTbwEARo+u79fXBoAqb0Bqur0TQCFZGju2dzMtL5Px8mwqhCxxwmlave9H5ShLnNgXE0/g/+41BhfV9YX7erqzC8DIHDmkMfxw2vXX4pAT5g/2ZgRCH80GEqIMF+ZZKrUMF77MMcceiAsuOBG/+vU3Q5eprWXDXiNUACJxyaQMVyxGWQBUVQQAqDLTtmWr8Ev0N1n67KlHAgBWrFgP27YDl/nnP18A4Kof/R0hkKxxS5WdO3YAAGKGozxeXZ3slRhzMsOX5SNjOGJFdsOJ9fcxwdsKSQkP6n7UGBqobnDJksN+E+mODgBAfABGDmloROFDXzgVM+cdg89d870hGbg89LZoF0AYQepPg/fUKW77elRHUm2tLKVFlUyI8MTjVsnzwfw7fdx0iUOmu1v4JYolicViv/3dlOx//P250GVWrWpF3osu+PjHZ/fr6yer3av0nZu2AAAsj9w6jgPHcWAYBmb36pXiypK8XVx0QO+DdFFGBVfZb0P2K8sqzNXSGBogxZNfQHS3ufPpii2ra2hUCuOmTwXgHr/mfPbkwd2YAOij2SAgxoMouQG6H8twyZCTKgefMxZFlkjJisVMQX4MwxBG5ij4fVWWR5ayPT3IeGW46BDF0nDggVMRj1twHAc33XR/5LLbtrknig9/eP9+e31AhmxSt5/JlKVMxjV9H9tLajr/ak1m9k6lwpQlNdz0jTduRSb7D+y2mxyQyuMFyslZUuIMQr4zrSwNXVR5JXA7nxf3de5sA1CcYV9Do5JoGCMjV4449VODuCXB0GRpABHUSh42VDcKxXTDJRKkAIWvp3iyJGfRcWIzauKEordVvI731rPdGWS6PLJUZL5UMTj88L0AALmcjY0bt0cuu2qlS2YOOHBqv70+IE88W9asBQAwYQhbtrgnp1678JQynLydDBkhwsuiMSuOGXtOgGXFcPzxBwcuU45nSQ2lDD65cjXJX4LVGFxQJysnS11ehECUB01DYyDAL77HTZ8Kq4gL/oGEPpoNAmLKia24Se4cUlkKXyYlgh7DF+JJ0lElE+6R4upCY8u4sKcUbCsRRVmG60KPKMP1325ISeQdHd29Lvufl92RD5Mnj+m31wekUrZjYyscxxGeJcdxsHp1KwBgrz0nFr0+TmySIQGelm8gM31nPOeKm/jLMniHeO04VGVJH16GEogs5bM5cV/HNveCor9L4RoapaKqQTYgGKaJo0//r0HcmkLoo9kAgghDWBBlqdEBdMLb+0NzCkaGkBE4WlkqzbNkGAZS7GTY0FI8ybBt971b3vZk0j3o6XS7xcoxG4dhxp6u2rV5885el3388VcBAPX1/ds2Td/L9vVUhnPvt20Hr766GgAwYWJz0FMDwZUlUgwLlmFKj8HGq3CCxE3gZSlLXAUNMeXHlODK/ou20Og7ktXufk4jTgCgfds2AJosaQw+qrysLzpPzv7kxwdzcwqgydJAwrOuKFfoyu1ivw55Epp71uk4+7br8Y3f3q4sEdY1xcFHZxTjWQKAmiq5XP3o6BO+aZripJzLudI/KUu5dBo9na7605/hmpMmuQRu7dotvS678MGX4DgOTNPAIYfu0S+vXze6WSFLfmXp6afcmVx1ddGt2vwz4R9PIrQbLnjGIO9ytLgq1dfogBCylIhrZWmogro0c5wsbY0uVWtoDBQSXkfmmtfcY2TzpIlIDaFkeX00G1B4yhK/+i5xhIS7nFSWJuzlnuTrmTkOcNv8ewMPOIwqw/ETdw1bL431CANXbNJp9wBtmW5HmG3b6OnylKUyzMZhGDPGlXJXLF/f67IdHWlhuP7o/EP65fWbxrcAcIlR5/YdcGxbeJZs28Hixa8AcInEtGnBZUx/rV4pw4XkW3FFJ2FJZSnGDFNWXz1LMe5Z6t3gPRTbf3dl0Mko54XBAkDbps0A3P2hpqlxMDZLQwOAvJh78f5/IZ/LwTAMHHfWaYO8VRL6aDaAIHkxZgabuovvhpP/inKI7+QXpkBwFK8ssQTplLxd28vBtaFBkqXubjdTKc46w3o63EC8ctrYw1BX577ma6+/38uSLsgE/oEP7NUvr08+LvquHdsR3XC27WDTph1CZTv++FmB60gk1cwbXs2Khxi8eYdlVRVr3+eKU589S8x0HmLw5mqSLsMNLRBZyvb0iPs6tm0X+6r/gktDYyBB58LN763BujffBgDM+tjxg7lJCjRZGkhQGU45oZSfswTIcoj/5BfWNcVRVSXJUtSken7Sq4oz4hSQCMxBpSbHcQRZ4gJWd2dHr9tYCizLEobml15cXtRz3nlnHQBg730m9cs2kI/L9ubC2XaeKUtuvk1bm0sSZx4UPCMunlLJEv9uE2HdcIwIVbF4gXhYB1s5s+FivDGhGGVJk6WhBNqvKAzWj96UYg2NSiFVXyeOc5vfW4Nn7vk7ADVOYLChydIAwqEyXD/mLNFJy//cRCKuLBsEpQwXYfBUyBIzGFfVRQ/frGfKUrrbLcPFTUckmdM4EMMwkEj1PUF45kFTYRgGHMfBkiXvFvWcF553B+3SLLm+gnxcuYz7fu28LTxLFIJJpb9UiPqXSKkBgfwbTIS0eHOFkq+XK4ZqGS7ybQS/hslJevD+opjAdRluSIGCJykMlkCJ3posaQwWxk5xg4Qdx8GODa1ofXe1+0A/+ln7Cn00G0gEdcOxE0qpZThAluH8pCgquZvA54zFivQspeLMP+MZRsNQ75XEHAfo9gZ3up4l9/HudqkspXohXsVg9uw9Abhm8lwu18vSLhYtetl9/VQiNB27FNAJh0oddr5QWSLSFKYSWb40Zf7VWvFgksLJUlWSEyRGXpTnGjjxxMPx3vsL8LGPHRrxjtgzFJIfTPTijEz3p3Ffo++gjlkKgyXkvbJwMSGzGhqVwOjJbpQKEfeObTsAuMeQoZK3NOzI0nnnnYdVq1ahu7sbzz33HGbPDh9V8fjjj4sRE/zvn//8p1hmwYIFBY8vXLiwItvuiG644K6iUnOW3OcHjx/hLeZhJ+WqFFeWes9ZAoAkI0vxqugRCTR7jpfh4oYDx/EUlq4uuS39QJYO9MIl29t7z1giPPPMW2IEyXHHzezzNtQ0NgIAerxp7nYuJzxLuZz7vok0xUOIj3/0BP9qw0gwJ0vJkKwjXoYzDAOXX/5ZTJo0Gpde9pnI9yReg+0HRkiJzdKepSELIks9nV3K/fmcq4LWNPU+4FlDoxIYtZsb+UKdmh1bt4rHapuGBokfVmTp1FNPxfXXX4+rrroKBx98MF555RUsWrQIY8YE5/2cfPLJaGlpEX/77bcfcrkc7rnnHmW5hQsXKst9/vOfr8j2C4M3L73FSleWOMJmtcVZ11QoWVKUpSLmiQHgTXbxRDRZIs+SbTvo6iLPkiO8W4D8TGhuVV8wY4b7g9tSRMYSwbZtQa6OO+6gPm8DDSulDKl8LieUJVKUiDRZYfPVfMGT/JsNI1gqWZL7Ee9ytHgnnSGVxbDSXuFrBIepcsT7aCLXqBxofyMiT8h7JePqBk2WNAYHjePcxhjy02XSaXFuGCqK57AiSxdeeCHuuOMO3HXXXXjrrbdwzjnnoKurC2eeeWbg8tu3b0dra6v4mzdvHrq6ugrIUk9Pj7LcDm9afL+Dxp2E5CyV6lkCWBeUX1mKB3tVOPicsShlSSVL7LV7OcnW1hJZstHZKQ3epCxxJGv7Hgw5yZuD9v6a3jOWODZtcskVka2+gMqJNKA0n80KzxJ1wYkyXKiypJIlLtCEdS1yBYkrS5Zi8FaJDBGvohsLzID9zgeVLBW1Wo0BAoWSEpEnZL0ogaohlGmjsWuBOjHTHZ0Fj9U0Dg0SP2zIUjwexyGHHILFixeL+xzHweLFizFnzpyi1vGVr3wFf/rTn9DVpcrQRx99NFpbW7Fs2TLceuutGDUq2uiYSCRQV1en/BUDoSwpScilG2K5wdsMKcPxFvMwZYkP240KEOTllDjL7ekt9bfaSwi3bRudHa5PIm46cGwpLdHtZHW0/6kYjB7j/qiWF5GxxLFtqzuvbczYvv8ok9UuQaQBpblsTpAdIks0myuM+BSU4djtsOfw9PdknCtL4anbRGxixe53bLmw4cdqXpdmS0MJ9HvtbldPSORh6o9SuIZGOagd1QgA6G5vF/eRf0mTpRIxevRoWJaF1tZW5f7W1la0tLT0+vzZs2fjgAMOwJ133qnc/9BDD+G0007D3Llzcckll+Coo47CwoULI4nLpZdeira2NvG3bt264t5EwCBdQzF4F3dy4bxIlM8iDN5hIzJ4yncUWVJa12Pq/f4xKxy13qDeXM5GuzerzWKeJUCqTMma6ETrYkBlv9dee6+k55GyNGpU36+sE1XuNtDMLa4sZbMuSaIyXFhmkv8zNYpQlvj+yhWrWIiyBMMQ6wryFh35pc9i1ER1fl0xQ5+1sjR0Qd9ZukON7KDuOBqHoqEx0CD7Ah03AXlRWe35QAcbw4Ys9RVf+cpX8Oqrr+LFF19U7v/zn/+MBx54AK+//jruu+8+nHDCCTjssMNw9NFHh67ruuuuQ319vfibOLG4oahiNpzBTbfBJblo8FTmEGWJnzBDTmwKWYr0LMnbft7VND58mG61R5by+bzwBcVNR8yJA+TVQ2+ddb0hkbDEZ/Hii++U9Nz1610zYX/MiKMSWsdWd+ZWricD4jGkLOW8MlwY8YnshgvpWuTkJcFLpWbwvmaw1/eX4Y780mdx0sXn47xf36xuR8i6OPSIk6EL+p6729qU+6ksl6zRZEljcJDy5sK1b5HGburSrB4i5eFhc2TbsmULcrkcxo1TT87jxo3Dxo0bI59bXV2Nz33uc/jVr37V6+usWrUKmzdvxh57hM8Ky2QyaG9vV/6KgchZsriaxD1LKuE5//wT8c7y2zFlyljlfqU7KoQs8dyk0DJckRPi+bppthuhacL40OeRgTyXs9HuBTFapgPHzotlqDMsWdU3ZWnWrN1FxtLL/1lZ0nPfe88d+cAHC5cL8oW0bXZ9U9lMhilLbpxBnspwYeqMX1ni6w95DicycW7qtnjpjLf7S2XJX4YbO3UKAHkAE8/nZbgilCWNoQUaK0R+OgLlnVHCt4bGQIP2vZ3e+B1ABvv2R6xMf2DYkKVsNoslS5Zg7ty54j7DMDB37lw8++yzkc/9zGc+g2Qyid/97ne9vs7EiRPR3NyMDRs29HmbC2AHGbx5O7b6dXz30k9jjz0m4MJvnxS6yhgpSL6SB8/jCSv3JMoow/k9yQ3jgjsRATlOJZvNYedOjywZkiABbmgjACSq+3agPnT2DO+18sr6i8HKlS7ZToTMXSsFRCJ2bNwEAMj19IhuOFGG8/4N62xTutbgKAbvsO9JKcPFghUgpfvOkOvyk3RRBvQRcFMZdxI2doVdCBhGaHOBxiDA+/o6d6jKEvlE/F45DY2BAh1ztq2T512KEaiq1WSpZFx//fU4++yzcdppp2HvvffGbbfdhpqaGixYsAAAcPfdd+Paa68teN5XvvIV/OMf/8C2bduU+2tqavCTn/wEhx9+OKZMmYJjjz0W9913H1asWIFFixb1+/aLMpxilA1vtaYr/6oqf1mGleG8dRWU4fhJMuQEmyhSWVLW61ssiizR2I1sNo/t2zu85ztw8pwsucShrwneBx4wFQDQ3t4VvWAAyBBumkafUqdNyxLfw3ZP7cyme6Sy5CV3UzkurJTFowP8tp+w74kTbb5aJffIR1xIdfJ7lixPHfOTKG4iD1O4/ASwunpoBMrt6uD7pr8M193m/jb95V8NjYECXWRuXSObc2jgc7K2780//YFhddn3l7/8BWPGjMHVV1+NlpYWLF26FPPnz8emTe5V/OTJkwtUhT333BNHHnkk5s2bV7C+fD6PAw88EKeffjoaGxuxfv16PPzww7jiiiuQyWQKlu8rBFniRlmDl+TUEyGduKPa+qXvJZhoARHKElMaqBTTOH4cdmxQTfRRZTga7xEEInnZbA47dngHZNMRahIgpdZEH8twe8xwy4GbN7f1smQhli1zDfqGYWDatHF4993yVEVeW+/Y6hoVsz09QhnKeGW4bI7KcMHfKzd4+73X4WSJq3/BZTg/waF1+QlijEbl+PYpQ9lXQ0IpLT9ZSopZeBqDB95R1L59h/JY5063wYFIsobGQKK6oV6cYzatWi3upykIqSHipRtWZAkAbrnlFtxyyy2Bjx1zzDEF973zzjuh4XjpdBrz58/v1+2LgiNylng5I3j0ift/dzn/CUjthjML7nOfw7ujQjJxfMrSxf/4A8ZOn4pffe3beOtJWdpUPFIeWaLU65qIdFUKPcxkctjGlCVOaPMeWYqn+nZVu9tubk7H++9tKvm5XV1p2LYD0zSw114TyyZLiSr5o6aU5ExaluEyPmUp1ODNynCU/i3+H0JSOJGxYgYo+dMMSYvnjxUoS7ScvwzHVaqQnCW/WsaDTzUGD7VNjQDc323a51nq3O4S+7A4CA2NSoI8ko7jCK8nIMlSXy+k+wvDqgw37BGgLHH/UqFHxP16Cue2FZbh/M/lJ63QsRqMRJkxE6N2mwDDMDD90Fmhb4E2hUhOVAYGddtlerLYvo3IEuDkpcFbkqW+leFGj3ZbT0vNWCKQ+Xr33cMN672B4g8cx0HOUyYz3d2iDNfjzccjz1LYPD4rzpQl32NhZUJOwPk5T+m2tMKUJd++EzKE2fAZvFet/hXWrL1LWSbue43+mLen0XdUea3ZQWj32rV7y03T0KgEmiepc+EIFGkxVBoPNFkaQNDOoJx0lBNQiLLku18dpBvsWVKTm3v3l8RMUygPftVAKcNRGnWGUn/DD8IpIkuZHLZulVezFpiy5Jn4/KnVpYIyll59dXVZz097RGbKlHAPVm8IyorKdHeLUlqPpywRMQvz/ajKkvpYMcoSDw5VPUvqkFv6XgvKcCHDmflyNTVxTJkyFhMnNmPSZPmZ+cuEWlkaGqASManbHNSurcfTaPgxbvrUgq7Y/oaYC+eN3SHQWJ6+Xkj3FzRZGkDQcSqsBbvgSj7kZMYRCzl58pNWaBmOkSUzZgoSF3YSd1/PLQ1lvB05qp5MylK6J4tt22QQXsKUZIl+IH3pxEkkLPF+X3xxeVnroByoSZNGl78dqUKy1NPVJZWlHve9Zr1QyjD/EcUPOI5TfBmOjyIJ6Z6LWaonhdbl3+/o9f3ucv4aPKOL71+WT8VMjWCyVFtbixtuuAGrV69GV1cXnn76aRx66KGDvVmBoFEm/qt3AGjb5Da+DKUJ7xqDj4n77oXv/OMP+MFTD+H4c79SsddpHOdG41CSPIGsDH29kO4vaLI0gKC0akMpw4VHB9gx94RU3Rw+fsUM6YbjJ8nQFnWuPiVkt4wZUh4iJExHzPCJSv0lT1Q6nUEul6PkBMSNQmUpKgm8Nxw6e4bIWCpXWaJuvXEt5Q9tTFTLMhyhp6tbkBciSzmhLEWTJThOgbIUdvWvzgvkt8ODJCUZDy7hFipLPPgyeFCzvwxXNYJPvnfeeSfmzZuHL33pSzjggAPw8MMPY/HixZgwoe8zBvsblFXDmysIbVtltk19c/nKqsbIwvRZM92RWrEYPnLeWfjuP/+CxogQ4nJBc+H8MwvpHNOXc0N/QpOlAURgdECEspT3vp6aseE+mmKUpbCTMidLVkIqO2HmXULcdNDlzT6LMmbTSbQn7ZIEOk4nYpJM0BBPqw9XD/vuMwmAG35ZasYSYcsW9/2Mbg4vK/YGEazJyFKmq1uoQ+RZIqN36PfClSXfY+GlElZ642XaWPC+xtdVQJbicVTHCj9HZaByMtgTt6uU4VKpFE455RRcfPHFePLJJ/Huu+/iqquuwooVK3DuuecO9uYVoMqbX2kzvyAhl86IY1P92Oi5mBq7DohgO44Dx3EwZsokXHL/n/r9daj5oCAs1SNPQ6VLU5OlAYRjF3bDKbPhDPXroMWih9zSY+H+krBUZUVZ4qbiXoyeCdMRplArIsiRyFJ3t9vVkHfk8wnkferLD2L8ePcAn/HVvEvBxo3u+2lsKr8+T8SRDwpOd3QKZSmdpjKcZ/AOVZbcz83O5wvKcOHKEns+W20sImeJnuNf594Tq/H/9t6Gj05VZXElJZx9X7yr0t/hN1IN3pZlwbIspH2lg+7ubnzoQx8KfE65A7j7Aykvq4aiOvwgslQXEQVSKZimifEzdh/w19WIRsobQZXu6MSDN90GoDLBpdWNhXPhAEmeYkNkKoAmSwMIqSzxBG/2FfhDAMUy4cZL8VhEHk8YWVLSli21M07ZDu9kStufMGWLZ1iSMyBPnN0eScgFKEs5rz001gey1DLeLZ0RGSkHa9e6Jtfa2vLNhHGva4OrWz2d0rNE25fpcU9YYV40+kxdsqQ+Fi4s8Xlw8m5VYex9CC8A7NacgGEAzSlVXeIDoBOJYE+cnwCOVLLU0dGBZ555BldccQXGjx8P0zTxhS98AXPmzMH48cFKcNkDuPsBdOKjVGQ/SHGqG1V+GbpcfPMPd+Kie3+HIz53yoC/tkY4aFZgPpfDfx58GIB7Lkj088BlmgvatkUNjabqRW+VjoGCJksDCNkNx5QlJaDSb/D27g8hLwDEkFb/OVTJ1wktwwXn5pghc+XyXh0tHnOw0xvnEdVBQyStq4uUJXdZVsFBhspwfbh6GOPFBnR1pXtZMhyrVrlBnH05uZPBm7xpAJDu7GDKkvteZTdcdLBjPpcLJ0cRCDN4K145OKFlOPq/iXBVywqJpihUloaGhF4JfOlLX4JhGFi/fj16enrwzW9+E3/84x9DS8HlDuDuDyQ9P10+G6ws2TS0NCIKpFIYPdkto0+bdeCAv7ZGOMiPms9m0bVTlsiqG/pXEaUcpR0b1TDkLi8s1X/+GywMja3YRSBDKUOCKP1luIBlCtq8hbLkN3izdv8QgzdXuJRRFkwt4mSJwhQTpoNt69d7L2ugxqs5+0Enzq5Ol8QEKUtZr4xhWuWfVEc1uz/ejvbyydK7K9z3E/ZZFQPq2uDjXLrbO0QprdtHlsKVJfezyGdzYh8Q+04R7MliZc6YGawscX7kX6UIqyzohpPrSvLZg/FwVTI5QpUlAFi5ciWOPvpo1NTUYNKkSTj88MMRj8excmXwIOdyB3D3B4gs5TI9gY9To0VNw8CTJSrt9HWYtkb/guZ15jJZZLq6xDGoqp/Lx2Tl2L5ho3I/KUv+xqfBwtDYil0EpCyFkZ+CWVxG4TKWFa4ycajPCSYAoaoDu82VFurmSpgO2rdsFz+e5onB3T+0/u5ujyQIsiSXyaa9Mlwf0oObPJ/Rzp2dvSwZjmVvy5En9fXlycyUB2Lb0kSbbpeepZ6M+wH09FKGoxp9LpMVRIvH4wSpX0o3HDd4h8whjDEvVIGyRIpThF9KDT2N8Cwlh4aEXkl0dXVh48aNaGxsxEc+8hHcd999g71JBYh7RIQaKvzI99PYoXJA+3tfU/w1+hc0r5OsEoSq+v4lS1TJ2PL+WuX+Dt9YnsGGJksDiCBlSTV4+z1L5HGS9yd8c97C7ExhJzYOrj5xc3lYGY5IT9x0kMv2iPfTMH5s4PqJ2HV4ylLW9spwrF0rI5Sl8k+qdXUuudm2rfwr9TXvbxbvZx+vu65UxL3sIdunLIlBul6xVCpLIZ2M3veVy8i5cjZjS35flb+1NqwMx1WfmKIs+cNQzYJl+P2AGhGgkiWfsjREMlIqgeOPPx4f+chHMHXqVBx33HF4/PHHsWzZMjHYeyiBTnx0ceJHnlTjASZLiepqcawaKuGDGi5oX8jSnFTvGJTqx8G2NU2N4vvfvPp95TGar1kJn1Q50GRpACGUpViwmlSQayOUJe4V8ZOlMGWJleFCyJJaAjQC7+cnQvIeJUwHuUxWdNY0jg0mS7Sejg5/GU4uQ+GWfRm1QORhy9a+lTXIkzVjRnk5OfGkpyyx9uxMV5ckPHDfIyl0oWTJ849lezJC3eEErKpavQK3fFfkMVaGC4sO4MqSfxeifbJg83iSezw4xytm+snSyPUsNTQ04JZbbsGyZcvwm9/8Bk899RQ+8pGPIBfScTaYINUm2xNcqs7nsspyA4Wx0yaL21pZGloQ+4x3QSvKcCUketMokzCMmTpJrJuS5AmdTFmqax74xgM/Rr5GPoQgDN4hKk5hgnfh/X5lKczCophxQ3w4yutxssROsNyg2+GlXMdNB/lsDrlMFlYigboxwanXRJa6CpQluQzN/+mLia+qyv1Rb960o+x1AC6JsawYpk0rL3iNsqL87dlSWXLfI+UshZEl0yOo2XSPuJrJsziC2hr1Cjzha+flq+U5XApZUnhycWU4M6SzTjV47zpk6Z577sE999wz2JtRFMhPRxcnfogk/QEmLGOmSBU3PkTCBzVckGKd8aJfbNuGGYshWaSy9M3f3YEpM/fHvdf+HE//8a+By4zebTcAwcnyuUxGDGyvGzUKW9cMXPdoELSyNICQZbgQNcnvHRF3R3mWgl+Ln4jDuuH4Mg6CT6qkLDmOg/YOb7BhzFWWaCp0XUjCOK2fRol482ORYGU4mv/DzealIumxr/UbtveyZDRIOSt3PhwdXPzBf/Tx245KlkL9Zt7nn+3pkcqS7Yj9p7rGpywlfMqSUZqy5CdttLv5y3DKjEArWH30K4TJXcCzNBwQ8/bNnu4QZamfZjSWilGsIzCmyVLRME0TP3x2Ma5+8qGKvYYg2KQseep21IgrjrHTpwIA9jv6yNBlwubCCdAxr7H8sOD+giZLA4ignCXFs8QJi2lKZYkTn4KRFfSvX5XqvQwXpizxbeJKVrtXTiNliYhObUg3HK1fkKUAzxKtw29uLwV0sl6/bmsvS0aDDOIUclnydnhdHfkQZSlvyFl5QFQZTkYHSM+SfLzKd/Ufrwr3LJmKssSIk/LVhylL6nYZSmddcLelf+hzYgQrS8MJFPpK87b8yHnG73hiYJWlJjY+IyrgVkPFmOlTkKqtQU1jA2orlI1FQcWZLnefoYvAZJFkKeHlzjVFjEhpHOdemPrnwhEohqO6sbGo16wkNFkaQBAzN0JKXpww8I4npQznyyPiX6DSWcdOdGHdcL0pG4BaRunodA+ormepR8zuCeuOoNWTIkVkKcHec0+Xu46+tIcSIXj//c29LBmNbZ7naczY8tqn6cqYzLLifu9zyHskOeORpdDP3/u+7HxeZB25ypL7eI1PWVJTdR1w8dEMiQ5QPUv+xgKjYBn/cpwU8f2rIDogoZWloYCYIEvBHaNk4u3L2KFy0DBWqrhDZazFcEDdKJm0XqnUdcq+owvaPJGlquLIEp1Hoshcvff9p9s7Ah8nr2ZNg1aWdinIUMqwESecLMkDB1/EX4bjaZS8oywsQFB5KlcX2P2qwVs+t81TiBKmg3wuh7SXE9NbK2nbTvfKJEvjTuJMWeroKtjeUtDYWCue+957m8paB2HTJjcEbdSo8lpj6WCfZynJpmkKhSZveGSpyDJcPqsqS6IMVx1OlvylM+5ZUrK0InKWaGeIGuJrxYL3kQJlSasFQwKUndbdEUKW0n1P0i8H/ETaW0dsJYa4DlfUjmoUt+vHVIYs0feR7nCJDHkxaWB4FBrHjxPHiygliiwcXTt2Bj5Or9nfcQXlQJOlAYTwLClqUpiyJA9aJqMy/tElirIUcrCJmi0nXpsrDSHdcG3M4J3tyaDT28GDfgypVEL8WHa2eWTJdtcbZ2fqdMjBu1hMn+4eQB3Hwfr123pZOhrr17tlvHJzliRZkmW46mp5pW7H3NuU5B2ekSXLcKTu2I70LPlzljhZsiJM2YrKFKEs0WKm4eu+VPLBghsI/GQ+kSjfi6bRfyAC3hPye6MsnYGe8F7NFIOorLXDT/kkvrfo7/jGb385EJs15MGT1mubKlSGE2TJPX7TRSCV16IwYc89xG0zFgvdr6rq3e+/fVuw3zSvydKuCQorVMeVBHuWePkrqqSm+MNDDjbFlOEU0hUwV85xHOxsl9EBdi4nyFIiIB+lsVF2TLS3qWU4TpaoLFCusjRp0mixfX3Fe++5ZTx/matYxDwVhc/fqq2VV2F5ER1AylLweujzz2ezogyXZ8pSlc+jxEsnfl6slnzDlKXgMhygkr1QZYmX4Xzl1L6MsdHoP9A+1dXWFvg4eUYGemgpz+yJig/Z64MfgGEYGMOiBkYqEqkUTr3qMkw+YL/QZWo4WaqQZ4m+D1KWct5FYNDx3o+xU6eI24ZhYNL++wQuR9//zk3BFgoatF6sqbyS0GRpAEHT6PlJJ8xkHeZZ8itL/DTnz2CS9xd+zdXV6g6vkC7FsyTXubPNPaC63XAZ0Q0X5DdqaJA7d5tQljyyxAze3axWnSohv4MwcaIrQedywfO4SsHKlW7cfrmlI7oS42W4Gtbmb8RJWaJgwGC2ZIgyXFbphrNtUpbU7YtUlkICUM2onCX2/zqmsvGSMTd4c0LkVwf8HjuNwQF9990h3pCM1yUX60M4bDngIZhRHbFEDnYFX9NHvnY2Dj/5Ezjt59eELsOVlpqmyoyoIYJNfiIiLsXESzRP3k35/+T99w1cjojX9vUbAh+n10yWcW7ob2iyNICwgzxLvCRnFKMs+dKWeaaOdyCxLEtN8A4ow/lToPn50mAHLaksAds971HcCz0kUhCkCtXW0VBZR7xvKsNxVYIb+1J1pSfDTpjgkqVMWOtpCVi+3J0PZ5pG6CiSKMgxJXKkBKlUtgOYCfcz7xEG7+D10Gvns1nQN2E7EGTJryzxfBq/KTusG85SXtvfSSlvq2RJ3h8LSfP2d/j1ZdaeRv+BfqM0b8sPCh4caLLEO+CiOmKrPXIw0Ns3GGia0AIAqK4PNzXz+WxVEcv1BbTPdHve1FKyuJpa1KDi8XvuHrgcqfFb164PfJy8dMkifFKVhiZLA4hAg7eSoi1vqmQpuE3b9xRRhuOlEyC4DOcvNfHjlJL+zcpwOzpkGQ6QraRBylKQ7yfruOu1mCqRSafLSoYljB3XCECOYukLli2T8+HKCaakA3kuQFnKO0DCO8hQGS4M9HnmuLLkSLJNIZwEXobzi4jKbDhlkG64ssRRVy8JrBIdoDQdhBu847obbkihO4Qs9Xjt4WGl/Eoh9FjoA5Vr+pL0P1xAxCDKP8bLl9WV8vMQwfZKtzSEOZ7snSzVjVGz6kb7lCaA4nHc19i06r3A9VB5WJOlXQwywZuX4cKUpRCzdoFnSZ70qAzn75YKMk7W1PiVpWCDN89Z2r7T9R5Zpns/GZmDlKV6piwRch5ZioVcQSZrS69Ljx7tXlV1dgbndJSCrq60UG/22is6pj8IpjemJMeGldJ3kXcMMfuquzt4PpdYjyBLOZhw9xnblsqSPxWbdzBFKktMMYxK8Ob/U8hSiNfOivAs+cvGGgOPVH2d+O7ChpP2dHkzGgeQjPCOqd5A5bqhMoG+kqD3GkVcuYenP2e1ETiR6d7pKks0hLmYJoAaL0SSLqgbxhWOxGqePEnOhXv//YLHAVkeHgpzA0f+njeEEFiGU4hDcBmOL1KQs8QVIe8xf5nGP68LCCBLBg/NLGwLdxwH23dIQjKupSmSLNH6bZammLFDyBJ1edWUriw1N7tXVRR82VfQkNvddx9f8nPp4JZlU7qp3Gk7MhG3h+UsBZX7hLKUycrYAaYsFXiWvIOX4ziwzHCyxEu+flKlvD67XVMXTJbClCV/yTcsEFVj4MAzajpDWrSFsjSAZISbgAHv9xBSZqPST9hvZiSBus0Mwwg1UyfZYNlkTf+TpVSdPBbTPkOl2mLCQ8l/urPVNW5XNxT6qsZNd79/x7aRSwdXBigQMzEE5gaO7L1uiCFYWQq+ragH3CviOxmp+Ujuialg0GqQwdtfhkNwWc1inqVM3gHNc20Z1yQ9SwFKUZ2nLHGyRJ6lQq7kKSZldDw0NLgHih07+hZBQKC2/qnllOG8q3Ie3U9G+rxjwPLk63RaPu6f9QdwspRh0QHSxO6PDuBjIizfZxumYkZ1w/GdqrY2yReUz1eGO7P1+shR2FxCjYFDjZd+7DhOwdxCAkV4DKRyM3qyq94qQ6Lrgi+YrLjcx2tDxiuNFHAVxW+UJvCso0qUqHi3HWUgZUrI4iLC9/7rbyr/52jezf3+c9lwW0LaS5y3iij9VRqaLA0gRDecklcT7FniHVlmlGdJMXiHKEtBZTgfoTIMWT5Sy3BSWYrF40IdGjeuQWRgBBq8SVFhAxJz3nP9i/eFLBEp27atveTnBoEUqt0mln5Api62LIvup++CK0vcX+UvmQKSfOYzMjrAdgzkvZOKv1tPXOk5TkAZjnuWeleWTNNUDgpVrGtSLcNxshRh8NbK0qBDZBlFpGv0R5J+qRg10Z0LxkddBCkQgFoerKtQCONQAZ/P1zwp2A7AfUO8o7C/QKZxpUHHG3peDFmi7+v1x55w/2+aqPGNxRo10VXvuRLvB5H4gc7/CoImSwOIoJwlFKMsMcR8ngL+BVpWPPC5QWU4v/pkwBFSvBJKaXGyZAmy1Nxcj3wuW/AeCEJRyXOyRIsbijpCV5bJMn70RMq2bgk2rpYKUqjGtZSeXUJkhP/4q5hniX7waSY5+0tqgFSAcpmMMGLnHTZuIBVMltwynG+beBlOiQ7gr8fWlUop/6+uqWLLMbIUkv3lVz61sjT4qG5wS9WOEx6vQV2p5eadlQPysfR0dskmjwBlybQs5UKyfoQrS5wYUGecH7wjrZjutFJBniMwz2lPkfES3Iv25pPPiu92ysz9leVo1ElYUCogM56GQmSEJksDCKksBbdzc/DyDD98FSpLzJjtravKX6YJKsNVFXbDUQaLms4su+GseFxkJY0eXSfk0yjPEs8/yrLdjc9fo/Jkorp0ZYlI18aNO0p+bhBoNEt9XenbQipOlhm8SVnK2/KKrKtLPh5EiunzzGYyTFliZTif+Z8OJI5dqCyFlXnV5RhJr65S9rdq7m1Tnh9chvMrS2GBqBoDh5TXZs7LXX7Q2KGBRL030yzd3i5Ur+qAGWCN41QjeM2okUGWDpx3LC5b+DdMP3SWcj9XbhrHBdsBOKGqxDw/ynHiDTrkH+qNLI3fY7p4brqtXbT/77bv3spyYtRJW3hVoLvNOycNgeOIJksDCOEJKsazpIRSynVEeZZinrJUkPAcQMgKlSWg0+uU4d4WUpZs20EsJpWlUc31yEdkG1E0Qc4bKptIpdz2d++318zmr4lp1tWldzxQ1+CGjcFx+aWCAjT9nq5iQMpNtpuV4bzv0VWWvIRv5hvxfw/uetzPmHuW8o4hPsu4rwxHniXbtgMM3ux2EbPh4klVWeIxBWoZTi6jKEs+FdOvhGoMPCiTh5TtIFCWTpTJur9BZZnOHTuF6hXU2UXlGgKfizacMf/rZ6N5twk4/pwzlft5inrY3DdOqCqhugQR7LQ3baG3jslx06cBkDl83V70QMvu05Tl6PvvCBl1AshcsKEQGaHJ0gBCGry5Tyn4K+AnUZUQ+cpwvBvOI0UFs8MCFBs/oTIMOZ8naDac4ziIJaSy1NhYI/KEgpQloah4RChelQJgiOdTFxsgyVIiVXoZjk7U69dtLfm5QWhrcw8IQV6i3kCfWyYtO/NSzLPEr8jEnLcIZSnX06MM0hVluESYspQXJEjMIeTRFCGz4TiS1SklRkLJdAopw8UCogPo9YOaCzQGFikvksPOhZMlfnUfZrLubxCJa9uyVWaI1RVmBjVNUNUVbj4ezqDQSf/nHYvJ33fYKBN+LKlEUCdl3nGCTepjWDWEMMrzWfV4Hqe2ze6x2e+/otdo2xw86gSQnXhR6e4DBX0kG0DI6IBgoyynRSnlil4u4TfMBhEpP1mqCjBNkuJBKqsJRyhFhlKGY8qSFUMmL8kSGbyDPEtE9rJZjyylyLvjPs7HrdB6ElVlEBTvtd97b1PJzw0CeZb8n2Ep25JRPElSWQo6qKWqAl4nqAwHQ3yWCb8njdS/vC3GndD3GmbKjhV+ZQBc4yjfJfn2qZ4lto/Ewj1LWlkafFAbdz6kEw7wjx3q/1b0IFBDx85Nm8WFZFDWWsM4NeAwKtm6GMz62Dx89Zc3lVX2708kvGOgP0OIqyhhxFAZkF2B31jS2wc4wSZlqbcmgFHjXXJLJbSta92wXyq7Eqijb8fG8GN3544d3msOnJcuDMOOLJ133nlYtWoVuru78dxzz2H27Nmhy55++ulwvGnt9NfdXZjHc9VVV2H9+vXo6urCI488gj322CNgbX1Hb2U4pRuOl+HYOgrKcEwhIGnWbxpOBlytkfLjeCdj0wDsvOdBCggcdBwHMUsqSw311ch7Yz2CdmNSJDIZd51k3ra9YMpUldxGameOl6gstbQ0ic9v9er+IUtbt7k/8KCW/t5AKk6miylL3neRdxBY3gj0LHn/5pWcJUmW/L41+t7z+ZwowxExVwzeTGUyQ5SleFVK+T65mVyZH8h2Q+6Jo4M4kTWtLA0+qLU8F1E2t3M5abIeoAnv1NG1fd0GcVJOBWQG+U+yfd2+T136bew55zDM++qX+7SevoJ8R/4MIZ6HFvZew2Y+9hdSXmMHJ9jFkiVK7+7c7lYqNqx4F0ChamiJUSfrQtfVFZILNhgYVkeyU089Fddffz2uuuoqHHzwwXjllVewaNEijPFFq3Ps3LkTLS0t4m/KFDUI7eKLL8Y3v/lNnHPOOTj88MPR2dmJRYsWIVmBXAe6ego76ygnqRDTnv9Eyb9A+pEl/WW4qsIrKHES9zbJJUuFOVAJRVmSnqW6+mo51iNAWaLyEoU8Wik5Iw1QDeZ5QZZK+8xpJInjOP0WHbBtq1sjL48seYoQK8ORgmc76hWgiEsICnij9fT0+HKWPGXJF0xKZMnO5UXOUj5oaDMnwSG//HgyqXqW+L4U1g3Hr3K9Zej9Bc0l1BhYkIKTzxY3EqiYMpxpWTjzf36C/eceVfZ2kdK6de06UWIOIku1PkN3OQO3OajVfvTkSX1aT19BxwN/hpDiXQ1Tv3zH3P4O6qTX5UPBi+2YpE66nZu2AADWvvE2gEIjOr3/Le+vDV1X+9Zt4jWDzP8DiWF1JLvwwgtxxx134K677sJbb72Fc845B11dXTjzzDNDn+M4DlpbW8Xfpk2qAnH++efjmmuuwf3334/XXnsNp512GiZMmICTTjqp37ffCTqBKTseIymhBu+InCWv1u0/0ccCUmB5ech9ZSc4lJIbvFnOUk1NKvJKlco3pCxRdgiRJa5+UVddvMSujt0mjRbb1l/YssUlXWV1cXnfRQ8zeCeFsmQo0jkpL37vGEe2p0ctw9Fn6f9+vZOOncsh5ilLRKwU4ZKXf0OVpaTiWVIaDdj+Geajo/dI38lIT1seDqAUaN6lGQSZd9Z7Ge7E73wT+x1zJD73g8vL3ibaHzevfl+clBMBAYv+fJ5UGXlsHGSgrmsuPR6kv1DT1CiO/VEG7aA5bIlUquAcUhPibSoXVKLkcy55qTYKRGa3b9gIAFi99DUA7naOmeIS1Poxo8V7aH13Vei6uLJUN8iREcPmSBaPx3HIIYdg8eLF4j7HcbB48WLMmTMn9Hm1tbVYvXo13n//ffzjH//AvvvuKx6bNm0axo8fr6yzra0Nzz//fOQ6E4kE6urqlL9iUEoZjisO/OTlz63hXyCdNP2mYdMq/MHRSZArS/mA7YuxMpxpxUQZrqYmGdkNRyZkGu1B5m3qreDlHTpQlprSuttuLlnKRRhXS0Vr6w4AfTvJU14VIMtseSfYpBilYGV7MkoZLkOk0vKX4WiAb054lqhkF6YshSV4xxMJRTVSZruFjTvhypL3ZCoDamVp8EFKSq9kicbpFKHcTDv4oKKXDcLoqZPd13QcbF2zTqjLQWnU/vJNEKEqBbS/U7L5YGDsNFnh4J1tfI4fEDxapLZZliWJ4Nb5SpV9hSjdsn2mu624jkki51vec+e9pTs6xLlvyoFu1tLYaVMBuNvfFTLcGXCPI/Qe+5sQlophcyQbPXo0LMtCa2urcn9raytaWoKDu95++22ceeaZOPHEE/HFL34RpmnimWeewcSJriufnlfKOgHg0ksvRVtbm/hbty685sph9zLuhIObeCOjA5ScJfckWuCDCVBJiFDlyAgMwAkgS1JZshGzLBEsGY9bSgu8H0TGMj1EhEhZ8jxLTEXKed6nUpWlFi84kghZf2DTph0AAiuLkeCDJzNdTFnyyJDtGIqyQwcAv1nbfW2vGy7dIxQg1+DtkSV/Gc47cOWzWUGCAslSaM6SJG3xlOpZSrBMp5AsVWWfpOgA6ZkaNoeYEQsqb/PycBBI+S5mfEbzJDd92zAMjJ+xe8nbNJbIku0mRJNKHTQwlQznoms2YHRGsagb3Sx+B6kB6voLwmg2xoRnCNX5VLQgf1D9aFdhcRxH5FP5fV29oWHcWJx61WVoHB+c4xQPUCO7WcdkdYRvjN5P68r3xH00EHfCPnsCgFCY6DuNgiBLTYPbBTmij2TPPfccfvvb3+KVV17Bv//9b5x88snYvHkzvvrVr/Zpvddddx3q6+vFH5Gv3iB2jBDTLUdcUZbY/UV0w/nJkh3wNVM+ER9BIpQltn1x5lkyLQuO94qxmCkN3gHMgtafFsqSHCjr30YiS6VG2o/1gi27usLj8kvFRi+vyTAMNDYWfzDlnTU9nTKRNsGUJX7gozKVXwW0WNkr09MjyI8NA5kez//lN3hbpCxlhcE7kw0qwwUrS4AkS1YioTxHHa0SEh3AyJLIiMqRsjT4XSy7OqiUk+mO/p1Qm3iQb4jDSiQUL82ecw5THm+aOB71Y0ZHroPmgpGqTMeSICJE5I3GogSVpooFkTy+3sEAjXoBVMXZr3YFeXVqqXzoOOI7q/WRrN7wpZ9ejcNP/gQ+/8P/DnycTOc5No0gzcpwVSEdiQ3jxorzwYZ3Voj7qauNspaaihh1QiDFs69dkH3FsCFLW7ZsQS6Xwzhfoum4ceOwcePGotaRy+Xw8ssvi243el6p68xkMmhvb1f+ioFDBmru/QhpiQwrz/iVpaC8m0K1wiiQaWkZ8iAZkAcuTuCoLZwM3kR2TNNAlik6flmW1I+0NweNSmzCs8S8OnT1Umq42pjR7o+nszPdy5LFgyeBjx9fvOzL59rR8EdAfo95x1BIZZiylEjKk0W2O81ylgz0eFfffj+V4lki31SmMF09SlmyLFKWksInBUiDv7uCwJu+nCX3kXxAs4DG4IBU3UxAJzCHGDtUE00i9jnqCOV7nXyAtDY0jh+Hyx/8Ky5b+LfIUg0pGkSAskJdLiRCpIxRuaYvQ1VHTZABl4M5b6yxRZ5z+Dmg2jNHO6z85DeiV3txArZtiwvwsDymMIyf4Z4DG8YGk1r6jPncPl4SC2sCmLCnqzL6y2sbV7i+pPF7uq/b5L1/3jkcBuqU1AbvIpHNZrFkyRLMnTtX3GcYBubOnYtnn322qHWYpokDDjgAGzZsAACsWrUKGzZsUNZZV1eHww8/vOh1lgLbCTiBhJxM4sogXak4+E+Uij3cu0LxhxaaBjDlwP2U+0S3mm2KzRDKl+JZkmWVWCwmc5lME7mMvCrwH3iIJJCyFE+oBm++jVQXL2ZAI0dTk/uDbW/r/QdXLPgBoaUEssRNpzl2gKHOtbzKTVgopY9ksjJEJi1DKfPM4O3fB0j2zudkdEC6J5os+Tm6VJbiaq4XVzgVsiWXicVMHH/uV/DlG38kym7kI9NluMEHXYRwL10QKMKjt3DYfT/8IeX/Y6dPFbcP/eRHYZgm4skEPvyFU0PX0eApTzQolYZPB3XE0nFhZ6sbXmjFw0lYb+AkZTBToXkyt2EY4ndS7SlLtm0LRYWrYYDMXrLzeeH1IpJVDKxUQlzchXXb0fE80x18IVpVH0yW/OndhFcX/x8AoG7UKJimKd5/d8SoEwK9xzA1a6AwrI5k119/Pc4++2ycdtpp2HvvvXHbbbehpqYGCxYsAADcfffduPbaa8XyV1xxBebNm4dp06Zh1qxZ+N3vfocpU6bgzjvvFMvceOON+N73vodPfOIT2H///fGb3/wG69evxz/+8Y9+3347IMQx7MqbHxAMSMUhyrNkhihLBoAJe81Q7qNlsg5TOwIG/VLZL5+3YcYt2B49M01DyeDw+41IWer2SmRE9mhreRmOpNhYiQfBhga3XLB9R3FdGsWCSmRjxxRfI4975QM+pRuQnWu2pyzR1Ta9RsJn4OSZK7m0VJYcx0SPR4AK1MUYkaW8MHhLsiSXoytYxymcIZdIuOuIJ5O+sm/wIcLvWZr31TNwwNyjEEvSTEAiS1pZGmwQ2eDl4SCIcNheylOT998HgLy4avQG4gLAHrMPEbcPP+WToeugUhKNwqD5YUFqD3UAUx5PX8ax1I+WSophGCUrMgDwoS+ciskH7Nf7ghHwvy6Zl4mEOLaNvOdRHDVBJUtEGvK5nPB6VQcED4fhwLlHi2N8kEcMkMZyvxrZWxOAP72bsHTRI3AcB4ZpYN9jjpSjTrwRW1EQZGkQPWYAMDBDgPoJf/nLXzBmzBhcffXVaGlpwdKlSzF//nwRBzB58mTlRNXU1IQ77rgDLS0t2L59O5YsWYIjjjgCb731lljmJz/5CWpqavDLX/4SjY2NeOqppzB//nz0FFFLLRV2L9EBKklRjbV0EClQFdjtmKcs+Ut4huFgHLv648uQZwkATKdw+2LKbLiYUIZiMVMx//kPcuR16vLKcFJZMrzXZ2QpXdw0az/q6t2D+rat/ZOxRMjn84jFTIwugSyFXaH5laVUTTW6draJfcEfA0DyN5Euriz1ULnSvw9QqVRRlgpH0fDyqt9KRCckK656lniul7ou/lxT+KHoRBZkMNcYHNBFSLqzlzJckXlnTV4pa+2bb2PyAfsqJ86W3aeL22OmTkaiuloMYOUgdYTmglG5x38cMU1T7GzUYt4XRahutNp+Pm73aZGzyfzY96gP4lPfvQCZ7jQuPeyYsrfDb5CuHdWE9i1bRedfPpdHPptFPJVEw7jRgc/NZ7JClS+FSOx7lFQGw0qRQo3sVL87oYiHpLxTenfaFzOQS2fQtbMNNY0NOOgjc0XYJuUoRYE8rb156SqNYaUsAcAtt9yCqVOnIpVK4QMf+ABeeOEF8dgxxxyDM844Q/z/wgsvFMuOHz8eJ5xwApYuXVqwziuvvBLjx49HVVUV5s2bh+XLl1dk24OUm7BwsXiC+UDgiAOYfy6Pkm/pnUT9wZUG1Fo9IE/inCwZ1NjP1mnFZBnONXjL7aSdGChscaUTene3esUoynAsOiDjXVWWSpZoftvmLeGtp+WATvR8fl1vEGZRR1Vs4syzBMhEXiL1fjO+37MhlCUYwocUpSwRCepKF3YqFtMNZyUTirIUljelkvRCgzd17mllafBB+0e6F28l5Z1FdZslqqvF448v+L23flN4kGq8IbeO47g2ibO+FLielJgL5s4No3KPv8TWMH6c2G/XLXsHQN8IuD+ziXelFYO9PvgBAC6htMoYiURI+sgGZQhViTEjOVE2rRutkiUiKrlMRpDMUjr7Ju0vPWb+WaPyfiLYKlkiX1sYcanzyqtBBHT92+55derM/cXFZdSoEwJdlCf7mK/VVww7sjSckc8VeoL8v3uTTlo+ZYm6yWK+kw//nyjDxf3KElDnM/JRmSzLzpmmWL4wOiCft2HGTKEMGYYhy4ooNGfT87o6PbLkM3hz9YsOlGaJQZAUrEkdbP2FjCdtl0KWSM52/GSJuglJWfIOasLg7SO2/qt6nrOUTrvbVTB/jdS/XFaU4brSAUOO6bbjwB9/RKTOiseVwEqVLPXeDUdkn8iSVpYGH4IsdUSXq8lnEk+Gk6UDjv0wDMOAY9t49ZHHRCluryMOx+QD9oNpmnAcBxtXrAQAHHLC/MD1EOHa0eqeLMno6/ctNnudxo7jiKRnwzDKNmf7TcLNu00IWTIYpNAbhoHpsw4qaxsAeTwn1Hokk0hkLpsVfi5/pxuRpWxPjzh2hiZ9B6CxRZZNw0aXkELsL93S9+0newRSDCm9m+ONJ54C4HbMiVE3G3pvzqLKgyZLuxAckbMk7/NHB1iWexDg87YMSMWhoATDPUthZTgUyr6kXHFlKWYUGtClwdvthnNEGU76XwAg5jt40QmUOtVIeXICyZJ7oCxVXqd1bFjfu5RbCoiUNJUSHVAVTJZETpUow7kHGeoW82cmCWWJjPRKdEAwWaLPLZfLizEmXd2F2VP0vTqOU5DgTQqilYiryhJ/La5i8v2ORwd4r9ET4JnSGBwQge3a2YuyVETe2d4fcsN6O71OJ0p1njrzABw472gArv/o8V//DoBrqA7yBcUs93jQ5p1UyePiV5dJsXJsG+2eCgWw9vkIBDUX+MtHDcxvVQyaxsv8vWkHzyzpuRx+UkjGbiIEuWwWXTt3uo/5CB4Ro0y6R5CZYolE86SJyoVt2BgROqZ0+wi2IEsh5Myf3s2x5P6F7rEnFhOl4S3vrel1m7NECKsGL+oB0GRpQEESpsqW1GXoxGMpXhE5W63Q4M2fS2W4wm44v5GPjNtqGU6Mqhf30evZeRtmLCYSuAtInu/HL8hSV3AZjqtfgiwFJFxHgXw2a9YUXsX0Bd2ez6qhofgrGaEs2dFkibwFwuDtz1lKFg44BtysrO601zXo3weoDJfNivJaZxcpS2w5Rpb8niVSlmJxtRtOyVDir6nsdzKQk8pwpM6NZGXJNE1cffXVWLlyJbq6urBixQp873vfG+zNKgCpB929leF6wtv3CbvtuxcAYNOq9wDIMkrLHtMx3Uv13r5+A5b88yHkslkYhoHjzy0cR0XHufatLgEiFcVv3m4Y6879zGWzyKTT4mKk3leaKli/aeLqJx/Cj//zb8VTRSd5sZ6QPKj95x6FSx/8K2af9HHlfk78JvqaZooFD7Al8kGERSZn96B9q6uY+83UlOmW6eoWnqJECJEYP2N3zD3rdPH/WR+b564/mxWfwagAdY2+H7/3yI5IWgfkRXHb5sJjctfONlFaFKNOVq0OXA+HyNfqQxhpf0CTpQGEnfeutnnOku9kQlccFlNZTDjias9fY1bLcF5WToGy5MA0TeUKwhJlOFZaCdgmOlnm8q5niecscRQMSfQO0B3t3d7recNeqfzEtrGnyGnWyutZljhhv79mc9HPKwYUcllfAlmSypKt3C/KmOTV8g505FkqKMPR5+ioZMmBITKr/J89kUxOlqSyVFiGC+yGi7NQSr79irJUuK8AwWW4/kxVH6q45JJLcO655+LrX/869tlnH1xyySW4+OKL8Y1vfKNirznrY/Nw7fOP4egzvlDyczt7meBOWUexoOHOHkjpWfWfpQCA1pWu6bppQgvGeKnc7732pvvvK+5MsAPnHVu4Im9fImUp4530/Z5MajEnIidJTnRi9XFfPQNV9XWw4nHs9cHDxf1U5iYVLUj1OvHib+HLN1yH0ZMm4mPfOld5jHcKjp5S3iDe5kkTpQLrlR9rvGMzEaFsukcoaf7uRDrW9HR1CQIcRnD/3y9vwse+dQ5O+/kPAQAzDp8NwCW59Fk2TSicViEJtkqWRMdkCHGhC/awESatK+QcOMdxsH3dhsDlOIgQljrhob+hydIAwskXGqj90hLtbJwUGYb8McR8hIKfN+kk6jd40zK83dUSyhJbDuoJlC9n523PjyCjAzj8JI4e7+jwOt2oK4zGpShkyT1ghAV0BmHSJDm2YPWq3k2CpaDT2+ba2uJlX5FQnlfJklDmaJSEF/hHZTh/dAApcI7oTHTvz8NAuofIkr8M5/4/n82JMlxnUHQAES+7UFmKif3O8vmRgr8TRX3iaoD3AJUyRzKOOOII3HfffXjwwQfx3nvv4W9/+xsefvhhHHbYYYHLlztTkuPIL5yKZHUVPvT5Txe1vJVKiN9J145oZYkiPML8QNUN9eI4RLk57736hniMmhfe/LfrTXnsV24prnZUk3KhxuefkWeJyj3+UjwZn8mbQ8dQv1Hbjw/912fEbd4JbMXd90YG5CpmT7ASCXzrD7/Ch7/0OTY/TnbE1o1uVn57pY4YIYwRo15s4ceh8iCRkGy6Bzu8Lu+CWBbv/+nOLpFTFEYk6PM7cN4xGDd9Klr2cLsV17z+plCJGscWliLp/ftzkMTA4xAlyxAl32CytOzp58Rtx7YDl/Ej7V1MW4nyw0j7A5osDSCIlUfNhqNaPleWDPDoAF8Jht0WypKPuFieF2niPnvJ+4TiYUi1yAiIDvB2/rxtI2bxMpw0CwOFZTg/WRJlOGqZZ4ROSLMlKEtTpoz1Xt5BF5vF1h9oa3e3p6ameNlXtPzbfmWJPj/3/3TlSGTJP7qEDnqOUJY8ud4x0N0VPF5GfG52VhCdjq6AuX3iO8sXhFKShy0WjyuDm/3knKAQKrYMbW9POnwUzkjBM888g7lz52LGDLccc+CBB+JDH/oQFi5cGLh8uTMlOWpHjfL+7d2zAwA1DY3iNnlgwiCT9IO7Ug84zs3nsfM21r6xDACw/Fm3GzlmWa7x23Hw1hPPAACWPfWs6IrjKdRN4+Rvt8NrHacynH9/IbJC6nPeU+drm8Lf/75Hf0ghOcocNpHZtB6AGib7X9ddKdLIqXMrZlmiVDf9kIOU1ynXcCxGveRy4jOnxg8ioz3d3di+3vX9+P1NtEy6vUN4x4ICfacfOkuWxw0DZ/zPT8Tn8uYTT4mMpvqQFG+gkPTkqAkgJF5CEPMQsvTCP/4pjm25iEHsHNSYEDRUeCChydIAQmZAhXuWyFCteEUMSUYKowPYiY2ycjwiJMzYHsUZN11OuhYncYctF3Be454lw5Q5S8L/Qsv5rkbp8XaPeMR8ZTieI5XuUOvYxWDSZNfLkM8Xd3VSCtp2uttD0QTFIEHdfr7BkKJE5n1w9IMXBm//6JKEWoajj8SGIbxUhWU4L26CraozwuAdY6VC2ZVHniVLUY3CWv+5CmlyAk9XpN0yViJsdM9wx49+9CP86U9/wrJly5DJZPDyyy/jxhtvxB/+8IfA5cudKclBSoiVSBQVzkhGaMdxeu2GIyNtWJL+Hoe5gZM05wsAWleuVi4Qejq7lEgR2r94cjY/OdMxUUy095Fzer9d3uOkbFQzMuTHCRd8Tfk/mbJNyxLH2/VeDAEvX005cH8AwMolS/HzT58mfsv7HvVBAMCk/fYGIEt4ZizW6wy8IPC5aKTmUeNHnI2moRDOMKtGd3sHOr1Qx6DYlf28PCX6jMdMmSQI7auP/p8IAiX1iZCorhav2ekLjRQDjwPKftyL1RmSXbVjQ6t4z72N3yEQkS51wkN/Q5OlAQTlLKk2Et+Jj05aPmMteYIsn0zNv0AqY5FakSMS5Hi5QbvJgzOtP+8wHcEpNKBTeS2XyyNmxVjOUrSyRGjv8DxLlo80sDN7urP0BO4JE9wfOGUi9Sd27nR/nKkSclToSstPlsTn7L1vUg5lGc7XDUdlONtv8DaQDlFr6ASTsuT9Hd0BypIHE4UEk7YzZlk+P1IRZTgzVnA/L8NVVw+uMbNSOPXUU/GFL3wB//Vf/4WDDz4Yp59+Oi666CKcdtppgcuXO1OSg8o0hmEIQ3UUShmwmgnpSCPQkFe/atDD5nttWbNWeYzmenGCRLlBnGT5jcQEKk/Ra+Y8L1zY1PsxUyZh7DT3opBKbRRE2TxxvPjtrHrZ9VPR7xGQpb23nnSVMSJopChRCWvnpi2CgOxx2MHi+d97+O+4+qmHeiVQZFrv6ewWkQnkZSQFvqezC1vWSLJEXjFAWhq6drYJMuO/iAaAKTNd8rd51XvY8r7sOkt3dCKXzghF37+P1DRJItrV7lOWIpoAqlipNSqZmzrg/H6oMND3EJYJNVDQZGkAQTlL6sku2KzLd37TcESZx/SdvNSuJMpokiU2ADAd98TJD1ikQtmsDEer5q9AuU5524Zh8pwl93EngCzxKwxSaeiqQHiWmNTfwyT4YmeJjRrlHiwzmXBSUC62bnN/xMlk8YoIKUaFZIk+P3U5UYbzl0yFZ0mNmcg7hjCe+wU4IktJL707ZwM5/zA6MGUJhcoSlUVjlk9ZClH7FK9cQHQAbSsAVFcPrjGzUvjpT3+KH/3oR/jzn/+M119/Hb/73e9www034NJLL63Ya3Iiw0/UYaCySzH+ENGVGkKWqGSVTatl752bZIPF6pdfVR4jJaiOtfrTbT4uqdMrEfozlMgbQ6Qg682j5F6jU6+6DGffdj2O/cqX8NkfXA7DMJDpTuP1x/4NQI4Coa4vx3Gw4R23zGaYBhKpFKxUQvw233nuRQDANq9UR8NfR010n799w0ZhOp4y8wAArvrUNL4FNQ0NuOAvd0Uex0jJ6W5vF4SFOr3oOJnu7EK6rV0O050ky5iirb9tp0jADrIwkDdq7Vtv467zLxXrIrJCSqN/VIrYZxwHuXRGeUz42gI8UjzOoTukDAcAD/z8F2jfsg2P/fq3octwEFEezFl+gCZLAwr/iRQoPPHRVYPFzkauZ4m8TBGeJVKWhIrjrdMpnNoslSW308p9fmF0gDAPe9EBjlgkWBEDgPp6WcvfKciSNxMtoPzErzASIWFnfjR6c+EyRda9S8G2be6VTCnlIyKz+YIyHHUTqqSSZqf5OxfF5+QbjeMAjCz5Cbb7/4SnLOUdQ3yHQcTchPvaNivBEnk1LUvxLBVVhuMJ3qAynCRLVVWDa8ysFKqrq5XxSoD7/VdqeHAjS7MGZBt/FEgNCjr2+EEKUSzkpERdWf6BvJvfe1/cfu3RfyuPUYcd9xjRbZp9BqhGYk6EqHGCIgZECKNH3PY5cg4OP/kT2PtDc/Dx88/DtFlu9tFLDyzE5tXudhHholKgnc9j65p1gjyMmT4FM2YfIkpU5MeixPAmT9UhkrNp1Xto3+JuD6lNh50s5+DVj27Gub++BYCbxfS9h/+Oa597FGOmuooXKVid23eIhGyaCSlG03iqI31vo3aTExiINHRs2yk8X0EXmnS8f+eZF7Bh+bv49+/+jEw6jYf/91cAJAnxp39XRwysjWoCoH3NPx/Tj3eefQHfP+bjeOHeB0KX4ejyujhL8bRWAposDSCok6NUZcmdDed5lnw7DPcsGT5lKUcqkE3TxGU5hE6CeccQJ8ygncESgYdegrd4Xe8kLspq8qTP84na2jyyROUn70fEQzepJg0UP+OI5sJVRFnyxqeEjfoIgph9l/OTJfdzylEZjroCw5SlOJXhvH3Fu992DMUHxEGZV8S7cg6QdwK+TW9lpCzxSChZhov5lCX+Okbg/QpZCijDVVWNTGXpgQcewOWXX46PfexjmDJlCk466SRceOGF+Pvf/16R1/MPwx5TROs6lUbyud7JEilLRkBJB5BZYuQxJLz/mjtr07EdrHjhJeWxrLdO7jGi21k2f5OX4XiJjWIMKBGaylbk8aFgSMdxhPk4l8nigZ//Ahu9WXJ07KQAylwmC9u2xbFrzORJ2H32wcr6AWDFC0u813KPSVQSXPvmMpEm3uz5j6bNOhCAJH3TDzkIly38G752121oGt+CZE015n/tLADyGNe2ZSt6yLxM3c6eqkcXkOQR4p4v+h12bN+uJGXXMu/RbvvtLdLUX3/8SQDA/T+5CZfOPgZvPvE0ABkl4TeqE1kNUiMzYuBxoe2CyJk/mLev6NjullMHu1lkZDovhyiok4Oj0LznXeErV+vyJFrQos9vU6ClMG97SgLNpGPrFMZtB4IA+bN33HV6pCqXd0MpHf8Oq3pxAEmWHMcRPhs6CORJYWHvI5fJiK6ZYocl1tV6B+50MIHoCzZvdg8i/vDHKNBBnZcWAPn95vIOwIz6Oc9r5e9uFEnndKDiBu+Q7CLyqiVJWbIN8K8pkbCQyeSE6uM6z9zyqynKcN5+F4sFqpX+0oxComIKo3LfXy4vvtORqix94xvfwA9+8APceuutGDt2LNavX4/bb78dV199dUVer2X3acr//TPDglBNg1mzvSuwpHKEhcOKLiyfUfyJ3/4Bh37yo1j1n1cKnkNqFSdAdDLmZMm2bbm/NDCy5F2sUSI0tZFTKOLYaVMBuBEE18w7CXWjm9Hd0Y5cOqPMkqsb3YwGz0tEr5vPZmHGkmietBt229c1b7dtkeRj2VPPudtkGm5nmXf8XP3yqxg1cTz2PeqDqGlqQqq2VpSu/nD51Tj+q2di0v77iFEqtu3Grkz1CBX5k3a2bhLHddnAQyU2l3Rl02kkq6vQ6Fko/CbqdEeH+NzqxjSLMMj9j/kwANdjFGbs7/BCL/2jV4jM+QN2AdYEYEWQpSIjAYpF53b34tUwDDfrL9f/F8jFQJOlAYQ/gwdAQTcc/Vh4+cNkyhJ5iOgHonYueb4TUoPofOudj/nOFqgsBRB3Im15rxvOX4aT407kj6e2rjCDg+a+ZUMUFULYNGs/arwMpEqQpY0bdwAo7UqGZGn/SYnWkc3ZQFySjpwnr8ctfxnO8z4VKEtANi9La5ZlIUcHDe81UnGv5OcYsBmNJrIklCUjD8ANGCV+zD1Limrk3TYLIitYGc4oVJZyTMmoqhrcLpZKoaOjAxdccAEuuOCCAXk9ar+38+6FS9TAW0Kqzhu6WgRZIu9gkFkYAKyk7MLiyKUz+PEnPhv4HFKNUyxTik7GXMUB4NaEDQNVXmK1aZpih6I2elofeXyavAHh7Z7CQuUxuk3HyYl77yk8NRmvjJhJpxFPJdE0fhxGT3LjBTatkiXFdEcH8tksrERCZC85joPWlaux6j+uNyueSmLOqSd5kQp5vPl/T+GdZ17Axff9EfVjmvHk7/+CrWvW4TNXfhcNY0bDNE3h99m2fqMwV9PvXuYUuWSpp6sLtaOaUNvsZjpx9WgnvVfvc6tvHgUKo5h+iKu4UY5VEIgY+v1HKTFloFCNFE0AAfESRJaKKfmWgu426X+qqqst6NAbKOgy3AAi7zu5BYEUGL9XJOl1ZhWMumC36SDHO90A9UumAb1UuuGepaDGJ1FGyuV9ZTj3X8cuVJZqvJZ7rsYKZcljcAWqjbdwqsjsklovA4kG9fYnaDCvYRhFd3LRlaG/3CGUJXrfYrnCciR/3PERa9txgykJtbVyu+g1knGZ6cQVQH/wZcz7rN2vTlX6TMunLBnkZwtXlkyfvw5QIx2SyZFJlgYa5J3ZvmGjIAG7ee3sYRCDWTO9X1QIL1LI8Yn2cX9QYRQoYTpVIy+g6IKoxzfRni68SHlqYB4tQZY8okYqV73X6bZ13frA16cyVsuM6cLITISL/m0YO0YQqTVvvKU8v93rqNtj9iwAEO32K196WXwHR5z6KXcbvFb/XCaDaz96Cr576NH41w234qV/LvQUKhP7zf2wOBZuXbOWdXrRcdlrkPDN3iNSRWTJcRykvefShVXNKEmkxk6dCkDmRQVhZ6trzPd3Mov5lQGlWznDr/Bil0hwMSXfUpDukjaNZHVxF9OVgCZLAwhi3IpjyW/WpSRlH1mKe2SpIL1Z8SyRsiSJkP816CqCTnBKN5wZEErJx52wbjh6F0JZYj8eeXJk6gOpXd5n4CdLtJ5kkWW4Kq/DqrOr/8nShg1yMO/48U0RS0oIL1JWPSnRR0mKGh0Usx5x9kdBiLEwVDploZSZvPxeeIeZIEteGS7HDN5AoVGdPEtcVaTvz4zFVB+cQdsVUYZT9lW1DAcAqZAAO43SQC3pO1s3CwVzxuGHRj4nKTrYev+d0Ik5TFGlfbezl3BLDjrp88RnKqEVDGn1TvpEpkZ5qhHPiKL1kZJLKkjrytWBr09KyJjJk0QpkAgKhXTWjx0t1rf8+ReV55NJnEgnvX4mnRYXv6RuvfXvZwK3IZfOCH/Q4SedID7fTavfR6fnx/GreZRl1bndfR55z+oCBgjTeaV2VKO4j9r/lz/3UsHyhO0bWwEUGqeJLAWVu3rEWJpCZYk+o3yuf5tucukMOz8M3jBdTZYGEE4R8iSVq/wt20RATFMlKaq/JERZYgsJude7z1WWUPCatC5RhsvlYZiyB0pGB5BiIn88pGRwZUmQpWwIWfIYW7FlOMpA6uwoLtisFGQyOfH5jh8/qpelXdDnGpZKm6H37X1OpDT5E7xl12BeITm2A+Qgl1XSxf3KkgPkWWnM74uKmdLgLaIDaL8zTdUHR2U4hdQ5PrJUWIbL523x/adGaBluoEHG6B0bN4mTLx9hFAQiJsUEAJIfKAxi7tf24skS5e3wXB7yyPgVKjrp00m3yTM1cw8MkQj6ndB61731duDrEyFqmjAeSe/YQmUc6iQbM1mGNb7/yhvK89e87s65E+NZPILBt5+e+9Qf/xq4DXw9ZCSnuWiUBWWYpjIGRmzjNncbSXEPioKgrkJSzsbP2N3rXHbw2qP/F7pN2zw1zjAMddiw91q8W5FA6mNQqZa2MV+BDmW5bZos7RIQ8iQnQiHKkn9OWjxB3RJqOrfqWVIJTs6WHhcCHWToPtWzxMhSQi0H5vJeN5zP8yfLcPLETsSOd0XIcEvyLKm7Hl1VkvmxNxBZamvvf7Lkbo+77WPHhicFc4gyI/OGcDNmVpBEGfLp/t9fhpMRCzwU04brGaHPlJMlMm6nEuRVM8BpdNynClmecpRnZIlIm9/gTbd5eq7f2xaUxZRVlKWR2Q030KAr/i1r1ooTHQUwhoEUnWLIUvdOqSwFtYYTKabupGJAhIR7Gi1PafSPXyFPJ52sRfca+00RSYxZFppYyCTNqPOjzRtGWz+mGUnvs6BsIjJDUyRCNt1T0PL+9jMvKP/nMQk8XyrTncbWNeHja5Yuesx9LW8biOyQyRoA6lgZjUimfxuDoiCoxErDePc79kgA7rGoIyRJGwDaWjcHDtOlzz+XLSzd9nSENwEkqeRbhD+uXBR7fqgENFkaQAQavH2gk66/DBemLAV1wxWU4dhCcd9B0GbKEpXhAMCyVI9ULptXxp0QZBlOnpBTqUJliUqEGe9qxV9OpHRz/4TtMNDn0d7W1cuS5YE8N2PGhGeOcND758oS9xVlsu76TM/blfUiD/xGd1qPnc8r41Zsx0AiJT8bpR3f21USFjN4G3K9pFDRicWC9CyJMpz3PRsxM5DLm2w7/QcNddah+28+z8iS9iz1C6iEvmnVauFFaYiY6wWwWWOdvZMlntZcFZKQDQDtW4snS21bPLLEjg9imK1PoaKyD5FCCtGl1Gj3td31maaJKZ6qZtt2qOmXlKCapkbx+RGB2uZ12InRTFu3Fjx/1ZKlykXfurfeEbc3rXyP3R+sbBGWLnxEWQ8RinaWkzRmimsydxxHfBZUXiQ1LigKgrKsqCQ5/eBZ3vuUnX1BsG1bHAA4WaLGgSCVnKYtBA09T7IhwP0NMZapyPNDJaDJ0gAiqLvAv8sR4fH7BuLUDeebYm8YjizJCWVJqkaATzHyqQyKb0Up16kn2FwuD9M0hBmcQFdIvLWcTs784ECKWdb7AfrJEhHJYjp8AKmW7GyrjLJEyk9zc2lkKcuMtJws9XjkiI+PAQKUJUaWuDHacdTPJmhuXTIhDd48WDAetxSlICaUJSOgDBfzdbq5/1rs+zV9ERMKWfL+zWXzYh/VylLfYaUS4nNe/84KrPKSsnvz+NEYnt5KbACQYXlnvCwDQCkR8Y6z3tDmqS+8jEvHFr/qQR4gUl9oWHCGJYYLJcYwMGHvPQEUJopzUB5SqqZG+AF3egSKEroJm99bAz9s21ZUuVVLZUL52jeXidsvL3w4dBsAV/3h75da8Du2bZfhmFPcxG1+lbnsqecAuJ/fqIkThXrEFWxaFxmsW3afCgDY8M67kdsEyBBdnuMkyVKhspQWvrZC6kDfG4+E6DeQZymlydIuATugBuwvw8Viwd1wcV9ZLEhZMkzV4C2iAwx5UrQSCVjehHDAl+DNyZLoypMGb3fciVynaZqCLMUUslRYhqP1ZDL5wPdHGVTJIq8cqNV9x/bS58oVAwq7bB5dHFki5YXX63mpTLxv73Oi9YeX4fJCoQPcMlw8lRSfaVCXXlLMBDSEZwFwySsnszHDM3jbrAxnUfnXLCizVVenlJNdQRku4Cozm5XKUjKllaW+YsKMGeJ3vHnle3jnWdeIbJpmZDglkeRi5nBR1hFQGA7bMLpZ3A4bkhqEnV7rOsWWAJI4+ZUcUltIPSCyxLvmqN3dMAxM2HN3AOET7gGpzFjJhLiYJEVp0+r3lWU5+VHfg0v4HMfBeqYsvfnEU64KlM/jhfv+FboNhPdZqTCIvI7yAi55KbB9y1ZBIvc+8gPC08mJDJFJKlHVed/V8heX9LpNdLziCmU8Ga4QCVN+QA8AkSxKWe9P0GeSGMQ5k5osDSCKyZ8whLKk3h+PU84SKUtsdphQlqjNW1WW1O42S1E8bDZIl5+3Ywm17JfN5lyDNxMVEgkrsAyX8LwzNqvZ0fvKhClLntJiJYrrnKKT+/YdvV8xl4MeLwCyqbE4w7lQzthVFZElx3FEJhIpS9kQZYm6TPI5qSy5H6OBeCpVYJrmvqhUUs4E5AbMWCymdLNZZngZzjTNguNgdbU64T5kAgoA1eAtlCVdhuszxnvEwM7nRdmJTqIz5hwW+jz/+Ixi4W+04C3rUaMs/KCWfwBoGOcOkBUK1SaVLNGJm0pONF6EK1lUQgNkIGVUuWm9F0zJfyfkLeKZSoBM7PaDksAp+Zuw+b01uOv87+K2s75RMEMtCEsXLRa3OcGjC86GAEM7X3barANFqY2TpR4K6qypxr5HfVBcKL1434O9bhMdr+qaJRkmNTLbU0h6ojom6XnF+ONKBXljE1pZ2jWQDyjDEfykw2+aFQZc01eGY88V5nAqnTkqeQLcg2dtrSQkeX7CZMtZvrwntwynzqtPpRKsDMc9MkHKkvs4hUj61QgikkHTrINAJ/ft20qf3F4MaLZZQ7FkySokS9U1zHPkvb/eugLp+3fyeZF8TZwznmTKkveYxdJ3hbJkq6298URMMWh7CQPIOUHKklFA1GtqUuL9OY6jzIUDgstw2VxemvY1Weozxnpzxfj+Rd1YUw4M74ij/amryGwk2ZWqKkuk8gSlOkchk06Lfaxx3FgkqqtlZ9kmNTCRCAApFNT5tY0RLjsnO1Xrx7gn+K2+chrH5vfWKMchx3GE2pXp6hKPOY4jgib9ePqPf4Nj23jv1dcLHnv9sX9j5Usvh74+x9JFj4nX4yU5siBQZpQ/p4jM/C17TBd+rgxTfWj8TDyVwmGf+gQAd55auojvnBLWKccJkGpkQWgogO6dcp0pn6+NnufPz+oP0HkmXqRNoxLQCd4DiMAynA9mqLLkGb/ZYFvA9Y84tgPEeDecpywFXABaiTgSNVxZ4gZveeI2436yZMMwTF/YoSVOiFxZopKhoixRGa4nhCyR0hIwcygI9PxtlSJLXe528jl30dvjERVmRuXhnHQAJBITprCZIrwzh2TSI07eY/FEQnymVd664yx9lxQ9v7KUiFtKtAM1IuZtA47pI0tGYRmupjaFDpMrS36y5P803PdLo20Smiz1GaO80Rnpdqmkbt+wEbWjmsQw1yCIdv+IUhWHGwViFrRo0/DXIN9lr+u0bRixGBrGjhFDUQFVJQIkWaILJurKIt+RXJ8DIyY79lpXrop8fTuflxchvrll+WwOViKOXE8mNLhzxQsv4aKZH4x8jWJg53LYsWEjmiaMx3rmJ7LzOQBxQQ79+Ubr316BKQfuj6aWceL4kmWlLgr+TKSSYkbd6qWvFbVNFMxZ3SjtBjQtoiegnMabAKrr6hVCVkmyJC6mU7oMt0tAhFJGJHhTt5R/EVKWqNQmDd6sJGeqZbc8V5ZIPbLirDwE0Iwweg2pcMWVdWUzORimoWgKyVRcJE1zT4soHzE5mcgNKUv+z4BKCv5uvd6weXNxJ4FS0dnpHijqaouTfYmccDNqtSBLDlOWvOVClSWP8ORyvjKca/IVwX3eY3EW+JgQniXZfQi4/i6lG0kpw3nft+fuD/BtoqY6pYw78ZOpoG44RVlK6GuyvqJxrFvC6mBdX+THafAeCwKRcU5SokBX8P4ZjdXevDb/oOhiQBcKDWPHiA433vFFEENaPbJEhuzWd1cqy/mPo+vejO5E4x4a/2uSUkd5RpXGrWd+A/+68VY89Itfivty3kV0lTcSxt96/+5L/wHglkbJzyXS1iFN14mqKkFqi/FQAZJoVbFxNNStGKQs8YDIqgZVfaTvK2wWXV9A33miyMpDJaDJ0gCC/wj8g0kJ1MXkd45YIlKAlCWZBi5KYaZahuMJ3g6NtUjEhTmY7iMCxNvYLb/B2wul5Cp8KhkXJ0SlGy4uSzYEUpbS3dFkKRbvXYWor5dS/pYtxQfklYK2dvdgpIQ/RoDeX1YhS9KzRAFvwtskIhSCc7Y4WSIDfjyZlMqSFx1AZkyAkSWbDN7u/fG4pcx/sliZltZH330sgMjX1CSVcTZRyhLdzOdsoX5qZanvoHEcbSzbh8pJkVfbNKG+yHZ/kXVUqyqqFHhYzEBeP+g5tc1NqPeG/wYNWyVDcTyZQHVDvfhNrfW15du+geRhGUuEbubX8rfDk9F6s0+9qhS2rVuHx371W4W0Ca+W103mV7jefvp5MS6FfFzcIE7ZU8maajGj7vVHnyhqe/hzCaRC96YQVdWqZTg6B3R39L+PVCpLmiztElCUFl8oo2j/DynDidldVGLzmJCpKEtq7ACFUrov4L1uzEJNjTq7jf7lZInKYTw6wL0towbiCUt2w/la1d1tlO9XzDzqSge+PyJLVhFluDFjGsTtTZsqRJa8SALuO4qCKciS9BIQoXGVJZUsZTwDeaHB2/Ok5XKi5V58P4mkVJa8x+jg4TiOiGzIO4a3PaQaxQTZcRwH9DVzZYl7lghEtqurk0pZryBnKaA1JpvVylJ/gq78t63fIO7bQbO9Qn4zVkLGDbQXqZyIK/gqlSwJ1aOMdGZSb2qbmsTJPmh+GKmyViKOifu4sQCO42DHhlZlOb4Ntm33WmLkRDHjixlYfPsCbN+wEf+68dZi306/I5txPx865vrJUtfONnF8pGG1aUZISG2k73pbyJy8IJB3io+jIRU6LG5C5KfVqeojqeLdRZZ8SwHtl/6hvwMJTZYGEFzCpsGkQmER5RC6X32unN0VoCzRbVGGc5+jdsORsmSJ8pBUidzluME75isHusqSulGqssTIUoRnqVuQJZ+y5F19FkOWKFXbcRzRgt/f2LnTm5ZeZEaQ8GSxgzGpUrbtiIOdIEvZ4JKsUJayOZZX5T4WT8YFASXVicvSRFJdg7fJlKWYkpNkUbSEI78j2q/4V5z3yLZLlqJCKQtvZ7M5qSwV6UPTCAcZW3kWEAUu8gsVjlo2R6zYIMmwCA+KEqATeymgMlh1Yz1qvPllQQpVxistxeIJtOw+3Vuu8PfNyUS2iDb1Ha3SSO5XS57763245vhPYe0bwbEBAwF6D8LyENCyTzPiaJk0i4LwB3Iue/r5ol+7bbNLuHljDR3LQ8mSmOGnluHEMb6EQcvFQtg0dBlu1wA/QFhxSzH3SmVJJTxieSrP+abYG4b0wxhRZTjqmLPiTPFwH7eDlKW4qmRlMjkRREYUKJmMC6LG3wudtLmSRtvUHTLLjQ6KxZThmpvrvO0vrTOnFFB+U6rIjCB6f7xtlj5n27ZlGc77nCiaoMDgTUZx7lnyHlOVJfcxi8/c4sqSz7Nkshl0QlmyWf6W2L/ktuS8j7eqOik9T44jQi3le2e3vX/z+bzYR8l4rlE+6PPfuFz6d7av81QmwyjYjwDWweY4goj0Btsj8QlfaU8M5C0jQ4f8NVV1dWJcR5CZmkhVLG5hjDfGJagNnXcEFmNc5+GT6SLypgYadIEVRZa2rlVHqfDuRkoBJzzzp78V/dqUIcUbQETncshnFTbHU/jj2vpfWcqLaBmtLO0S4DlLZiym+Hxk+7+nLPmeKw24VIbzSAq/7VN+5Gw4MIN3jClLfs+SKRUuS1W+sqIMB0WxCPIsUWBkXmnHc5/bGVIHJz9XLMTLxdE0yjObltjGXAq2bvU6TIpVRQIOdClBlriy5JXrMmGeJU85zGYLlCUrERcEhMhSnPxAjiPIbs42vEws94nxuKV4jixTkmnpWfKUJbYttP9UVyUE+XLgEnTfm2e33Mey2bzYL+NaWeoT+Ay0tcukf4fyggzDQOP48QXPq23ylKUSfiYyRVslSykv8LCcwEEqGVXV1YoyUhAhINUnZlkY5Y3fCCJDfBt6G+kBAK2rVovbnb55dEMBPT4jdU8AQfSb2Llhv32LJEuZ7rQw/hcDUif5xRWdY8KCTKkjsmBOG/njtu0o+vWLhaw8aLK0S4DPhovF46rJm8iS8B2pz6WdOcZyj2g5Ku8ZvqvLIGUpFo/L/B5vc7jBm26bPrLkzoZTNyqZjBfkBwFydIZShvOe2uV5gQzf1XC+FLLU5F7R5IuYtVcutnhkyT+7LQz0OfEulSqvhJfP2+L9iXKdiA5QP1NDlOGyIvlafD+JREFpi4aSOmxbc44s2wKF3XBEvHNs3ImIrGC7EOV0JVNxmdvkqGNx3PdeeDuXs6WyFNfKUl8wca8ZANwret6qzTOMmicVkiUxod4p/ndCFy1+07jowiojcJDKMsmaalHOC1KM5ET7mOjw86smgNqlFZWxRNjI2vTDZsgNJnp8huigz2aF1xFH4CSSD/SlmYHFYpunThqGAcs7XtExyj/omEDHfG4KN9lUiM4dO0rahmJQiqe1UtBkaQCRy0np2bRiis+HpE1BUnzPFYNORXeaLZajHclv8M47fC3S7CvKQyKQzXsNK8YUKJUsZTJZcSakLrp4PNjgLcpBnMx4z21rk1cr1dXyKoHyQ2Lx3snSqCbPbFpGG3Ox2LLZPVD4Ddi9IdvNlCWP7OTzedH9QqQy3eN9Z37PEnU7ZnMs3NN9LBa3pGeJynBxqSzJAcoGDJPFQMRMeZBxHKYssW64WMw1BLM9j76+qipu8HZg+EMpA267niVSlrTBuy8YN30agOAp8HbAbC9CdVODskwxIFIf9xlpiTz5T+zFgDquEqkqUboJ6rSiURpmLIYaTxUj5YODe2koXTsK61esEL8FrsIMFXT7Wu3TAZ/xO15HHKFjOzOts3DNpQ8/WtJrb2fm+aYWlXCHBZnSxTn3tfFQy87twSSrLyjF01opDDuydN5552HVqlXo7u7Gc889h9mzZ4cue9ZZZ+Hf//43tm3bhm3btuGRRx4pWH7BggVwHEf5W7hwYUW23c5J8mCapmK6pas/02fSFst7l/N8/AjgtnELsmQYiiE5F6QsJeKyPETdcN7yrm+FynDkf4L3eoVluGQyLn44XFmyArrhCO07OFmSV690RWuGmFU5KCgyW0TIZ7nYuHGHuz1Rsz0CwJWlpPdd5HK2eH8ynNP7v+FXljwynM0iQd4vkYMVFwSR/EwkSzuMLOVsb26feJ6cDecAsLx9KW8bLFTUhJVKCs+S40iyXZVKqMqU2pOgsCWhLOXzyHv7e7HqnEYwmidNBFBYrgGk1y+QLNUXTqjvDSIY0teiTeTJf2IvBp3eid1KJpDwSjdB7eVEoMyYKUiVP5ASUMtD696KzlgCvGwgbz/3p4YPBfjJUU+AsTqTTiueV79hf81rb2LHxk149s9/L+m1eSL6qIktysDmMD+Yf+AxoI7DqUTOEnVAxuK6DFcUTj31VFx//fW46qqrcPDBB+OVV17BokWLMGZMcCjb0UcfjT/+8Y845phjMGfOHKxZswYPP/wwJkyYoCy3cOFCtLS0iL/Pf/7zFdl+nq1hxeMKMehVWfKlc4syHKCUePg0+jyLDpAqgyXLQ7ZfWZI+F9MfSsk8S4REwpJdeUyBiVtqxx5HO1OWSOECpGmzmDJcfb3nn6hQJxwAtLa6ByPDMIRSFgZ+gEkzskTBkW4ZTlX/0j3BZTiRa5XJypwloSzFkSUDrkek6CTmOI58rgOPLHkKoBVTDdrMsyT2C9NAsqpKqEYOZBk3lUqI8qDjOCJniRTGQGUpkxP7aFyX4fqEpvEuEQo6edHvpn7M6ILHqr1xFKVkI5HC6/eG0P/LMUhT676ViAsvVHfArDq6zzBNsV9vYn4jAt+G1QEjSILwxhNPo2Pbdrz49+LCGgcS/u81SFkCgHY2IqXDV5686Qtn4QfzTgxNIY8CVydrGhrF/WEKER3LuK+thiWAVwJCWSqi8lApDCuydOGFF+KOO+7AXXfdhbfeegvnnHMOurq6cOaZZwYu/8UvfhG33XYbXnnlFbz99ts466yzYJom5s6dqyzX09OD1tZW8bejAjVXAp/jxstwwihtqJ4lEmfopCryfDI5sZwwD5uGUtqS0QGcjMVkeYg8S6RA8OGrPjUgl83LMhwzDtsB3XCkJIiRLGyIZcdOrixJYkcH6WKUJSJL6XTpmS/FYsMGeTAa19IUsSSQqpZdIdxPQaWyXC4vlbPelCVRhstIgzepffG4IKD0WIyUJdthY24MGDFJlqx4TPk+LeZZojJczIohkUoqiibtP6lUXHm+IEukXIpHHKFMZbN5MSw4XgQB1ggHESE+UJZA+xvlF3EETajvDdlMMFmiLtXOMjJ02ra4JuyYZYnW7yDil2ZDWul3sC7Ag0PbYNt2UfPPAOCub12CK4/6WEVUj77Cn64eZqzeylS2jn70XpFq0zBurDDgR3VQ0rGMd0xSaGlQ2Gj/bGPxNo1KYdiQpXg8jkMOOQSLF8vJzY7jYPHixZgzZ05R66iurkY8Hsc2X0Db0UcfjdbWVixbtgy33norRo0qPPBwJBIJ1NXVKX+lwoippls5kNYjS979dHVv+vxIGSrDQSbAwjCFeZs/FzCULjcqD9GJ0mGlNznuRI0h6OnJFpThEiyUMrAMR2UY9qPq6eqWw2BZ4CP9GIohS7W17vrSRUz6LhcdHdI8O2F8L/sDC/DjXgxShnK5vFSWhAcsWBWjeIZcJisUGRntYAlliXxAcVGGs5UByq5nyX1e3IoJpdBVoHg3HHnOTMSrqsR+5zjydVOpuGgndhwH9A3R40HTe1yC6LX7amWpT1i37B3s3LQFq5cWDnol/w6d5DiStYUT6ntDVgRD+siSVdqMOY6dm1yyZJimWG+Q0Zo8MoZhCOvA5pXvFSy3asnLAArVleEK/2callO05o23AASPiukLcqROjm4O3I/8yAeUaklZsitElrKZ4huAKoVhc8k3evRoWJaF1lbV8Nfa2oq99967qHX8+Mc/xvr16xXC9dBDD+Hee+/FqlWrsPvuu+Paa6/FwoULMWfOnNAv/tJLL8X3v//9st8L4J34YoVkibKS6ArdHVzriHwl6VminCV5NWiaBjNv+5QlUV6zZHmIPEtcWSoow8F7PVlSE2QpGRd+CENRlrwTPpmRmREwwzJSqtiPjbJGiiFLNUSWuitHlgD3MzMMA2PHNkYuR0NHHcdRTkypJFeWvDEvFNwmxr6o66KOw1wmg3jCWy+pi/E4sllvDpRHliymLMkwUndf4AZvrgzFmAIlDd4mEkmpLLllOOqGS0gV1JHRAbattsbxK69MJocsBclpz1Kf8IdLrwp9jE60QSe5FGUjBbTphyFLZTjfFTz9LjuZsbhYbF/vHrMNwxAG3SBlpHunqqjY+XzgMfitJ5/FL04/BxtWrCx4bDiiw/eZdu0MJkuvPvJ/OPrLXygrRT0Kme5u1DQ1onZUE6rqe8+wI+LCAyKr6jyyVEIzQSnIlWDTqBSGDVnqKy655BJ87nOfw9FHH40edsL+85//LG6//vrrePXVV7Fy5UocffTReOyxxwLXdd111+H6668X/6+rq8O6desClw2DGYuJA5LjOMoVPvfISGWJiI9HlqRsBCdHJR2pLDmOGq9CBnJXWQouw8VY6rPsbpOGcsNfhrNi6PaN8XDvJ4O3p4Kw+WW8TFVVJTsb6CDtjz8IAhnDadhtpZDPOzBNYMyY6KutJDM6ctBMtGy2UFnqyYSU4Qwqs2aQTHh5Ukzty/k8S5bomJMnFdtRc5YsS5bhHMcBVVvzkGTJNE3Eq5Iw2V5DylEyGWdlVkfwI6EsiW2X7yOfzwuCrQ3elQORJf/gW0Dul/4RH1GgtnV/OCz9Lju2lU6WKCUakMeJoJKiv1U9iuSt+s8rJW/HUIXfrB2m3r3/2hv40+U/CDS99wVpTw2vbqgX0Q5R5TQiLjwQl0aflDNouRjQ+SFspupAYNiQpS1btiCXy2HcOLXrY9y4cdi4cWPkc7/97W/ju9/9Lo477ji89tprkcuuWrUKmzdvxh577BFKljKZDDJlGOk4jJipTIanc5RhxpSONn+pw68sAQBIkjUNJJNeBxVYtxKkZykWi4nykDB4e8vEmLJEtWF63R4eHeAtk0jE0BmhLFEZLskGylL3hdu5J39sJP8HJRH7QV6nzq7SRy+Uglwuh3g8htGjo8lSojqELHmkN5vNC08WKUeU4O2HCB3N5kQSusNKqFR+pdIWdYc4tjTg2z6Dt0uWWMSAEh3AynBcWXIkUU8mZTOC40AQKtp/6Dmc9mUyeeGrs6xhU+0fdqAcoqB9kEakBHXRhYECH8NOSsUO5OXIZTLiN0/7aFCYZLqjQywHVGZsxlCEnzhGqXcvPdD/ndr0OY+aMB6jJrrNT3ZEhh01FfCwWRp9Us6g5WJAr1lM5aFSGDZHsWw2iyVLlijmbMMwMHfuXDz77LOhz/vOd76DK664AvPnz8eSJUt6fZ2JEyeiubkZGzZs6HXZviBmxZXhpCI6IGaqZAlq+U0OyWXKku2Zhw1DBk46hk9Z8hSEuCUGm+b8yhLzLJk+NSCbySt+FsANRhTp4QHmcGrt98/zoedzM3rWRyaiQAb1jo7KKkuZjPvemoskS37pmtSfbDYnpXPqmgspIYrvN5NhY2NkCVV4lnzKEmyuLMFTltz/WyyU0u1m454lqVpZiaT8jkElYDdUUpbhpIk7b6vvlyd753J58f37mwU0+g9EOoJmZolspF6mx3OIkSPsO6tpapQDecv0CfmVip2tvSdv+8tTIxWdPrWuP83bxYC+06YJLTj+HLdZKqqcRoofH2ormgkqRZbSmiyVhOuvvx5nn302TjvtNOy999647bbbUFNTgwULFgAA7r77blx77bVi+Ysvvhg/+MEPcOaZZ2L16tUYN24cxo0bhxpPsq6pqcFPfvITHH744ZgyZQqOPfZY3HfffVixYgUWLVpU0fdixkxYbASFmA1nmqJMBkhlSXqWvG4qJncaeanuEJGwmUEXgBIeSeUhOn7ZzNviH7tCyGZzBcqSZcXYXDqmLMVUz5KV8pMl9/mcFJL8X0wZjpSxjvbS04RLAaVsNzXVRi6XoPfnI0tkws70ZKVnichSWDcckaWeHqEe8e+HuujI/C3CQxk1duB+joIImaYgO6rBWypLpmkgwXKW3Me995dkBm/I2XBElsxAZSkrhgXrMlzlIIbpBnQJEYEqhSzxFG0CDeR1HKesMhwgO3YJvDSngP2GdrSGLDPCYNu2cqHV6euOqzQW/s//Ysv7a5TvyN+hx0FlXV6qpdEn5UQXFANReSgxJLg/MWzKcADwl7/8BWPGjMHVV1+NlpYWLF26FPPnz8cmL2hs8uTJiiHw3HPPRTKZxN/+pg4W/P73v4+rrroK+XweBx54IE4//XQ0NjZi/fr1ePjhh3HFFVf0ucwWCgeA4V658Wwi0dofiwljMCAJDZ1EZeifohvRQoKAuKsrzFkyYzFRHsr5c5Z4Gc53guNlIzp5JxKWDKU0C5UlytkRLaYOvSciS8yz5BsmGQUiSzt3lp4mXAqo266xoTpyOQpnc3xKC6k/mWxOHEREiYGVEC3LQo4OVORJy8joAJvtG5kuT62h8TfeAcv0eZbMmAnHkWUwk37pDpgyZCCfl0TMSiYU9ZAM3omEpShLpCCp9gRH8SxlMjnZwTKIB7iRjqDZXgRSHUsJkqSLFr6+ulHNfdlEAJ5SmiQ/pRN6UnUcR+yDNPtuV4BjOzBiRr93uhWDze+twXUfPxUAsNt+e2OvOYfj5YWLQ5cn3yk3W1MTTynNBKWA1lvMxXSlMKzIEgDccsstuOWWWwIfO+aYY5T/T5s2LXJd6XQa8+fP77dtKw4uW3KjA7xhqKaDRs9yYJimEkZIxMTvWeJkyQR1xjGyBIP5nQwWTRAT5aGCUEpFWVKjAzIsLZvWZVkx5HOFColIkqZJ0RScSIGH3mtwBY18FcWQJSIhO3cWf8VcDro8QtPQWGieVbbH84b4O3dI/clkclKeZlEMhOrqBNraPAO4d18u3VMwY8+MSc8SrZvGnXBlyQaV4eT3RFdk3BOSc7jiSJ4l6WOj/ScRt8RBymENcHn2fk2oylIuZ4sypiZLlcPWNXK2VyKVUszcRKS7S5gC39Ph/qb4Sal2VCOAvmXoZNM9qPIiVqLWY+dtcewJCqQcqbDtvPsbjehCGwisfWMZ1r6xLHIZ0QTAyBJdEFeKLAkSP4hkSR/FBhj0UzBj8gT22ek78c05JpKme6BIslIaLS87jsizJNdpCtXJUMpwys9OeKJiojwkPUuyXMPLcHzHzLJcICJw8XhMXAWpBm9PWSJ/DdW2HWo5d184xWrema40vUH0BiIKOyqsLHV2uj/8utpgAzchkSQDewhZ6skiR1dG3mM8UJOXI4Wy1JMVn6MolcVMQbLoMWHEt6XMYzvuvkDnJH83nFCWHJOV0gyfsuQIZSmesNTno1BZMgz1YGLbtihjxgbRZzDSsWPDBjZMd6LyGH1n3SGt6EFId3rz2djvucab+xVl+u0N5IVy1xPuh7HZfryBDcAd6SCFvlI5Rf0JUaplZIkuGDPpylgj6CJgMJUlTZYGGqyzyfRmsY1O5REzgdq4rShLNsArbN6/suOJrvxjZqHfyXbUixSDva5QlqgsxpUl7m1iEQY8RJHKTfGEJdQjpQznU5bIaOoIsuSV4aoKPUvFgNa/bWtlu2U6OtxtolynMFA4m+M7mRCh6QlQlrpYGY4rbATuWaIkdCMWQ09aLW0JsuSpi45XflWjA0xl3AntS7YjT4CkLAV6luKWyP+CI6MDeJOBAWnwpv2uJ0Mlw94J8HDEqlWrCuZKOo6DX/ziFwO2DbZtiw+8aaI6CFVkI4VMjw8C+Zu4wlvT2ACg0HdUCvjMxFzETEciDY7jYP3ywvTukQpS6CuVgN2f6OmkUi0bcSX8cRUiS93FVx4qhbLIUkNDA77yla/g2muvRZM3HXrWrFkFM9c0wmHGXNNtwpRX+jHDJR2CLDmGKF3RMlSGcwzZ7WSKUp0hJtXnfd1wdDINUpZsoSbx2XBqVx5P8LZZGc4JMHjTiZwIFg9OBOTJP8m8WT3dhQfpMND6t2+v7OiC9jZ3m2pqeiNLVIZTr5ipXNjTkxWtrwROPqur1LRkwA3vFN1wbGxMxucDIhJk+lQtwzAVr5MYpGvbIH1LMXjHTFiJuC/B2xDvIxbjyhQpS6wUbDjwf3NkRh+pZbjZs2crMyWPO+44AMA999wzoNtBHalN41uU++kCphTDsBi1wX6HYiBvHzqd+JiRKBNw3sttc2wbuQom9A81ULdsKUOPBwuUGk9NH4C0WvSEjEjpK0qxaVQKJXuWDjjgACxevBg7d+7E1KlTcccdd2D79u04+eSTMXnyZJx++umV2M4RB9OMwYzFUBWTJxzLdGDGTCQTXB3yHOFiJ/HIElhJj6UCppK8G47tWI484VJ5qMCz5CvDcWWJn4rpJByPW+Iqkbf8i/l1ZPAWxk5beX6SK1dMprdSicgDJf1gtm4tffRCKWj3ogl6G6Qbp8/cpywRSehJZwtSd6kDxjAMhTSK0NF0j8yrImXJNEX5jh4T3XDeZyvKtqYkQlbMlKUwx1aSvvn8PsvnWSIuZMVZMwIr43Gy5CpLULahp4dmFo5MsrRli9r+/t3vfhcrVqzAE088MaDbkctkYcXjaBjrG6ZL8xhLyEYKGuJaVV/62BQ/eCp1NiIkk8JbKUpkVwHlsPVFvRso9Hj7CFeWyDtZSudlKSjFplEplHwUu/7663HXXXdhzz33RJrt9A8++CA+/OEP9+vGjUTwHKOYZSEVkyfYmOHAME05sgSQZThSmEhZgiljBWj6Ozvx+j1LBntd4Smy1SgAk5Xh3K45eeVAywKSFMTjMfHjpuRpgJXhPM9SrBhliR2k+WBaP/hQ3s2bK0uWOgRZKiyTcVBCud+LQZ9zmilLQVdGlI3FB1Nme9KwYr4ynGkIskQEJLgMBzFbi7aDAlCpZAu4yhKZtGOmAStuBXqWLCvmU5a8beRkyUCBskT+qpFKljji8Ti++MUv4te//nXoMv0xUzIIRD7qRkuyZKUScnj1th1Fr6u7Xc5no/0xVdcPZIkNJ+cXRn6QehVE2kYyyJNTqVDH/gQpS0pTj0eWKvW9kZduMFHyUWz27Nm4/fbbC+5ft24dWlpaAp6hEQQyeKcsecKhMpyYNu8YgmD4R0rYMEGFD1IDDMOQGUr+MhwzeNNJPC/KcN7rxwyFOCWZATvPVKq8UCxi4sfNfzgyZZzKcF53n/c8QZaUnCV5AOWDaf3gadqbN1c2j6TT8yxx0hgEkqD9ZEkqSxlx5QgUpiNT6jqZJAFSlogseaVOwxAEhNZNvhQqxUplieUsWVJZioGTJd5pZ7qhlCyVUg7wNYVy6DiFOUuA1w3H0r8BTpZGpmeJ46STTkJjYyPuuuuu0GUuvfRStLW1ib9SRySFgUoUdV7XGgDUNct2/46thaNFwsAVICJJlKGT6UOnEw9ajFIfSIEtZwbdcAYR3krlFPUngkq1pHB3VSh1nbxQhmEM2sVXya/a09OD+vrCROM999wTm8OCxjQE5OiKGEwzhlSMkyVXWUok/WU4uZOI+WyGIctnjElRaSvvM3gjgCwJz5ItSzE874mXn7gjxRHKkslCKQujA2SCd0J5HTr58/XTSARADqYNwmg2p23btspebbS1uT/Q3kIVyZPlz0ehz6GrO6O01CaE4d39PylsfIp3tjvNyJKMhqDsJ6EsxVTPEleW+JBcIlUWU5ZsGKwMZyAWt8QBwY0OkMqSCClVuun4/in3EHoFijnYFcjSV77yFSxcuDAy+f+6665DfX29+Js4cWLosqWA/EDVDQ3ivromGSRZ0my4ri7xnVY1uMqXIEsljE3xo32LTP5OR+Q+bVvnfn5r33y77NcajiDCO6zIEgMdX0iZ7G/0dErFKlEdnXtXKZTsWbr//vvx3//93zj1VDfEynEcTJo0CT/+8Y8Lwh81AkAnM9MdIaGU4UxP0aEwQrASGRxYqZQkS6LwopbhBNGCqizRSdCMmbJM5i0gowMMZeAueZscx4GVkCdyIjtW3JKysaIsEVmi5agMpypLYV6gsMG0ADC6WU7FrnSbbVub+wPtjSzRjCS/34A+53R3Bhlm8BYjSrzMLZqRpwwcTqcREzP28sIU1N1NZMlLdPeX4di+wEkwhUqSsuQSZUNGB5gmrESCdco5wrMUi8Vk+ddxxL7ELVqGAWH8Fp6l9K6hLE2ePBnHHXccTj755Mjl+mOmZBAobZmUIACoafKIUx9ye6pq3PXROJ++mHfb2PyzoJMt4dff+A72O+ZIvPbI42W/1nDEC//4F6YcuB/+8+Ajg70pvcJfqs2k08K/VEqmVylIMzUyWVMdSbgrhZKVpW9/+9uora3Fpk2bUFVVhSeeeAIrVqxAe3s7Lr/88kps4wiDPDkVGLwNB4Yhy3C2Y8B2SFVwx2pInzfrhvO+RYMpS7Z3MhRKg0Mz3GLSOCyUJW89zLNksK45QB2nkGdBhmTIVD1LFGRJniUar1IcWQobTAsAzc313rrKPwkUCwq97K2bizxZ/k4WIgnd6QxyGUmWqNwmlSWvDJeSCccAhGeJSKdhGGJMChFSER5KFEWQcQN87hstRyU0Uo04UY7F42I9fJBuLGaK6AB3XIoaAQFQKKW6DaSCDWYHy0DgjDPOwKZNm/Cvf/1rUF6fut1oPhcA1DQ2Aigzt8f7/oh80TifdB/Muzs3bhK3u3aGn1BzmQxeWfTosMgb6k+8dN+/cMkhR+HhW+8c7E3pFTy3q6rBPR5TN3TUd9sXZBhRT9UME2Wpra0Nxx9/PD74wQ/iwAMPRG1tLf7zn//g0UcfrcT2jTjwCfIxv7LkleFIqXAcKJ6leJVUllxPkgHX6u3BkGZkedp21QtpEI+Jls+c7SYJOkxd4Ane3IAtfEeOIw3eVkzkB/HzIREnah0X0QHe8yh/KekjS9QdFk2WXGVpIA6mO3ZQi2w0WaJOEL85k57X3Z1RuvuE0sbGxgCya5BApDOXywEJl3TQmBQiYuRFMoWy5MKNDpDdcKIMZ7j7AxEhIsyGacKKW7Kz0nFYGc6UCeC2DdPb47iPzTV4q8pS2Py7kQTDMHDGGWfg7rvvForrQIOm1ieY562q0buoKCNI0nFsGIgJ8mV5+2W6DyWW7d5YFgDoKiH3SWPoId3RIY7VLXtMw85WSYQrOQRYdA8PlzIc4emnn8bTTz/dn9uya4Cu/L2r9SiDt+3I0pVhuCdZceIxWTccM3jH46b33OATlGHKMpw8YUrfisNKN4l4iLKU58pSUBnOU5YoZylOypJ7MhFhlf7hn0QefIN3ORq9obb5PqQJFwuaPddbGUmSJbUMJ5Qlj+DQj92vIFGeleUnS74Ze4BRoNZQec0I8CwJYh5IligzS3ZZxix/Nxy9DzN43AkT9wzIjkt7F1KWjjvuOEyZMiWyC67S2LnZjTCgixIAqPH8S3a+9FZ0x3aAmFvu4Ovt7oN5t33zFrH/t5c5jFdj6CDb04NEKoUpMw/AqiWviN94ZwXJEmFIe5a+8Y1vFL3Cm2++ueyN2RXgKAqP6fMseQZv5lmyhbLkKAZg2zDFFbw8mRtClfKTJZPKcFZMKhYFJ0weHSDzmADuswFs7yxpxS0WHRDeDSfKcDkfWfIrS95BOhHhWWpsqPHWXfmr+G1Fhl6aHlnK+ZQlMTS3W/WpJJIqWSKfGeU10RcrIxjoM5YERLy2T1myJVtS0rlJGaKKoiTK8rt3y3DeJjhSOeJky3FsoRzatgPHkX4lw+ePSXcXqo4jDY888sigk8EdG1zVhs/qqqp3FVg/gS8Gtm0jBiBV4ylL8b53OrlJ4wAMoH1z8d15GkMTXTvakGhJYcJeM1DLOy8r2cXoHWwS1dEhwZVCUWTpggsuUP4/ZswYVFdXY4eXndHY2Iiuri5s2rRJk6XeUJCzxD1LrtdEJDc7hkzXNtyTrDwwS89STJh6gYRHcOjq3js+AWIZU5SHZHSAVBd46rMc6OuIob8AkCODt2VGRgcIZckiH5VHlmhmXFw1TpO5PJ6MUJa8obY8AbtSoHEqNKDYT1QIdDIpLMO5n0NXl9qNJD1cnrLkfc4WKU6QihAAZLxwRxiGCHqUAiORJek1om3Os1gAWk60/RNR9v4VypLwNDlSuTQNpizJ6ACXbFOZt1DdSqfDs6U0+g9ElniKPpXQyumuog5XKodTJ2Rf/SjvPPcCWvbYHa8/9u8+rUdj8LF9w0Y0tozF6EkTUes1EziOU9HUdcdxjSfJCJtGJVGUwXv69Oni7/LLL8fSpUuxzz77oLm5Gc3Nzdhnn33wn//8B1dccUWlt3fYQ5zMTBNGzERVgWcpxnKWVM+Sm7DsrccwYPtylmBIoiVKJHTCc6RiJIfxkrLEogPY+BJal+OoylI+JxWLXABpofUToaESHhmgKdk77ssbou2IUpbq67025kzlw9u2stlzo0bVhi5H789/YqLPQQzN9b6LuF9Z8r5vKucJQi2S0OV77cmo5JSStWV0QGE3HFeWPG+/IEKcKMeYZ4mHUlIzgvsEWyzDxpK5niVPvaRdr7t76AfsjQRsWbMWgPud09BbIkvlJGETWUoKsuSNTeljieWXXz0fV8/9xLBoj9eIxqZV7wEA6seMRnUjdV5W9jXF8TLi/FBJlNwN94Mf/ADf+MY38M4774j73nnnHVxwwQW45ppr+nXjRiTYidAM8Cy5viNPHYIkEIZBZRrKWZLKkkUnThiitBXmWXJf130sTzPC8lxZYnlMTPnhg1h5KGUu6x34ApUlL0CRPEveQTjrkajCMpy33mThrDRCbZ3XxtxT+RNxW5vMnBk1Kjxtma68/WU4QrsXbkmKkeVTlgRZSqjGb5FX1SMJqf99i644U1WWYBjie1U8S6aqLPEynBljniVbKkuGoSpLYlyKrxuOsryIxHf3IcRQo3h0bNsu9pnm3dzsJiqh+WcSFgOhLHmGcfruS0kC1xjZWPvmWwBcUl7dQHEulfWR0vmBTzoYSJRMlsaPHy/KKhyxWAzjxo3rl40ayZDjTizEE75QSm82HCc8NleWeHSAyTxLQlmCQrS8V3QfoggCkytL7hI2I0vc4J1kHXBUOnIgFSLLigkfksFCK/2KChEtCm3MsudzkMcm6sdQ55Elvw+o0mhsjFCWvPeXC7mK7+r0TlgUCUAhljQjT3iWgslSD1tvujvEs0QJ3kJZkgeXQoO3VB5l/ISrLPEU7jwr0REps21HGLxtGOz1HBi2Woaj70iX4SoP+q5HTRwPQF59ZyNGi4SBysn+K/j2bdprpOHi3SVLAbjHn8YW97xfTudlKSim8lBJlEyWHn30Udx+++2YNWuWuO/ggw/GbbfdhsWLF/frxo1EOKzsMW60qla4OUvcsyQPgqbhIM66XWw2G47ORYZhiNKW7T8ZIrwMl7dljo8gZ2zgruPIpGg4DnI5uS4xIFaJDvCV4Swqw3lkiTxLBWTJI1ERylJNtVvCGiiyRN9XU1M4WaKONH4Vz9PWu7tlNxzAuwPd/9P37Z+hJ4zyrPSW9ilLdNVPhNlmOwUpPzHWzVZYhqPFDXcED+h+W9m/RBOBY4vX4inxBgDYvjJcl/w8Uqnw71Sj76ALmMbx7omLVKFygiTJFF5VX4faUU1iP9bGbA1C64pVortx6swDAJTXeVkKKHpmsAzeJZOlM888Exs3bsRLL72EdDqNdDqNF154Aa2trTjrrLMqsY0jC0xZGjtGJUsxwz35JZQynN+zJKMDaMAEz0y0hMFbvZqXWZamLKN499ps5IVjU3ilKZQfx3HECd5RynAmctlCmZ+2sUeU4UhZUstwlFBNILIUZfCu9siS3zRdKdDn39gUMdzXU21yzEdVXS3JQWent61UNvWNfyElMS7KcFIRAtTSWzYnPUluSdXrchMGb+ZZYt+r6IbzG7yV6ICYyEqybelZMgxDDOJ1B+kSyWazBA0Ads5bxt1WTmjpe9OoDCj0tH6MO0yXOmfLmQK/afX7AICpMw9A3Wi308lxnIoFDmoMT9AIp5YZ0wEUTjDob1CDUHyQynAl5yxt2bIFH//4xzFjxgzsvffeAIBly5Zh+fLl/b5xIxHy5GJi7Cj1BBzzlCVLGKvlVHg3Z0md1SZzlmR0gBWjnCX3tcTJ05HlNYLteF1xnCzlpWdJdqs5YqwGIFv/Y5apEAQ/KJSSyAT9mIhE+bvhiiFLqSqXUHS0DwxZyudtWFZMRBYEgd5fls3gqmZXPx0dpCx5JCiuJpon/Z4lIsgU7sm8PzmmdKdSiQJlyRGmJfa9sm64uEldcO4ysknAgGnGWBnOUXOUKC4gLwfp2KBuOK4sWWKdXUxZqq5OYJscD6bRz8h0p1FVV4e65lEA5G8ozWZqFYsnf/cn7HXEYahpasTEvWb063ZqjBx0bt+BRFUL6seMAVBeTEUpEGHIEeeHSqLsUMrly5drglQGxOyumInmRrX2GjPV8pftMNUHbplG2j+kZ0koS4b0ARUoS8zrJFLAvbvkoFaZ+ux25clykSRwDiNXJvIBZEkoSz1qGY4M0EJZivnIEpEw1nnnRxWRpY7yh3qWglwuj2QyjoaG8CA0UxixJTmoqZE/6I4Ol0QRkSEFiQzYVIaTKemSvAJAujsNol42I0OpVFySJaYIAYXdcLScUJZ8o24Mw4BpxYQCaedtZR+i96gO0nVYN5wDx84BSIr7urqkslRVpZWlSoIUpFqvG45+Q+XM0HrryWeRy2RgJRI48oveDNBdbPyIRu/YvmEjmia0iONW1IVzf4DOD/EIm0YlUTJZ+tWvfhX5+Fe+8pWyN2aXAMsxamrwkSXyLFmyDCeSqg06yXrdcCbLWTLEInJSvbdOv7JksZpd3jFgAspUe5uleRvMs2Rasq2dcpJiMZMFJrplIdu2BTEjBYk8PWTwFl4m38w1Up64N8sPMkO3tw8UWXI/j9racFOhaPFnRuyaGpr/5rjjSiAVI7+ylPBmw8V8A4eJLPV0ZwRZyjECU12dgEEDdX1kCWAz/NggXbKJiW445qHjyhIfpGsYhviubCU6gJXhIL8/2oJcLid8DURyNSoDGm5KbdyW93vtYnO8SsH7r72J6YcchAl77wlAqr4aGoTWlasx/ZCDxMVxOZ2XpSDveaIGS1kq2bPU1NSk/I0dOxbHHnssTj75ZDR6wxs1wiEN3ibqa90v3Wakh2Z0uffzk5GjTIWHYQplSJThDEOoNQUGb09RsGLyZEueJQqZ5J4lwzQFaXMcR3RAuid/Wt6U0QEATF8UAHVuiTJctjiyRGQiCNRmv2Nn+UM9SwGlkNfVh5MlUm145xGRJQ7R5Ubz+9iMPYBHCvjIUkgZLplMiPKYGJArpSKlDCeW8xm8yfdGviYRbmmrZbhkIiA6wFG77wxv3wmacayVpcqii4bpepEBpvd7LXdEyVN//Ku7HgqwzWmypKFizRtvKf+vNFmii+2oBqBKomRl6eSTTy64zzAM3HbbbXj33Xf7ZaNGMsTJxTRRX+NJ5XkD1ZYDy3TcBG9LzuGi4ZyGoQZDusoSnejk+i1LnQ0nXg+cLHknRMpZyjFliZXY4glJkExGnHJsjAZvl7cSSSXBtcfnWaIyHOUv+aMDiCxZEWU4KlnR3LZKQ5ClCGWJyFImLdWuICVF5EiJMpxHljwFT5jomdIHAD3prFBoEJM/2WQqLmfEUWmVNQQIsmRIg7cliI7qXaIsJaEs2Y5ShktSGZYpS3mo0RbIUzdcYVSAVpYqi3YvA4nmuYkgyTJN2a8sehT5H31fdrKGZIhp7LpY+dLLyv+5Z7MSkOeHwTmWlKwsBcFxHFx//fUFY1E0CiGUopiJmipvjEDO62ojgzcvwxGRgSzTuGCeJXZuKlSWvNejtnVLLcMB8qrRMKRHiitLtu1ItcdxROktFjORZWm8/vyttN/g7T1P5C/F1JOquHKIUJbos9mxo3QvRjkgwldTG96BIaIS0oXdX9xwLQzedAIisuSRQ9E16FOWeFyAlUjIAbzJuCjDxcxelKWw6ADmcTJjzLNk24qyJGMkHBYvYKjKZT6rrJtDRwdUFu1bXfd8qtaNuCBFqMsbSVUO1r35tritU7c1/Nj83hrl+JYpI9OrFND5Y1iTJQDYfffdA8MqNXxgylJ1yiNLWSJLhWU4UpZMn7IEQ+YsyUG6PmWJ7ciiDMdkKMcI6IZjZTgeHWCy1vFsTpbtqGUZcOVRni/U45Ei6sSiA26PV4bjnXnu4x6JilCWqHS3ffvAKEvU0VcT0fouuta6pLIkyZJczhbKkr8M55XIhLIkc6/4NgBAnBHmZFIqS8Q784zh8OgAsZxvkC7vhjNMgylLNsA6LinOwsnbwWU4wDN4q++ZHtfKUmWx9KHFcBwH8WQCp151mejo6Evq9jP3/F3crnSJRWN4ghOkcjK9SgFdpEddTFcSJbObn//858r/DcPA+PHj8fGPfxx33313v23YSIX0LMVQlXBPQJ3eRRuFUvL2f6H6wFF2EsXgzciSSFp23GKbYP7klzFleY5O8rmcPDmL1zNNSbyYsuTYjjIbzmaz4eKJhKIgUPI0lQREGY4UJz9ZyqqJ30EgYrh1y8BkvpAKVhVJljyDIy/DBSlLZPAWyhINFCaDN42FUctwfGgwJ5JJNv5G5iNJbwnvWpSz4aj8FlCGM0wRXkrbkHdcop6Ie6VhZuB3Bz3LaAvkyeAt90d6+wOlLH3gAx/AI488AgA477zzcPbZZ+PNN9/E1772NTH4eyRi/bJ38Na/n8G+R30Qh33qBBkk2Ye8hiX3L8Sp378UZixWcdVAY3iic/t2MUOwnEyvUpD3/LFRNo1KomRladasWcrfgQceCAD49re/jfPPP7+/t2/EQaQzx0wkvRNQh0eWYiaUMpzjqLPhTEYiHEOGUjKuJLuWvBWI0EGDHpfLipN8Tna08RKQHKRri/Ke4zjCx0PdbyKZOpFQwhiJaFAJiGIGhJeJbzikLyKKLNE28yG3lQQFK0YqI9T9x04oqaSa0g1ILxKRIiKdFCRKyqz8zlm4JwVaJuKCgLjKkntbKEZMWeKKoeGpe1JZ8siVCJ6kwFJHeS49Lkuytjho5B1D7s/uk7znyI/GPyy40qivrwcA7L///vj5z3+OBx98ENOmTcP1118/IK8/mLj7wsuQ6U4r42U6t24ve322bWPtG8sAADs2bOzz9mmMPGxbL/eLdIXJUs43a3SgUfIR7Nhjj63EduwycNiMtoTntm3zFG7Xs2TCiknPklB94MqPYto8K8OR98dt8aaWcJWIkMOJl+HI70JRAK5niW7LMpxtO4LAOLbNyJLvNeIWUim5I6fTajdc1ivZ0fgPfzccmcVj8eDdMpGwxPvfMkDKUpe3rcWUkbgMXVWtznkDJAmKeZ9rzjcjT3iWmKkfANLdWThwYMDwDhQOAMPNwRJlOO97Zy3eOUaW6Lsiz1LeG3VDW0elOu5ZAmS5Lm6Z6IG7/0pliStTgON5lrhlicgi3y8qiWXL3JP7Kaecgn/+85+4/PLLMWvWLDz44IMD8vqDiVwmg3uuug7/dd33YRhuJ22mj6bb287+Jo4/5ww8vuD3/bSVGiMJre+uxB6zDwYApDsqa40gG0fUxXQlUdZsuIaGhoL76+rq8Oijj/bLRo1kSIN3DJ6whJ3d3knUcAlMjPmOqCxmGnIsBgDA4KGUIWU4pixRmYbIlOiugiRLgCH9Mr4ynCk69NhsOB9ZiscTSLK2TgolFKTMuzJI90gli4PKcKYvrJIwdqzc71pby79iLgVd3qiSZEi7KvdoZdgIFmqVt1mYH5XI6Moo54sOoPctM22oDJeVQ3jjCVna+v/tXXecFOX9fma23F6FoxcRFRULlmDF3jCaaNSfNTERezTGrlFiT4xEI7GiiSXYe6KxIUYlGhVRURQVFFFAyh3letkyM+/vj5nvW2Zn9vbK3sLxPp/PKrc3O/Pu7N7Os8/3+T7fUkFAeCSAVMKzpYiHsOgAoQK5niWeocTLcKQsyQneLmx5kC4YDM+zJHfR0e9LeokslXpDNg855BC8/vrrAIC6ujquOPV1fPLK61wNUsxjXUS6rQ0v/3UaWusbur0vjb6HZV8s5P9ubyrsF9iOvkwXGp0mSwcccADiAW70RCKBfffdt0cW1ZdBZYt4zOQXroZ2j8gYLCsrSVGWpFqtYwjPkimRDlPyO8GXgwOIiyVj4k5LLsPxbjhpoK/DEImSZ8lRynAyIvEYvyi6RE0kgwOCLKVIcfKRLTKRhn1zGDKkP983pWIXGjSyg8Iw/YiXiWTvlDRaojShpnQDwrgtBgvnpyyllG64qCAg0vtBGLyFsuRwf5whErxNUh5pG6kMJylLogznHTcqk2zvsdIwZ9MADCrDSeeHK0u9lI0yZcoUXH311dh9993xyiuvAAC23nprLF++vFeOvz7g/t9cgrXLluPzN98u9lI0+jgWf/wJ/3dXM73yBXVem0VSlvI+6g477MD/vd1226FOMg5GIhEcdthhWLFiRc+urg+CLnSD+rmt6A4DGtpsABFETS9PSYoO4CUyMOXi6IZSeiWYSJCyZCiz4WjQKpVrZGUpw1O4xeRowzR5uchxHKUbzpK64WRE4zEk7GxSQRdqyyND3MvkU5bstFq282PgwMrA+wsJImVhnhvKtQHUmj2RK57ADqHWEFnKUBI6V5ZUEkVIpTLidYzFFB8QL8t6vNWybO6hsvmQXFOKGKDfuf8nKme4bIl7lhzbBqJCWYqTsugIZUkOTTXAeCel7Fni8+9CyGZPw7IsHHfccTj33HOxcuVKAMDhhx+O1157rVeOvz6gtb4BU356fLGXobERoH7FKji2DTMSQd2KVQU9Fl0//GOyegt5k6V58+bxi+9bb72V9fv29nacf/75Pbq4IPzmN7/B5ZdfjmHDhuGzzz7D+eefj48++ih0++OOOw5//OMfsdlmm2HRokW44oorMGPGDGWbG264AWeddRb69++P9957D+eeey6+/fbbgqyfggmrPbKUsg2kMuLqEjMNZb4bJy++6AC1G07sn4cTMgCQBukadOH0Hs8AuqpmMgHKktyV50ihlI6DNPc4GWJnhuunKXECyBKRMo8MkVrjJ0uZVG6yNGBAJV9Pb4HGqsTjwWuKl4qwSkvyh5BHRynDUQwEeZZsn7JEBm/f9O729rQw0cdEzlKpNKw3ylVCG/BeAj4pxxDnmni1GKRL26ieJVobKVA8+Z35u+HEMaiTjkGMvqHXqrfI0gknnIDmZvUb7iWXXNIrx9bQ2Bjx4tS7sOn22+Gb2R8W9Dj8+rC+K0ubb745DMPAd999h9133x1r1qzhv0un01i9erVyYSgETjjhBPz1r3/FOeecgzlz5uCiiy7CzJkzMXbsWGU9hAkTJuDJJ5/E5MmT8fLLL+MXv/gFXnjhBYwfPx5ffvklAOB3v/sdLrjgAkyaNAnff/89/vjHP2LmzJnYbrvtkCpAtghd6Kor3LJE0jaQttxp7QAQjxlcaWBMqA8G/J4lQzHn8rupNRwhniUzQFmSyjyO5FniA31lZclx+CBck++LQjOjSJjZ5RZaEyW8kvHbx5V4Gc4wg6vD1R5ZktWaQoPIUliGWEm5S5bksiMAlCTUlG5ANniryhKRUpOX51RPVyolPEuReEwQkHJB1Eya+SaRJZHDJUIp5SG4gDB6SxNz3MdaajccNQZEDcmwDoMP4jUBGN4+GQOiiQTSbW2SstQ7H3CmaeLYY4/FtttuCwBYsGABXnjhBaU8qaGh0XP436NP98px6PoR9mW60Mj7E2zZsmUAiieBAe43xPvvvx8PPfQQAOCcc87BT3/6U5x++um4+eabs7a/8MIL8dprr+HWW28FAFx77bWYOHEifvvb3+Lcc88FAFx00UW48cYb8eKLLwIATjnlFNTW1uLoo4/G00/37Jtg882HYsvBUTQB6FfuzW6yTaQlZSlqCrLkepY8YmL4vTxSN5zsWeLKkgHGxDd7ukiaXAySyFJaqFe2FIgYCeiGcxyHT38WyhCpHjGURMizJFbKjeSestTOyZLKltLeDLRQZanaTSe2enFOVWOTW1rzj2YhlEieJeV+j9jKayXFiM4lD1mjUEo637allP2SSUlZigrPUkKat8a9SNLxRBlOeJaI4HIOx0mSF0Ph3R2oLDlqWrwNwIF4fxl8jA6QKC9TyNLWO26No3/108Bz1RFSyRRmPPtGXtt++umnGDJkCL7+2k2fvuKKK7BmzRoceeSR/AuShobGhgf6Mm1GOm217hHkRZaOPPJIzJgxA5Zl4cgjj8y57UsvvdQjC/MjFothl112wZQpU/h9jDG88cYbmDBhQuBjJkyYkJWvMnPmTBx99NEAXLVs+PDheOMN8UHc1NSEOXPmYMKECaFkKR6Po0SafFxZ2bGX5qKLjsLUv56BVsvE/V8zVJaJuXCMMThe+F8sKmclGbCIyIDxFGUAgClyliIBypLtM3jT24uXYRyHXyhpVpvSDeefNC/nLGUpS+SniaMEUeU+b2cAhIxKA3b94N8cQpSlfv3dIaGZTO+RpWaPLPljDggUyObvPAr0LFGGFc3KI++X97M8tFQN98yIQMuYUJYUssQ7G0UJj3HztpFVhqNlyRET7nbeWi3VfxTxyJL80jgwwKjUBybIEhPnJR1zCe6Rh47DkYeOQ1fQahmozJMsLViwAOPHj+cBlP3798dDDz2E++67D3vvvXeXjq+hoVF8pPn1YT1Wll544QUMGzYMa9aswQsvvBC6nTydvqcxaNAgRKNR1NbWKvfX1tZim222CXzMsGHDArcfNmwY/z3dF7ZNECZPnozrr7++U+t/4om3MfWvZ6AixjCs1EKF4b7gScsEcxyvO81TlqSONmqnNwy1ZZLJ3XDSBcxQlCXhWeLKEpXpHFlZEsfgypIpPEu27Uht7Q5PlBaeJfd/0VgUcTPAs0TeKO/N3h5GllJq1IAf/aq8C3A6E/j7QqChwe1wCyNL5FliIWRJUZYyqrJE3q8IL8N559iyFLLU1paWCGk0y7PEGOOEOSORJSq1yeNO+OtPoZRCWnL/572YQlmiMpxHtqQUJdmzZBqCtDswEPPOy5d1JehfmnE7PbsIxwl+PwTh+uuvV5K6GxoacNVVV+X0NWpoaKz/yLTntmkUGnkxG7n0Vswy3PqCKVOmKIpVZWVlh52Aq1c3YMmSWmy++TBs2z8FI+mRJa4sMURgIGoakoojma+hloIM0+TmXPlCLgcGyp4lmg0nxmKIixeNJQFEqUgJpbQdLn0yx+Gz4egCzAlZNIqSaEy5jy8eggy1etlFhiGMwACQbm/nzy0IlVVuyUse/1FoEFnylwwJ1A2XD1niRJSUJV8ZTh44XOIL9+RDeGNR4VlKxEG0kbK5ZGVJHpJLBNT0KUsg9cn7kc99y/jKcN5LQn/+DgMMMyLiCcA4uQaAuKd6fbQ6js+aqvDK7ffgrQcfRaExZMiQwPsK1bChoaHRO6CRO2FfpguN4lC0LmDt2rWwLAtDhw5V7h86dChqaoKj+GtqanJuT//vzD4B19De3Nys3PLBA/e7IXlj+6VQkXBPfdKWlCW4F6WIZNLmw1AN8GRvmusmuuFMqYVbdMMxaRQJeZn4vh2HXxnlQa1kLobkWbIdxtvaHdvm2/vJUiQW5V4bP3kAACupJngDUMajkPIURkxoOG1vKkt1dS3emoJ/H0946o6vuYHM8YqyZJOy5CWaZ0RopPt/eoyFslJ5bExamStH5DImZRcRYbYsm597IjqusuQzeHv7c3zObj7KxLY9Eq/GU0T4mBSve1JSloRqBcQTpXy9ANC0tuszynKhsrKS3wDglltuwbHHHouRI0di5MiROPbYY3H77bfjiiuuKMjxNTQ0egf0ZTrMplFo5KUsdSYS4K677uryYnIhk8lg7ty5OPjgg/Hvf/8bgPthffDBB+Puu+8OfMzs2bNx8MEH44477uD3TZw4EbNnzwYAfP/991i1ahUOPvhgfPbZZwDcD9899tgD9957b48/h6lTn8e1fzwFpVGGTavdF7xdUpYAA7GIGiwph1JGYpKCZIpuOKVEJLV1y7PhDKgKkyPl5VBLPyAN7s3yLIkEb38ZjlSPaCzGW+ZlssS7urxBs5TsDQBlZQmeZZRqa1e296O83ItbSPWeslRX18zXFI1GueGeQKGUjq9DL+4pS7K/Sk7UBoRCRufZoPNtWVyZovPIpE46CrqMl8RByU6cLMkeKd7WbwgyRGTJWxZj3rFB20LZj80JuVeOk5Ulw+CE3TAYXwMDEPc8S6SWNfpK3T2FhoYG5b22zTbb4JlnnpEiM9x1v/TSSwWzCGhoaBQeKY8shX5zLTDy+vS4+OKL89oZY6xgZAkA/vrXv+Lhhx/Gxx9/jA8//BAXXXQRysvLMX36dADAww8/jBUrVuD3v/89AOCOO+7A22+/jUsuuQSvvPIKTjrpJOy66644++yz+T5vv/12XH311Vi0aBGPDli5cmVOb1ZXkU5bWLTGwbhhJh91QsoSCRMRU1xMGTMEWTIYIpKxzVWWyDAskSjv/zbUdna6SPLf24y/6SgkEpBCKaWBvrblKKM45BBLd6He2mNRd14ZRAkoKqW9Z9rVnCVAnblGylLYHwNtG2YQLwTq61v4vwcMqMDq1Q3K7+MBY00AEWJpZbK74UyfssQ9S2TwzmSyxqvI6h0diwgZGOOPlY8XZPDmnYncs6SChuj4B+lGfWU8By4B48oSIBFqIJ4ogRkVoZkNNdnRHj2BAw88EABQVlaGGTNm4Kc//Sna2rIHesqhuhoaGhse0h18mS408iJLW2yxRaHXkReeeeYZDB48GH/4wx8wbNgwzJs3D4cddhhWr14NANh0002Vi9bs2bPxi1/8AjfeeCNuuukmLFq0CEcffbTSQnzLLbegvLwc9913H/r37493330Xhx12WEEylgDg3a9bMG6YmFOVtAw4DuNlkagplTMAPofN71mCYQR6logOMc/g7Y8OULrhPGSkVn7qgoLhlvcAwHYcmBFvMKyTbfDmfppoLKsMF02Ijq1MSs1ZAoDyChGsmGptzzpfMsj0LD++0CDPEuAmiPvJUozKcL4cn3iMspQkwzWRTI/0UjmRXm/hWcqgtFQ1ygtlSXTDxWNCfSKylJE9UkEGb64sMcAEmKGy6OzZcO7P9BaLSqU2w5TLcLKyZCCWSKC/VN6urylMuu8777wDQHSkvvfee7wsXlFRgZ///Oc488wzscsuu2DatGkFWYOGhkbhQWSpWNjgdOlp06aFfujRt0wZzz33HJ577rmc+7zuuutw3XXX9cj6OsLC5W1Yl6zGwIR7UUvaJsAcj7xEEDENJYVbKEs+BUm6UEV4DVfM7bI9z5KfLPHfS+WaZLs0Z83JLsPZtsP9NEHKkvDTRDhZ4iZkKeE6Jb3ZKecpUFkKAc1ba+9FsuR4vi/DMFA9oCLr9+RZ8oceRj3PUlomS7aqJPm74fhYmEwmK/GaK4SSZykqZTHxMpysZEldZEJZcn/OeGTJH4YuuuE8suQQyaLoAREPIHuWDDBJEXVJZP/hQ7yfGaxefM323XdfnHHGGTj22GOxcuVK/Otf/8J5553Xa8fX0NDoeaQ8xbhYylKXnFKnn3465s+fj2QyiWQyifnz5+OMM87o6bX1STiOjQUNQm1J2u6IEcv7Ch81GL9oMiZIjQlfnpKc4O1dKOXAQNENp5bhzACylEoKFY326oZSUu6PlLNkO5JnKFtZkofvAm45hmAFkKFS6fdJ6Y8hmshOAqeyU1tr7wzRJZBKRqGYMshk7R9RQudB7tyzKQbCI54iDFQtw1mZXJ6lCH/t6BiusiRFB3ATtlCW/J4li5fZVM8Sf3/wBG/354gplE/AjRTwG7xFPph7XvoNGaSsvZCgLrhPP/0Uzz77LJqamlBSUoKjjz4akydPxscff1zwNWhoaBQOSam8Tl9SexOdJks33HAD7rjjDrz00ks4/vjjcfzxx+Oll17CbbfdhhtuuKEQa+xTYA7DgsYSlwgxoM1yvUd0AYyahgh7BBTPkuwJcc211OFmur4VhSwZajec90qTwVtRlqRv/TRDDj5lyeD/tpGScpnoOQGu+divLEW98E7/OBCCXG5KtYiSV6KsPGtbGpkhe556A/Rc+vfPJkv0/PzKEnXDZWSyRJ4l71ymUmoZzpA8S+T9Iu+yoxi8PbJE2zhM6oZzOIlmHgmTwyaFZ837B/+WpipPlm0DjMGm4FNSliLivSmotdeAwAcPuspS1aBB3vMubIjoiy++iLlz5wIArrzySowYMQIXXHBBQY9JGDFiBB599FGsXbsWbW1t+Pzzz7HLLrv0yrE1NDYmyNeHkors60Oh0eky3LnnnouzzjoLTz31FL/vpZdewueff4677rqr18pZGyoYc9CSieC5z9IAc2DFDDCH8QtgxJRKaY7woBgATMOEZ90GIDxLZsQALGHOBSRlSVKm5P9bls3lzKSk+ESkLqKIIXmWSO1yHGTS6sWPE7JYlJMEUpvkMpz/MYZh8DgAQORoAEC8tAxAvfIYIhCtrb1NltwSaVVV9nOJEVnKqMoS+ctUZYk8S56/KKMmoVN+iJXOoF8iWFmSy3CxqDjXQcqSzXmvUJa4wZuUJZ+kzQ3evgRv4kHyIF5VWWKK1y5WEueqIilqhcLhhx+Ov/3tb/jtb3+LmTNnFnxGJYEGb8+aNQuHH3441qxZg6222gr19fUdP1hDQ6NTSLYKZSlRXobmtet69fidJkuxWCxQ0p47d65uzc0DRF4+XpqCnbEwchv3YkwXr4gB1bMk+YMiUp3NMITqYJruJU5RluAqDrbPs6QYfD0kWwRJMaWkZVPK7qELvGPbXBEh0IU8Go1IYz5UZckPWrucVG2l05xEyUNiCUTEmlt61+hnWQ7icaBfv+xvM9Tt5ycERJZSARlW/ugATpY8cmqlM1IZzn0svW8ikQg3/UeImDq+MpwHER2QXefP2A5MSGU4AwCEOmlZNhgkg7d3v4gOyO6G4wZvZiAWL+Hf/jLJwpLbffbZB+eccw4A4K233sJDDz2kfJkrFK644gr88MMPOP300/l9S5YsCd2+K2OSNDQ0XDiWxa8P8fLgmZyFRKfLcI8++igfQivj7LPPxuOPP94ji+rLIGIhpyozxxFt5KbUZQahLJmA4mWClHFjmoZXhhPmW8Arw0nDVIFgz1K7pOgonqXAcSe2kvgNiBKRERHKkghOFO3tynmgYbAB3iQgWJEiAtLS0rueJSqFVlVl/4GSZykvskTlS+91TKbUgcJ8rl86ndVVyDzjvSl5liJSSCknYBkRSunwuW/e/qUGAJ7HJHEoQ/rRshy3DMdLve79qrIkxxMw8X4GEC2Jo7yf2/WZThaW3M6ZM4eX3f7xj3/gpJNOwsqVK2GaJiZOnIiKiuzyaU/gZz/7GT7++GM888wzqK2txSeffIIzzzwzdPvJkyejqamJ3zpK/dfQ0AhG2ADzQqJLBu8zzjgD8+fPx/3334/7778fn3/+Oc466yw4joOpU6fym0Y2OLEwTUGKpBEiEUPMbHMcodAYhiA8fF/epY0ulHQh454V5sDmBm81lDIjkyWprCXP/pIn2cvKEhE7ef2Aaz4m0zH31SRodpr/PBBZyp4lB4hQQxlExFqae1dZIrWmsjKAwHnt+/4yHO94C/AsGVxZUkMqubJkWZJnySM+VE6NRLk/iggZcxxpzl+4siS/fawM5SypGV3c0+a9plTRMrmyRKU2V1migqyiLAGIxmMo9chSqjU796hQeOyxx7Dvvvtihx12wNSpU3HllVdi9erVPMi2J7HFFlvg3HPPxaJFi/DjH/8Y9957L+68806ccsopgdtPmTIFVVVV/DZy5MgeX5OGRp+G95lWUtr7Bu9O183GjRuHTz75BAAwZswYAO4okrVr12LcODFVPGjchYaqLNFF0nEc3vIdNYXJ1oFUhgPj5TmuNkjKEsmTgLhIOrYjjUvxKUsO41Q5I2VKmZLB21SiA0y+T9kQHo9HFYO3vxtOjOQIVpZKfGSJy6wBfwx0MW5sbM36XSFB5LAigCxFPFJjZVS1jYhMUlKWaBsiSymebwXv/56fKJXi54XOo0OxA9EI71SLREzAdt9TvJPOshGj94fiUzKUEmvaclAmHxxEqry1Wm5zAFeW/DldvMmAHiu/P10vV8Irw7U3i2DP3sI333yDK664ApMnT8aRRx6plMp6CqZp4uOPP8ZVV10FAJg3bx7GjRuHc845B4888kjW9ul0Gul070UoaGj0NTDGYMDgkxN6E50mSwcddFAh1rHRgIiFbLplDkOKJtJL/hLHYWJ+mIGsAYI8OoArS0y531WWfGU473e27fAfrJTwChl8xpwgJxnLhlEidcNJBMAlS1QiivJ8Id7d55ElP3kmha201Odp8rYLIkv0PJuaeldZoudbXpbtvyJlKeMrTZK/LCURS27wpvEvvhl7VAOzUmnEY66fJVtZisCiGXMRUfKk1zedtlBKj5F9zoYaLZEmA7fhU5a8f1uW2wcnRwPIz4sTcibeV6akLEXicS6Vt+c5O7EQcBwH//73vwuiLK1atQpfffWVct+CBQtw7LHH9vixNDQ0qHHIDLw+FBobzCDdvgKHQh9NU1xcHJuXT9wynLctUxOZ6YJFxMavLPFoSllZyspZ8kIHLXElleedKcqSGaQs2UppKZGIi2NETN6hJYITRfK3eh48ZanEn1TtKVIBORpECBobe6+sA0hkqTxA7aKyo08xoBBPeY6dlSZlSRAbQA6MpFJaWopgcM8bEdJINMo71Xgbv1SGS2cs8fpD7Nctsbn3y12SYIJBGQbj0RE0kJeUJV6G895kjpezxKMDDBEdwJiBaCzKP9DaGpqyzltfwHvvvYexY8cq92299dZYunRpkVakodG3QdeHeEiXdSHRaWWppKQE559/Pg488EAMGTIkawKwzhjJDa4smQYMR1zseGeUIWXhOCKR2ZQUJ//F0DV4S6MqvN/LF8WIabqESi7DeZADFWX1wQzyLFmWUoZLJGJKpxZd5IVnSeQsyaDfZ5ElL3IgKHSMnn9jY++WdWh2Xll5trIUiXrKUlo1eJMqJ58rGlhM3qRkSBkuk0oh5surojE0ZiTCDeeyskT7SKczUiil7N42YBrSkF3yJEllOBOSspSxEWWMd8MRiSYfG+1JKEvC4O0AiMRiPFahua5vttLfdttteP/99zF58mQ888wz2H333XH22Wcrsyc1NDR6DvSluxjKUqfJ0oMPPohDDz0Uzz33HD788EPtTeokuMEbBmDIPiD3Yhs1wdmS4zA3HBBqp5Ios7n/dy/MLJssOSLsklQs0RruKRa+10+JDuB5QKrBW1aWYrGokgHEh+9SGU4KTlTPg6csxaO+++mPIfybQ11dL5OldtfTVeYvGcJ9zkD2qBZSfdo7VYbzyGkmw88LnSebBhxHIqIZgJQl25bKcFI3nG/EiTRZUCh9chlO8SzZYEwiQ1xZkspwhiGpV4JIMeaWJyNeibJ5Xe/mofQWPv74YxxzzDGYMmUKrr32Wnz//fe46KKL8MQTTxR7aRoafRK8y7oICd6dJktHHHEEfvKTn+D9998vxHr6PGjgqmGaMBmNlGA8FTtiuAY2gAzeUoI3vxip3iS3JMd4yrJShqPASG7w9sosdjDJlXVCOp5lO6Kt3cpVhotwzxKpH9FYcBmOOrr80QE8s6lEvb+qqkxMsG/oXbJEhMdvRgdcwzXgmrJl0Frb28X9/jJce3twWGMmlZaUJe89YpOyZPJzK5vuuTk8Y0nvD6LX6mvPmDjPzN8NR6GUtgOAZeUsReQyHKQmAzA4pvAsRWMxfm6a1/RNsgQAr7zyCl555ZViL0NDY6MAfQ7KY7R6C532LK1YsYJP9dboPLiyJJfVHNFhZkqeJdtmIuVZ2gcnQ37PksGU++UxKlxZ8vZh+5QeusBKs3qFZ8myRYK3p3DQ9rFYRLqQR7KUJSrF+FOVKRIh7h8YaweX4aqluWx1db3bDdfmRSsEZUJR/lS6XSVLJu94C8hZ8ilLfljJVFYEgy2X4ag0SyqPI9LYU+lsskTvpyDPkuGVZ2k7VVli2cqSYvCWUuQNSGQeMGMxrkY2rl4T+Dw1NDQ0OgPy/BZDWeo0Wbr00ktx8803Y9NNNy3Eevo8iFjAMPkMCce20d7ukqWo4lkS3XCqQdf7v7ddlmfJu5/ZjhRgqKoLmRBliTrq3GgDT62wJOXCN+erpCQudWqZgiyRssTLcMHKUjyrDOc9zqcsEVlijKGtrXdDKVu9wb1+fxUgkaWUnyy556utXfIs8Y45IkvBbeSZVApxHu6pRgeYpqwsecRFUpbSKdmzpP55RySyRN4wMyIrS0KLylg2wJDbs2RIhAyCIDK40Q+0pvpVNYHPU0NDQ6MzIO9mLGQyRCHR6TLcxx9/jEQige+++w5tbW3I+JKLBw4c2GOL64vgOUumAYNJylKre+GMSJ4hh7ndTYD6rd/vWTIMU+mG423djs0vtqZpArY0zsJWyQsvp8iGX2mGGU8Pt/1kKcbvMyMRRGlECpG0GOUF+cmSpyD5yVLIH0P1gMKkMOcDSgz3rxUQZMPvWeJlOGnoL89Z8k4xEWTDMBCNxwXhSSZ5KCUvw1miDCfiJIgsidcknbY4ERLUh0IpRRlOVpbENpKnLaN2w4lxJ6QsEWkSJJxJCd6UscQYQ1OtVpY0NDS6D/qs2yDI0pNPPomRI0fi97//PWpra7XBu5OQc5YM6WLX5l1sI1IopW0zrtAYUqhjkGcJjCFqen4kj5c4tiPKN6ahzI/js+F4wCWRKrFWoSzZiidGRiwe4WqQUobzKUuOj2SFdcM5PmM4oX8/cfHtbdAsuiCyZHgRAek2NfuJXsM2mSyRkkQDjKUyXEWVmDtnpTOIx8n75ZXhuNctoAxn2/x4qVSGv8cciSwBsrLkSKRdvOBSbwEyXhku7XVsxiOq982fsyQnzDMGlEgJ7L012FZDQ6Nvgzq3/ZWH3kCnydJee+2FCRMm4PPPPy/Eevo8iDTIZIk5DlrpgmwKMmD5Qyl9Bm6ay+USoWyypHTDmaZXqmN834A/V1tVtuTSm+iGI8+Se4EsicdUz1JMvciTsuRXpOh5UbmJnx/+x6B+c6C5bI7T+2SJlCUigjJ4ZlJ7iLIkdcNZPhVW9jNV9hPKWSaZRNz7MKCSmyMN4eXzAql7TiKzGdng7Qsx5Z42hwlTfpay5L0/MhbAGNotdx+JCAPAskMpSVmCSAx3IPK1/CRZQ0NDo6ugkVGxePCYrEKi056lhQsXorQIgVB9BcLgbfC8HcdhaPN8MTGJLNm2I8pwEOqS8CwJlYo5DDHe6eYdy7ali6IBuffJskKUpcAynC21tZOyRKGSUYUsUfZPxntT8zKcHexZIiMzv5//MajfHPr1L+PnpLfR1OSGYMZi2WSJG7nbgk3nbdLcPSup+ppk71WFRJbSqSQnkXSe+Fy5iCk6JElZknKyUqmMNHyXVB/vtSdPm8MEaZfJEmRV0x130m6LyIm4yaToAJW4u8qSGPRMXi7bUpVIDQ0Nja6Crj+ReO8rS50mS1deeSWmTp2K/fffHwMGDEBlZaVy08gNSmKGYYgp7baFFo8sRWVlyWY82duQjN/ZniX3XkpXzjiiPGPZgizJoZSWT6DhmU3SO8IIKMPRRZa2j8VEorRhmsKz5ClLfNCsT2EgxSQWDyZLRLIIVZXFI0uUGE5EUIERrCwRyBwOiFBKQjIpiESVRJasZJp3CZICJytLaa+rjpMf6dymUhYvscmBk4BQDR2HKTMK+ftINnhLniWq2JZGJWWJHispS8JTJ1RTKx3c8aehoaHRWZANJFoEstTpMtxrr70GAHjzzTeV+ynrJxrt9C43KjiWdJGSZsA1e8Nh5TKc7Ti+Mpy3D97t5P5smq6yREQrQ56VgDJcxDfuhPmUpYhUmOOlHctG1Kcs0fbxeFTp1Ip4jI3e1DQOxF+OIXXEr9YQWfJ7lioqXDWTzkdvorHBfW1MX1kLkGIA2sQIlmg0yu+XyRJlMdEQZcuy+Oia0gqXDMqRDIAglTIhTWdEKdf9XbCyJHuWTMh+NcenLDEAhpIe75bz3PdIxmaIRA2URhw1lBJitpxfWSL4je8aGhoaXYXtWRmisd4vw3Wa2Rx44IGhv9thhx26tZiNAQ6Ty3BElhy0eJ6lmKTs2A5TWvX57DdQCUQqwzHGS3jEJ5hti7Z+T1niZZYsZckjS9K8E1KWMmkLZRRKKXmWAH83nMnHfPCRHNFgsiQ8S/5uOI8sxfxkKeHtt/fLOvX1bgimf7SPjFSLIEu0VkB0vAFAWirDReNxpCUiUV6hTtGOUTJ4xleGM02evcVfS8tSsptEWrrPj+T923EcX86St420z0zG5owonWFIRA2URpiU0k2db1Tqk0JTpeeRbu/doccaGhp9F+T79FceegOdJkvvvPOO8nNFRQV+/vOf48wzz8Quu+yCadOm9dji+iIYlZFkg7dto8k3HNZmAHOgpGVHTFUFomsidcORZ0mU4RxehhMp3+5jhAlc9UFF5NwdSVkizYGCFWkN0WhEjGQxI/zxGZ/B2/GRHLrgR31kico2Eb+yVFlEZclT/YxsYSlQWaqoEOZ0IsGASPAGgFhpQiFLZb4hvdR5Rwqdw8mSwUuzXOhyxDlJp0UZjkkLNiDM27Y8YFlSywxFWRJjU5IZB1WlJkqjDifTvJnSEGGnVPaTyVKqtXeHHmtoaPRd0Geo/7rRG+i0Z4mw77774qGHHsKqVatw2WWX4a233sKee+7Zk2vrk7Clbji6+jq2jeYmdYQHY26Ld0Zq1efKUoC5lknRAcQnHMeBbcldT4yPsxDjTlQCFotGFMUKcEtmvOTDPUsigVuOJyBfDy/DRYONvtTR5e8wsy2PLPnKueVlLgEJS70uJOrq3MR6Kp8REhXCZ5SUSEGpNEOurU0KpZR8TTFfXH/Ce36QSCggcrbofJqGqQSVAoApteanUmnhWZIG6ZoGkzxLUnSAISV4Q1aWRFddW8rdNhFxhLLk7Vcuw/m7NQGgvbl3R9NoaGj0XdgeWVrvlaWhQ4fi1FNPxRlnnIGqqio888wzKCkpwdFHH40FCxYUao19CorB2xAKUEOdOkLGYQaY46jKEoUK8m140pLnWXJ/SisGbylnSTJ4k8Dl9yzJ5IVfOCWDN9WMZXIlVA+hLNG6eRnOCi7DxXxkiStLPrJU5pEJ+Xz0FtatE6/NgAEVWLu2CQBQUi5KZzIpKPdUIsaYkjGkKEueQZE8S2XkWeK/97oKA8pwaZ+yZECc22QyI0Ip5SG5EDlLlhXkWXJLaYbnX7JtmxOq1pS7bVlUlOFsXoYzAdhegre7f9kr1dbYBA0NDY2eQCbk+tAbyFtZevHFF/H1119jxx13xEUXXYQRI0bgggsuKOTa+iS4UVfxLNloalRbzx24F1KZHPDuJyrDSQGXjDlZniVH8ixRvIB/3IkgS+5jVLLkdXqlMlzGoPUHGbwN0+RlHZ4FFNJCnk6RUS+YLJl+slReTGVJEKGBA0XHZ0IiS2mpDEdr9cNxHEFKvRwpOu+J0mBliUpuRFINw8jyLMlluGQyzd8XzFSJryjD2dJrZqjKkre9XIZrbveGHkccToZ5fIVh8P1TFIasLLU2NAaeCw0NDY3OgoJ9/deH3kDeRzz88MNx55134t5778W3335byDX1aTBpkC5VSZjjoKlJNcI6zL2futYAaTYcqCOJiX1JBu80T/C2+ePd+XFqdEAUyMpZksmLgezoANsb2UEX5Hg8KpXhhMGbFBH6BuAPZKTyUjSq8nVSXyI+xanUG2KbbA+ep1ZIEMkxDAMDBgiyVFIenCpOJcNckJUlQAzp9St8RJapPGmYBk/+ptfEZOI9kkwKzxJ8nqVAZUmKDjAltpSWynBNbe4aSqNMqEc860vkMDn8/SnQUlff4bnQ0NDQyAcZr6PYf33oDeStLO2zzz6orKzE3Llz8cEHH+C8887Tc+C6ABHOKJQl27J58CGBeWRJVZZUFUhU9LwyHFeNsstwZPAW6hQdR1WpAstwGcngnVGVpahShjMgz5MDANPbX5bBm8p0vuwi8ceg8ngiE3Iidm+Cznm/fmIsSUl5cDhrIkGqEQv8PQBE/Z6lhCjdAdmeJR4GahgiZ8l7rMGEsmRZljTKRPjPTElZsiwb6mw4WVmiDkhRhuNkKeIgQknu1JFJyhKCPUvNa9eGngMNDQ2NzoCuD2ZQ5l2BkTdZmjNnDs4++2wMHz4cf//733HSSSdh5cqVME0TEydORIVkdtUIB40LcS8s3sXFuyjJeYsODDgOU1rlxWwv9/+2pCgw5nCDt1CWHLUMxxxu8ObxAkGeJUmxAoBUWpThLJ+yFItHJdVDKsORr4bKcL6ZctzTFFHfgmTg8/8xJBKuoU8eTNubIO9RdbV4n5eUqdlIhLIyUonC9xflA4Y9hc57ftSdSOeFyo4WL8OZSKeJABMR8pVUqdNN7myE1Alp2WDS+1A0CogFywbvhlahLEV8OUsiOgCB0QFNa9aFnwQNDQ2NToBy2zoiS7++7w7c+P5/cPQVF/fYsTvdDdfW1obp06dj3333xQ477ICpU6fiyiuvxOrVq/Hvf/+7xxbWVyGiA6AoS4AwzQKiDAfIo0gobNDbxhGkxi3DufcrCd7yIF0nwODNowO8xO2oKcdSAvC64aj05/csxSKcCBmGIZXhVLKUVYZLUxnOrywFkyVKtG4tGllyn2+//pKy5JElPysiM3rgHDvuWQorw9Hr4CvDSeeY/F6iG041zztBZMmQA0ltHlZqGIYo50IQ5HTG4u+N+lb3eKURJ2A2nCk9Vs1gAoCG2tXZ50BDQ0OjC6CsOiNH5h0ADNp0E5RWVqD/iGE9duwuRwcAwDfffIMrrrgCm2yyCX7+85/31Jr6NGx+YROhNtQhJ48gkckSwfQpSw5v/1fLcGmbSJilkiW5G47HDwSU4aRIAsAjPqRKeCUgeXu5pMNN4RmfwdunLJHvxq8skczq/2OIe7lL8qy13gRFJvTrJ0zdcW9GouN7nUpLVeIjgxvpYypZosG5tAFXlryyo2zwzuqG8x1HLsMRDGl7twznvQ9Ng7/eckC5bYkyXEMLGbwZX1eQssTJkrSW+pU1WedAQ0NDoysQylJu6sK9sqmeu150iywRHMfBv//9bxx11FE9sbs+DSewG84rwynKkpF1Efb7jWzZLO6Ibrg0dcNZFmxb6phzHOFb4dEBXiYPkZ9IBOrlTu1Ao5Ibrc2dDSfMx3ywrPcY0wxRljhZUpMe6ZtDlrLkhTS2thYnEZqM8pUVwqdUUub+m/kUpBJPJQpUlrxzGytRt6EZeY6/DEfKEs1YM7yyKASZ9ZMl2oecCSUrS5m0JXxmhinG5kgvRTotxp3Ut4nuuzKPCHLPEilLIjaMK5+MMbTWNwScAw0NDY3Og2ZwGkZu6kLdcpnkekaWegPV1dV47LHH0NjYiPr6ejzwwAMoLy/Puf2dd96JhQsXoq2tDUuXLsUdd9yBqqoqZTvGWNbtxBNPLNjzEDlL/D+8rV6+tjJkK0s0t413w9mqZ4lHBzgm/70lkbOgMhx4GY6UIimkUDF4e4/zKUuxWJQHJhpGkGfJG3/iGyJLJMA/QoTPT/PNYaNZac3NxSFLVFasrBJkKVbqmbJ9ZbDSHGSJj5WJ+zxLcfIsecnnlFeV5VnKLsNFDN+cP0d0JxJMiNc+Y/kiJYgsQbyfMhmLb8OMCJKeWpkoiXrHcrej1O5Ag3cu05aGhoZGJ5Fqcz///dcHP+jLdibVc7MpN5ipt48//jiGDx+OiRMnIhaLYfr06bjvvvtw8sknB24/YsQIjBgxApdddhm++uorjB49Gn/7298wYsQIHH/88cq2p556Kh8QDAANDQ0Fex48ZwkGQMZch9SeYM8SwV+Gc1O4hdxEXfgZT6GyJc8SGbwjPnXKX4YLaslMSyU0MpyLMpyp+Gl4GS4tTN+ApIzQPrnypJIlriz57icPT3NLcQazUulLVpZiXgebTFoBUYaz7YAyHJ23OBEqT6HzlCVuzvaefzKpkiUYBlIptQwnkt3hrcd7zSMmjzxQlKWMDceR3hfe46OKsmSLkmA0inbLcMtw/kG6VLKF0CPp/7ZvHqCGhoZGd5AmstSRskRkqQe7pzcIsrTNNtvg8MMPx6677oq5c+cCAM4//3y8+uqruOyyy7Bq1aqsx3z55Zc47rjj+M/fffcdrrrqKjz22GOIRCLKB3lDQwNqa2sL/0QgDZQ1wIOWHK+MJQ+3dZghvtkzNVSQLsGu/8l9CWMRqZPJce3YbhlOlOrcco2n9JBnyfF5liLy+AvRRs7N6GnqhgsowxkGV5Z4x5Z30acuOgINmM3yLHk1ab9nibYrlrJEZEkekltSSmRJJQXUuecvowJS8nlcVZ+IDAqy5J5HKmfSeTfgBk+6//bIDHxlOO4hC/YsuaqRIEtEeGj2ID1fWn8kGkW7baIajigd5/IsEVn3+dQ0NDQ0ugMazE2fNWEgspTqwUHeG0QZbsKECaivr+dECQDeeOMNOI6DPfbYI+/99OvXD01NTVnfeKdNm4Y1a9Zgzpw5OO200zrcTzweR2VlpXLLF0xSG+RxJ4A6y8tN8ObuDwBSdIB3ry0FVpZIglBQN5xhGJD73MgfRRdE+n80amaVTzLSmknhIBIWiZoinTtAWRJlOFVZSlHXm09ODftjILLU2KAmnfcWiLSUSwNvue/I936izj05UJRAr2kkRh4lQTrln+n5tre7SpuqLHnn1udZyooOMOVYAKEspVMZrnBCUpYiUMkSk8mSpX5U8ARv72elDEfzB9PFycTS0NDom+ADy3NzJZH3l9zIynDDhg3D6tVqC7Jt26irq8OwYfm1Bg4cOBDXXHMN7rvvPuX+a665Bm+99Rba2tpw6KGH4p577kFFRQXuuuuu0H1NnjwZ119/faefh7tuKd8GpOqQwVtsx1h2eUeU4USZjfaViHn3OQA8idK2bD52xDAMrkwBgEUGXZ/BOxKJeBdCxj1L8jL83XCxaCSkDCd8TICIBCAkU3LelACvSfvupze/P7yzt0AEpVRK544l3JKc7Zt7lyhRS2wy/GU4Ip3kyZK9RIA4TzLZTKVUgzd5jURJlaIDBIM2Id4/6Yyt5H0R8SHvE0DKkmcUj0bRbquvB71XieDLBm/aX7oHP6g0NDQ06PrQEagykW7vuc+goipLU6ZMCTRYy7exY8d2+ziVlZV45ZVX8NVXX2WRnBtvvBHvv/8+5s2bh1tuuQW33HILLr/88g7XXVVVxW8jR47Mey1+AgQADqU0+8pwImfJvc8/SFc2Xpd6Q5htJitWahlOHotB13HmU5YiXiilfGl0JOJi+5SlaCyqtLXTpuS1ISOe7Td4J4OVJf5NIIssuT83NhZHWaIxK9QNBoisJCqjEkoSpCxle3a4wTumdr9RGc7h5mz3+VIIp+z5otgF+uOlSmaWZ8mUzfpM6obLiMHGhuhsi8pk2rIAJt4TSZ+y5C/DucdQowPSrcUhthoaGn0TqVb3898wjJzz4ei6ky+5ygdFVZamTp2Khx56KOc23333HWpqajBkyBDl/kgkggEDBqCmJneOS0VFBV577TU0NzfjmGOOURKxgzBnzhxce+21iMfjSIeUEdLpdOjvOoIjZpTwywzdZ8sGbwgCI4+sAAA74qobKlnySAkDJxqOZcPKCGVJVg4cI6Ls2+9ZUjJ3JBZHCgcnSxFTaWunC6ZQPzxlyXe+2jwSkKUsdRAN0NBQnAtwm1cO4wNvAcS8Djb/kGDqGAssw1G5M6aqTzT2hUlqISD8SfL5SyVlZYnx8qq/DOeSJfcxsmcpnbaVCAseHeDbDxF7MxLJUpZEgwD4WvxNcMnW4hBbDQ2NvomU9AUsUV6GtsamwO3oupPuK2Rp7dq1WJvH7KjZs2ejuroa48ePxyeffAIAOOigg2CaJubMmRP6uMrKSsycOROpVAo/+9nPkMojoGrnnXdGXV1dl8lQR+AlK8jeI0rwFts5LNsLQ2W0FGJgjOHjF14GjnC7Abmy5AhRxrbVMpwBh++bSjTcLyV5ZVgOZcmyVIN3NBpRSos8ATqtKksZ37nnypMRoixJiMejfLu6uuas3/cGKAyTzNsAEC1xiZPlMzITiQpUliQfkLuN5BVzAspw1A2XFucrJZU0TcmLRISX3jcURApAGaSbTGU4wXPLwe4vIpKyJK/VjESyPEsiwZsg54a5v2xvbsl6/hoaGhpdRbJNfAErqSjPQZY8O8jGZvBeuHAhZsyYgfvvvx+77bYb9tprL9x999146qmneCfciBEjsGDBAuy2224AXKL0+uuvo7y8HGeccQaqqqowdOhQDB06lPtfjjjiCJxxxhnYfvvtMWbMGJxzzjn4/e9/n9Ov1F0wmQDxi0s2WaJBuu6/fQZvBnz84qv44PlX+PbkWbIcab9WRspAEq3hDMJ4zctwtiBLYEyZE2Y74m3iUEgiL8NFFPMxOe+EsuStK4sspeVTIO73DHyGYSDq5RUNGCAM9PX1xbkAt7a6JK6kRCJLpCz5AjdLvBiAoNZ5TpbiasdcJErZWKqyRAqc3E0oC1YmRFecXxGSh+TKg3TTqYy0Nqkbzt9VJ5Vms5Qlns9Fe5Geo/f/tobgDzINDQ2NrsBKpsWIqLKy8A3pi2Frz10vNgiDNwCcfPLJuPvuu/Hmm2/CcRz885//xAUXXMB/H4vFsM0226DMO4Hjx4/HnnvuCQBYvHixsq/NNtsMS5cuRSaTwXnnnYfbbrsNhmHg22+/xSWXXIL777+/YM9D7kKiKw11yKllOINfOHlooHexi1mteOrqG5U29lKJLHGCkrGkrB9DGrgqlCUxxFfkLDHGFBZNk+UZY1ndcxGpDGdAkB+e+m1Q/IAvOoCTJV83nCSblpSWwUqmleG1DUXqhqOZdJQkDohSmj9Dirrh5DIpwclSltxtIqafLLnbE6m0JDUpLc3FMSUvEleWgspwhhikm1ISvDtWlowAZcnmCd6yZ4ke5+5Hp3draGgUCiW5yJKHjmwdncEGQ5bq6+tDAygBYOnSpcqF9+233+4wi2HmzJmYOXNmj60xH8gGb1odN01nleHU6ADynCSXfwdAdJwBPmWJ9pGx+AXbMOSuKdEtkGXw5kGGYj8ZO/s82rx8FBGdWtKDKDiRZzW1+5Sl9uAyp1yTLikrR2t9A/p7w2tlstbbaPHynShpGxDqkJ8IUmdbEFniylKM1Cc1KsDfWdfqlf/kY8jhpaYBHkYqlCU1iBQgz5JQlvh5NAThCVOWTNNEu+0rwxExkz1LTH1c45o1Wc9fQ0NDoycQLysNvD8ajwvvbA+SpQ2iDNeX4DhBZbjs6ACHyQZv974Kw71wEolSyJJXY8tIypJtW3xMh2EYPEfHgeRZomPbFB1gujPkpDVHAroOLMng7Z/7Boh8IGKEfs8SlbWy9psWMmtJmauckbJUzOkZFIZJRAiQ1CG/suQRoUxAKCMvd3qPJdLJB9Ta6mN4zlJanD8zFhWmf4jyLH+/BHbDAbTy9mSad2AqoZQ+Tsy9T5EI2i1fdACV4aT76H33zX//i9rvluC9J57Lev59Cdddd11W9+6CBQuKvSwNjT4NPny8NBH4+0SFGIOWbOk5j+sGoyz1FTgBF1A7Q91w4j6mlOG88hssABFljAaNsyBlSRYz7IytbCsP4s0yeNNF3CRlSfhgzFj220T2OInnxLK64Qj+gYaU4O2mfpuBihHJrP36CWWpWKB8p6g0DoY8S/7wRRpdYgUqS17ZLeY+lozw0Ygow0WjwtBOpNKRiDGlfwNueY2/rtzgTSZxtRtOLpHaEilzlDKcMIVTOc0wTaQcl1SJ9xCVZrOeIub889+Y9dYfs3/RB/HFF1/gkEMO4T931G2roaHRTXRAlkrKRXku2YPxJZos9TL8HW6AUJssn7LEfGSJjOlOwBWqRFKWuGKlKEvywFWxLyrT2HIZLqNGB0RjovRE4F6baASZjBjFQaAuLoK/y61dKsuVlcXREjDzjWTWKm94bdCstd5Ck6csyeNZ+GRrn2pGylI6iBj7lCVSB6OerGNbtuJFI1LpOA4nxlGJLMnGba4SWqITMUiBSiUznKDDMCSy5EDoT/6BvAaStoGyqLs/22FeRlM2/KXEvgzLsnptVJKGhob3JS4CxEuDy3Al5ZJtowe/vOgyXC/DdgLIkvct3/YN0pVnwwFyeS1AhfHIkmWrXijZNyOrApws+ZUlrwwnEx8+XFciaZYtjMmkrMhlnFQqA1NSSPxpzm1tQo0pK1O/IfhlVlKWikmWaMyKTJYoG8nf6Ufqk1wmJXBlibbxCBUfUGtZKCsTZIi64WRE4jFe/jINIEaPzVKWpOgAg3FSlUxllHKfMHh7P/NwS7mrDorJm5fhpBE99FoHebX6KrbaaiusWLECixcvxmOPPYZRo0aFbtudMUkaGhou6At+rKQk8PdyGa4noclSLyOoDOfwMpwgI+4gXXdboSypF0UZcY8spSVlybZspRuONAMGwKCyD8UW8ADCbIN3xFMy5KPKs+GsgDlvyWQG8YQgQf4yXEuLMN6Vl/ve9D6yVFlJylLxLsINDW4LqvwcuTrke25Rz9eUTmV7uSgMklQpKleSSdu2LGX+nEwq+f7jMf5imGA8wTs7Z8nk98mhlO1tKZG6Dn8ZTg4qVYchJyWjP70UQYXRoDDOvog5c+bg1FNPxWGHHYZzzz0Xm2++Of73v/+hoqIicPvJkyejqamJ31asWNHLK9bQ2PBBCnqoskTluR62bWiy1Mvw5+gAQm2y/AnePDCSKY8JUljIViR3rtmWxZULwxBT5VXPEhE18iwZYI6cCi0ZvGVlibrhIqIbTh7Um0ymlZpy2qe+yKqLZH3+3wAAcWJJREFUPG/NPYzn0fLIFpWliqlY1Hn5TvLrRufQX4YjE3hQGU4ZKwORxi0rS6XeSBXGWKAHJhorUeIk/EN4uWokh1IaUjdlMq0O0uUGb390AHmWvIBM+b1Fxwr4PAoytvdFvPbaa3juuecwf/58vP766/jJT36C/v3744QTTgjcvjtjkjQ0NFxQNSSWCFaW4p7Xtac9rtqz1MuQPUs88di7uFiKsoQsgzddp2UzNGPu/XGvhpKWDd5WBpm02Jbn8UjRAUTIVGXJkTxLLNiz5K3ZjBhcpZB9TslkGuWDxZs5KHaePDil0rw1QLTXkzJVXuF+gygmWaqvy0GWfCVGXoYLUJaIpJgRT1nySCMpVpZlK8qSAu/FjsZj3hBmw40O8MgZvYaOJRu8hWdJJUsBBu+wGXNGQBmOqSn0MoKSyzcGNDY24ptvvsGWW24Z+PvujEnS0NBwQde/sDIcGbx7mixpZamXEaQU0EVJrl4wZvCykyBLZNyWlSX3d1EaKyJdp5yMrZSuTIksmb6cJVvuhpM8S4wBZlSdI6dsHzGFssQ9L14ZzSM7HRntSn3fEPgfg3e/UJaKp1jIyeH9+7tlFiplpttUskReJsqakkGmfdqGQieJqNiZDBI+8sgf6/0/Go8JZQmik87mxFfOWZKVJc+zlMxwEzggyJL/9RMDebOVJUsq7/o/kzYWZcmP8vJyjBkzhk8V0NDQ6HnQ51IsEfw5SeU51sOZfJos9TKcgG/dohQm3YfsbjiCGh3g/p/ifzLSPiypDAeIC7KqLHXsWaKkankdNHPOJUsUA6CuM4z5+9fu9ywxTpY8Zckr0/njCHoT8ky6gQNdYy4RTv/8oahnQEqng5QlT0nySmcUzknmajuTQWki+3x7d7jbxmK8I9IEQzSkDGcYhuRZElnbra0prj4BIgYgIqmJ7n7UkrGctSQPV/Z/JAUZ2/si/vKXv2C//fbD6NGjMWHCBDz//POwbRtPPvlksZemodFnQZ9L0XhIGc77kt3TAca6DNfL8M8RA4TaZMkXICYUAr+hO8jgTRe6tC0GmtrpNKSRYvzFdpiRTZaoPGQabiilnLMU0A3HyZXUDedn3rGQHAwBt5QkD6d116SW4UrXA7KUTlu8bDhgQCUWL17Fz2HKR5aoY84fnwCo5mvA7UwDhKpjZyyUec83myt5KmJMUpYMhliUlKVskkPvFVPyLLUnU7BtKSIgpBuOjzuhOXUSWZJLxsx9GcXviti12JvYZJNN8OSTT2LgwIFYs2YN3n33Xey55555DQfX0NDoGriyFPJlvFDKkiZLvYzAnCWPqMiik8MMXrryG7wtRVny1AaPqSjKUiYDy7soGoYBr/LjJniHeZY8siTKcMKzJF+8uWeJ5zWp2UyA9GYOKR3T/hI+OZW6sKIl7v1lpR5ZCiAfvQnyhw0Y4JXhKBahzU+W1BKbDK4seaZ5ylEypW64RJiyRPuPx7ix2jQY90j5iS/kMhwkstSehpOJ8efAE7yzxqY4fD+A8Cwxxrj5G8h+eTMbibL085//vNhL0NDY6EDXRbo++EEViaBrbXegyVIvwwn41k1qU8ZRSxt+gzf/nZNdhiOkpI4627KQSYsNolKCN1eW/NEBXru5KakMwrMkjpvJqGM6AChqFCDezCyELfHp0X6yZKnfHMjD096enTnUm2CehEKz6jhZ8ilLZNYOUpY4WaLsIi9HSSnDec/XryASQYkq405EGU4oS9llOLnTrbUlCUvuxuzIs8SVJf+5cOGW8eROyY3T4K2hoVF40JfBoMYjQHhdg6613YH2LPUyLCtbbaCLUkYqwzEm3hT+i6ackOwnUhaTOpYyluIfiVFKNJMym7w3lCUrS7atKEs09FXmPJYtynYEkz/G/T/VjsPyLuh5hZXhaJxIosT9f3uAUtObIEJZVeXF6Xskwh+pTwQyqGzIc5Y89YlCJ+k0WulMqLLEVcSoqizR8eg1oWPIBm+J06K9PQ1b8rJRsCS9lv6BuISGpOHFGTg5laWNxbOkoaHR+6AvnNF4MFninqUe/tKmyVIvwwkI7CNykLHVb+sO9yypj7EV8qReqjKOTJYySmcScR6HGbzuk+1Zcue0KZ4lr81dVZZU7w2QrUxES0qUn7Oet/e8Skt93XBcZnXvL/HIVHtAmnVvgshSv/5qQmyqTSVLXDXKWYaLKNtwspRJS8qS+rrT+VfKcBCGchrKy4mQpCxFJWWprS2pdMPZnHjRcVRlidCaMXH6aXfgJ4dfp7wX/C/vxhJKqaGh0fugz9BImLLkXTfsHp7TqMlSLyOohZ7UpowlkyXBjP0XI9sKv1BlJGXJyljKhYuPxZCiA4RfKpdnKcr/zY/DPUuiXieG77p30QwzFpRcCKEslflCKcnYTjJr3PsGQUNliwUqL/WrKlNHubT6yZLn8WkPJ0tUBm3znpMow1ko8ZS0LCO/pCyJ6ACGqKdS2TwGgpQlQbiipkyW0kqjAfOV4XgSeNZ7leHhh9/Em29+prwXtLKkoaHRW6DPrjBliewfmiz1AWR5kDxCk/a1Y9Nk+GxlKdvgTchIs7ocSy3D0bBWhxlSZpM3l84K9iw5DuMlI5n0WJZahmOQy3BezlIHyhLto7xC7ZqjPwaqPcfjLllrbS2uskRdi5WVpUhIk63bm1uU7ThZClDCeICn6Z5Tek6k5FnpNCdL/qR2Ov+RWFSNDvBUKl62JdVI8Sx5+2AMjuMoeV/06ogynGrwpveK8jLm8M0FZYlpaGho9AQo1y8SCzF4a2Wp74K+wWcUxcjgL3ZnPEsZJlrCrXQ60LMUlOAte5CYY/OcJXnciaIspVWjMhjLKuPwmXIhLZykgJT7lKWMN2uO3vTxuPucWoqsLFHpsaIigRJpWGOyrVXZjshFcDecWr70e5Yy6TT3cGUZvHl0QFT1LHllOFIRbcmzxMer+DKwHCkDSuzLR5b8Q59lU7fiWTKkTUJaHzU0NDR6ALwMF40E/p4Up6CYnu5Ak6UiQw16DC7D5fIs+S+oGUe94Mnf8mNRYfAWylJAzpLtwOCz4Rhvc5dJDxEHZfyHvxsuTpEDwWRJJh/K/d74EGoBjXrHb27KHpnSm6BE7oqKBBLlLllijMHykSIe4hhUhqMBtp7jutVfhlOUJZWs0PmPRGNc2DHBeFSB5Y8OgHh/RH1/6UHKkuEvw/mPLxXcWA5lSUNDQ6NQoFy/MM8ShShrstSHIStLDmSy5Ot4U5Ql6X5HKEYEpQxnSmU4k0zBGWWfpEbIZbggZSmrDMdYluclVpLbs0RkyT9Il5Ml7/FkYG5uKTZZcs9VeXkCJeXBE68BqdU+qAzHPUvuNvScSPnJpNIo8brh5JRsAHDI4B31KUsRMVcOEGU4I8DgzVUjK7sbjhNo7zG2v5tE9inJBu+Ac6ChoaFRCHCyFA1OPqKKhhUwQaE70GRpPUJSSpR0E7yDy3BOQCgl4KpKstLj34aUJUdWljyCZlnC4O04juQ/ciTPkjhu2jcAljHGH8Mv0B7DDwsHo3Eg/m64tEeWyCBOyklzk2qk7m2kvPJgWXkCifKK0O3oJQjyWPE5etzgrZbh7EyGe7SylSUqb4puuIghlCU+G46THKkMZ6rme/ff3n2+NQrPkuW7X/xbeQ9mPUsNDQ2NwoB/hoaV4byGJKuHh1ZrsrQ+gTl8mC5jBpxMxwZvmUhZzBBX6gCQsmQzgysbdEG2rGDPkqssZZMlWYnyFsy74fgFmspwIZ4lIlxlvsGxNJiWynhEyJqKXIajkMmy0hIpUj+cKrQncyhLhqeWNbvPyTTc+W2ZdBqJEu+P3deCL8pwUSU6gOcsZagMR9EBgGOTsuTtI6BmFjZWhfmULaUDTvl31i41NDQ0CgIr5QX5RoLJUkSTpb4Px2GwvZKI2g3nL8N1TlkiULnGgbhYk3ogyI8JR/Isud1w2WW4NFdIsstw8gwzdx/BZIk8QAkfWaLcIqpJ0zEaGtSus94GJYgnEjHEyzyyFODH4mW4QGXJGzpsqmQJcH1LVjKFWLwjz1JEZCPBEWSJl+E8QgZBrCO+MpyyX9+6eRnOpywpZThHK0saGhq9D64shZIl9/Mzo8twfQAhVxfmOPwi6DDA9pQCf2y7XNZSgiLlzQKOEfUuqrakQDlcWRJt4o6tepZI7nSUMpyqLKllOErgzl2GS3nG6FLfuJOUl1tENWk6RkND18tw0UQcV838F/788duoHjm8S/sg8pMojaOkLFhZKisTZvWg7j07LfxEANDSIraJGAyZVAbxmGfY9nmG6LyaimdJKEsZy68sSZ4lU5BfP/x30XH8rbcsD7KkVSYNDY1CIuMp9qFkybufvK89BU2WioLgKwpjkrLEDJGB5FNmZGVJKcM5sqqUfYyoFEpJF2tKew4vwwnPkpytk/GV4ZjDeDccGZNJDg0jS0nPME3dX/z+VrcVn8p/gix1TVkyTRO/e/5JDBgxHLGSOA487Zdd2k+rZ9guKYkhXuqSIn+JsaxMEL/WlgCyRN1wJpnAZbLkSsxx73xkleHsYIM3KW803JhINiCIdkQiv37Irf/yNlklxrDoAGUzzZY0NDQKh3QqN1mi7m0rpctwGzzUa4v6bZ1EJAfiwuq/aMlhhX7PEicvAceNBIRSkhlY9iDZlq0ETBJTV5SlFCkk4nn4u+EEWQouw1EOUdxPlryQRzMSEXPYANTVNQfupyNc+NR0DNxkBP956z1369J+SFkqKYmJydY+slReLpSloG64DJXhDPGnJ+a3MWQyacS88yaPqpGP5SpLXuo2GDeLi5wlaZQJqXw+P5kMvxokErwzvu3k96qkbubYl4aGhkZPgjxL/s5vApGoTEorSxs+cpThkrb7kqRtgxOZbGUpOJQyIytLAQbcSICylO1Zci+oBleJHJhemSeoG04pw0lqFCB5lvzeFw9tXKlRW0DbW1xlyTBNDBxYye+vq+u8snTmtFuxybZbAwBWf78UABTi1BlQm38sFkWJZ/D2q2ZyGnlgKGVGLcPJIM9SnAyKlt+z5P4ciURyl+HkwElSlry/dEVZ6qAbzh8doJAlpSMz66loaGhoFATULW1GcpOldLsmS30ALOBf7sVo1qpy/HdVOWrao9wz4h97EaYsKWQp4Hj03rIheZa8C2JGKsM5tq3EAJCsKStEpHqIMpwDE4JgAUIODZv+TKGNpKQQks2ugmSYJqqr3RZ9xlgg+ciFeCKBbfbdCwAw/823cdevzvYGA0ew1Z67dmpfgDBjx2IRxBLBfiwaghs64oWkYYXXeq+PwZBOpRAjz1LG51ni51UiS5KyRLlVcuCkP2fJCfAaZStL/giC7A2D9iM/Fw0NDY1CgDxLsjovg5OlgG7k7kCTpWLDV4araY/h03WlAAxeTvGXsayAhGYAkC0uQa3dQcqS5SkdlkR+mK16lkjuDFKW+DqYwx9jS94a9+cQsuQpS36y1NbUzNfSr3951uPyxdZ77+E+H8bw0EVXoq2xiZf4dj/6yE7vj3KeotEIYokQZckXsOmHFaAs0WmNGECmPcnPRzqsDBcR3XARU3QLEoG1pVBK/lqYKpEFwFmOE+ZZ8nfjhZElzY80NDR6Cel290sr+T794F8etcF7w0fYt2+/N8mh3JycypKUfaSU4bL3b0o5S3R99CtL1A0nRwdEArrhUj7PEpOG79L6RBkumCxRtxgpKYT2xib+7+r+FXwdncVWu+/irrVVdNH98NVCAMAWu+zc6f01NkpkKWSyNXXDhREInv0hkyVJWbLSGUS985HJUpa8Mlw04vMseWTJI7CORLJsrix5PyvvpeAyXH7dcMGvqSZOGhoahQSV18JicujLfaqtZ3P5NFkqMtRv6+oFiMopju8KlAlRljIseKAp/ZsGpSoGb/IsZSTPkm0pxMcwPbLU6TKclywdMqOHDNNRXxJra0Mj3/fAwf2znk++GOl5lRprV/P7Ppv5JgCg35BBYghwnmjylKVIxETUG/LrZJGlkpzrpYwQA7KyRK+PW48n8kgmer6dna0sud1was5SrjKcHZD+nlWGoyRwf4K3HIYqE3bFBqXZkoaGRuFAilE4WXLv156lPoB8lSUqp2QrSzJZknOWckcH8DKZ9CtSIYSK4SlLUhkuwsediOOmfBdyJs+T89ZHYZZZ3hcP5AGK+Ix6bc1CWRowdIC7j5COulwYuMlIAEDN4u/5fR+/PAOMMRimiR0PPahT+6PoAtM0uLJk+UpliQQNDw5+jTNeJ4dc+eLdg6YDx7JETohv34yf1wgvnZmGXIbLNnjbvNPO+zngPPpXSmqU7T++TIp0KKWGhkYRwBWjMLLkeZnSG6uyVF1djcceewyNjY2or6/HAw88gPLy3H6WWbNmgTGm3O69915lm1GjRuHll19Ga2sramtrccstt4TGqPcYQq4u/rZuIjL+C5xs/JV/J5fhgpUlb78IUJaUMpxk8LYZlzVVZSk7XVqoUb7oACu4G66l1X0z+5UlK5nma64e2F9ZX2dQXu0+9vt5nyv7bqmrBwCM/+mPO7W/+nqXLBmGwQM3/apZR8qSHZAq6y+V0eDglN8XJpMl8ixJZIl8ZLYyJFc9VlAnZda4k1DPUnD5F1pZ0tDQ6CXQhIcwCGWpZ8lS8Nje9RCPP/44hg8fjokTJyIWi2H69Om47777cPLJJ+d83H333Ydrr72W/9wmnWjTNPHKK6+gpqYGe+21F4YPH45HHnkEmUwGV111VcGei9INF5KKDIhySr7dcB0ZvEnOcBg4KyfDcUYqw9m2zQMmLdvm5TQW4FkS63D4Y3hnXYS6uoLLcC3NXgtoiFEPAPpVu9EB/oDGjlBe3Z8bzBf+7wPld0s++wI7HLQfRu+4faf2KUcXkB/L7+uhocBhHisKVJPhH0lC5NFvorcVZcklVKbBOPHlBu9MdhlO7KNjg7cd0g2nRgfIpCt4Gw0NDY2eRqYDzxIh2dqz47E2CGVpm222weGHH44zzzwTH374Id577z2cf/75OOmkkzB8eO7RFW1tbaitreW35mYRbHjooYdiu+22wy9/+Ut89tlneO2113DNNdfgvPPOQywWy7HX7kG5noSUNgChQvgvWmEGb9mzFHQQUYYTjhmbl+F83XC0f9tBzFNRUhJTT/rLcEzkQMsXdfkYfpAHKMg7ROeioqpcWV++2HafCe76HQdrlixVfjf35RkAXEIVTySyHhsGKsMZhsEVJH9KLEUHhM3DE22v4rWyfcNuqSyZ1XEYoCyZyFaWLEusye6CssQ9S35FMMyzhCBirqGhodHzSEoNO/GystDtUq0bYRluwoQJqK+vx9y5c/l9b7zxBhzHwR577JHzsSeffDLWrFmD+fPn46abbkKpFyZI+50/fz5WrxYG4JkzZ6Jfv37Yfvtw1SEej6OyslK5dQoh09v9F1i6WPnVgYwyzkJWlsLKcOrh3d35cpaU0p6IDrAdxkd7JL2wSEB0XhmGAdM0lXlytqcCUTkz66LrgTxLQd8QqBRUXlnmra9zZGmLXX/krrk5+9vFl2++4wVvGtj1qMPz3ufatYJol5V6I0l8qhmNbglTlqyMIDJRL6vJIs+ST1lKJX3qnXceTdNUPEtcWaJBuhLJsrN8cB13w3HPUo4E7/DoAM2WNDQ0Cgf5SzvN6CREE3H+ebhRkqVhw4YphAZwL+h1dXUYNmxY6OOeeOIJ/PKXv8SBBx6IKVOm4Fe/+hUee+wxZb+1tbXKY+jnXPudPHkympqa+G3FihWdej4MwdJSlrIU4lmSf7ZDDN5BniWCI0UH0AVRLsM5liV5lhze+dXeJMiCrCwlEnEwRyrd8TKc16WVDg6TJGUpSE2lzsDycvePwa+ydIQRY7cEANSvqgnYt4PW+gYAwOgdx+W9z6TkpSor88iS77klPGUpzJCekTo04iUJb1uVLJHSlk77u+G81ygiogMipiBLdI5kImPGVeVMJp0dKUuOfzadTJZCynBdiXjQ0NDQyBdp6Ut7olxVlhJlwsecbOnaeKwwFJUsTZkyJcuA7b+NHTu2y/u///778frrr+OLL77AE088gVNOOQX/93//hy222KLb666qquK3kSNHdm4HislD+meWZ8m9EFu+C698wVNM1zJZcnKQJfkYaSJLtE8DtmXxcSeWZXMzc1tjI3+crHrE41FXWaJ9Shd1IDw6oKHBG2sSwJZI8SIPkN8j1REGjHDLs6u++Tbw92TyHjiqk6+dh1JPQcr4ynCJRO4ynCURIDqv2cqSeyb9ieU2T1k3RXQAJLIknSN6zUuHqqNd5NgJeu9lKUt5RQcEj9zRZTgNDY1CwnEc/pkT95GlEulnuVzXEyiqwXvq1Kl46KGHcm7z3XffoaamBkOGDFHuj0QiGDBgAGpqspWDMMyZMwcAsOWWW/L97r777so2Q4cOBYCc+02n00iHqCX5IMwQ60/qdnh3U7hnSVaWLEWwylWGk/wyWZ4lKIN0bcdB1CMGlH8EqEpPIhFzO+i83ZIZmxSSMM9SY6P4hlBVVcaVJkCU7kq8cldnyVJplVsa/e6TzwJ/X7+yBsO3GoN+QwZ3ar+OwxCJGEjEI0hBDHUkUHRAmCE9LaXKxhKe74k8S6aqLKVSYZ4lqQxnZnuWZBgV1QDEuZM7KYWy5E/w9pSlrOiAjpUlbfDW0NDoLfg9p4lKMR4rrAu7qygqWVq7di3Wrl3b4XazZ89GdXU1xo8fj08++QQAcNBBB8E0TU6A8sHOO+8MAFi1ahXf71VXXYXBgwdjzZo1AICJEyeisbERX331VSefTScQ4vD2K0s8SdnXwi0rS52JDuD7ZciKDlDVKksZXULdcKTGAKrqUVIS86IDmLIv3g0XQiwbGgQ56te/PJAsJbw8IxqNkg+qRw7nx17wzvuB26xesgzb7b83yvr1y3u/AOVOmSiJe1lIvvlDJXEa8RJMluQ/4CilgGeV4dyTn60seYTWNDnBkRsJg8hSxoxDJkvpgDKcf6VEwP3J6zKZZyGeJU2WNDQ0Cg4GwABKfAZv/889iQ3Cs7Rw4ULMmDED999/P3bbbTfstddeuPvuu/HUU09x4jNixAgsWLAAu+22GwBgiy22wNVXX43x48dj9OjROPLII/HII4/g7bffxvz58wEAr7/+Or766is8+uij2HHHHXHooYfixhtvxLRp07qlHHWEMCKjmmbF/VkmXbkTKawM15Fnif6dFUrplsCESmRzpaNlXR3fRr4wx+NRzzDtPYb8T5QsHZAtBABtbUmRp+SbAUfG6bhHSmg0Sj7Ydp89AbjkomlNMBlf9fUid/+l+XfDAeLcl3ilskxKXVdJSW7PEiBej5jnBctwsuT+ns63v+PQkctwpCwBWdEByrF8sQDKNiGeJVp7VuRDiArq5HivaWhoaPQ0+GdoqTqLs4Q+zwvwObRBkCXA7WpbuHAh3nzzTbz66qt49913cfbZZ/Pfx2IxbLPNNijzmGU6ncYhhxyC119/HQsXLsTUqVPxz3/+E0ceKQaoOo6DI444ArZtY/bs2XjsscfwyCOPKLlMhUCYxyPM52Jbfs9ScCil6lkKzmIC1PEUpPrIioNj2Xw2nG073IHdJJEluW5cUhJzCRbt0/KRpUzHxLOqSiVLtreuuDf6gzrn8sHmP9oZgGpI92Pp/K/4GnO1n/pB5bU4kSWf+lNSEvW26zhEMxr3SnY8OkBVltrb/cpShq9ZLsMRSfWX7QD1tQZEFyMgQiZDPUs+GdvJy7OkyZKGhkZhQZ9dJQm1G67EC6ouxOfQBhNKWV9fnzOAcunSpYpRePny5TjggAM63O+yZcvw05/+tCeW2AkodQvxz5CBs/4Lr/yz6lnKU1lS9uUpS3K7uSXKcHLad9PqYJWmxOdZykgKCBCuLNHaDMNAVZX6pifjNJESCrDMB8O2cg38dctXhm6zZslSfuxNx22Hbz/8OK990/nywsmVNlZARAfkQ5ZIWQojSykfEXOkMpyjlOHIsySdZ8YC2wxlos2Tun3bcLKUw7Nka7Kk4IorrsCf//xn3H777bj44ouLvRwNjT4NbvAuUysDcS9KoBCfQxuMstSXENap5jd4E3J1w6meJfkYwSU9wGfw9i6wdAzDMNwEb9rWjPJ9tEqeJRnxWNQjS14HHZnFaWZZQGo1X4t3Lvr185XhPLIU9eIHZDN4R6ge5pr0V3iltjBQl94m2+ffcUlkI+rVzDJJlcTFPBblnxmnwHs9KAWcjPmmZ/Amcpr05SxZEglVc5bc38smeHrF/cpSKqBjzm/wJiXT71lS3lPKfEIW+O+NBbvuuit+/etf47PPgpsJNDQ0ehZ0DY2V+MiSl6Po9//2BDRZKgJYiLLkOHkqS3I3nPdvxpjiT8lNlsS/7QBlyZT8R4YpxMewMmFJScz1LHk/ZzKCeAG5lSW6uFZUqG966hojUtLYlH8baKLCJV6LP/4k53YUsjlszOZ575u8WjHvL8c/2TrOy3A5PEve/6MJ1bNECd503tp8pnYnk60syeKR0jHoveaGo5K2IIO3n97wxoIuKEsbG1kqLy/H448/jrPOOgv19cFfJjQ0NHoWdH3L9iy5ZCnsWtUdaLJUDOQTHZBDccqksz1L2fEA4RcweQQGXRBlw7ZhMJi0yKirfgQxdTpELBaBY1m8mysjXdSB7PZ6ZZ3efrPKcESWvHcoDbHtCIM3G+11izEsePeDnNs2ex6sgaM2yWvfgCAkUSqV+SZbx71uuJyJ435lyXs56fwRAQrvhjMkZUmwpXTAMdP169SfZc8Sdb2FGbwt9fhMNnVLfiYn+G27UWDatGl45ZVX8Oabb3a4bbeT/zU0NAAIYcEfHUBxLCxHg01XoclSERCm+ij3S9v7lSX5Wz0vmfjJTA6Dt1x2IYO3fHE3DIeTFAs0siRI9ZIM3tKIFPLO8C6tZDhZogtzeYVKllLtKlmqW5dfGusm223trowxJHMYvAGgwUv37kzWEoVx0rrSfrIUI7IU7lmi11yEUrr3RzpQlrjB21DLcP61AaKTbd1iNZQznepYWSLl0vFFEYSFUjoseFZhX8eJJ56I8ePHY/LkyXlt393kfw0NDRdEhmi6BCHmkaewKk13oMlSEaCUxUKC/uQrmJ8syeoAESd/vICj+KLU48t7491w0j4jYKiKu1vV1Lu/D5rvRvuNx2NukCUZvDlRIM9SeDccPbfyct9YDs84HemksjRk883c/eZQswirl/4AACjrV5XXvgGg3VN7KEAy1aZ6qaIeWco1nkVEB7hkKeOooZT8WL5uONkLxgfpSuNO5DLcwxf/Hq9Nux+rF6m+raT8WhBZ8vEbIsZ+4qN2w8mZSxufwXuTTTbBHXfcgZNPPhmpPN5rQA8k/2toaAAQ18qYjyxRFEyY/7c70GSpCMgnZ0lmS37/i2Lq5m3e4WbcrIseyz62fHE3DaBfzH3MD3UeWQoYWcIv+rEIHEeMO0lLc+YAwEqHX0yIWPk9S6k216NEHWJr1jSF7kPGoE3dkpo89DcMK792VRf/MMZcSHoEhlQgWich5kUdZHKlx3rnLRKlMpyh7JPQ6suWsnnKugmHuWdbLsPJuUwL352N//ztH9lEWzZ4OxQdoBIc2ROnvldDlKWN0OC9yy67YOjQofjkk0+QyWSQyWRwwAEH4IILLkAmk+GdoDLS6TSam5uVm4aGRudBZIjUeQJ9AQ0b3t4dbDDRAX0KIWSJhZhmc0YHcH+Jjyyx4AseoHbDEWSytMmwKsQj7mNWNjroj9wdbfGSmDt8lzxLtC+aWdYe/lhad1mZ+g0h2doOgPFy17p1+ZGl/l4nnDyaJQw/zP/SXaZpIp5IKKNIwtDmPReuLPkmW8fyUZZISSrJLsNFo1GuFIXmLBmSZ0mqw6WS2YQ243tfyFlM5GvL8rSFmNNlBUkm52Fhqn0Zb775JsaNU4cwT58+HQsXLsTNN9+8UZUjNTR6GzR5gsgRgZQmJ4/ols5Ck6UiIMyn5G/VJvjToJUynPem8BuKlYTlHKGUQfvcYaw7hLY1Y8AscVUXf4u8/DxK4lG0S9lM/rXkKonRtmWl6ps+1dLKO84AoLa2IXQfMqoGDQCA0ORuGbXfLeFZS6N22A6LP8rdPQcItYdIXLLVV4bzRsOkc8yyo/MWoZgBIksmQ1mZOA/tPpJJMQ8wDJ6V1dG4EyvjJ0vSukhZ8g9wDnkfqmU4uRS88SlLLS0t+PLLL5X7WltbsW7duqz7NTQ0ehbUYJLlWfJ+LoSypMtwRQAL8RM5IeWPXAbvdk9NSCYzOcp7PoN3wJrkC+HWY1zDc2MmwhNRU21BZMn9fzQW9brh3J/9F+10DrJESodfWWpvaUHMpBwghrq6/EoWpVWu/6huxaq8tqfy4qjttslr+9YWjyx5KlqqxU+WvCG4OZUlT0KOeZ4l7zxGDLUc2dLiK8NJypIdMBvO3z0HqKGlgPBcAeJ9kTXAOaTerxB7Sxu8NTQ0igMSCcgjSuDzNgNsI92FJktFgFwig3KhydfgLX6+9S//wtKlq/GXv/xTPUaIZ8m9PmaX4dx1uQfddJNqAEBT2kRJuTsKJNWa7QHiKarxCGxpREoq5Xo28umGo5JdwpeXkWxu5mSpMyD/0VrPvN0RyNs0dMst8tq+tdV9LrS2ZKvqWeLKUh4Gb64sScSnVDoPbW3hBm86M3JqfbCypN4nl+roPeIPPQ3LiHKUfC878P6NpQwXhAMPPFCnd2to9AJIOfJ7lmiElFaW+gpk1SekG06+6Ph9JzJ5+uKLpdh8szNw5x0vKduEXcAUkSnkujZ0kJv/0piO8ETUIMM0KRPxuDruJJ22EJXyL9Lt4XPdqDsrkYgp97c3CbLUmdJOxMsuqln8fV7bt3ip5AM3GZHX9s3NnvHcZGCMKXlDgCBLqRxlOIcrS57B2xEG71KvHMkY46NVCLYU7un3nTHGAlUd/3tHVp+ItNu+sltYGU4xeFtiLbZCojZesqShodE7IOWIPu8JRJ60stRHoFz85U4i5Ru+VIbL+JWljt8IyoXNCSFLIWypf5VLdBrTJuJeyFd7QOcO74aLRmBblkSWMvxxQLDfiUBKRyKhfkNob2pB3CNLfs9WGKoGD+JKy4qF3+T1mHrKWho6JK/tm7yBvtFgcQ4RL+vAP9dNBik6wrNEyhLLilCQQdlJssG7I/jfO3LHHL3f/IRPUTJDGhAUg3cIydfQ0NAoBKgzOOojSxHP2pBrakRXoclSEZBPO7Y6WiK/MolyDDukDCePRAm5rsW99vfGTIQz9fbGHGQpHnXJkke+0mkL8dIyvl06FU6W6OJNA2gJrY1NvOMsTOnwY+Q2W/F1Na9d18HWLtYsWQYAKO/fL6/tmxpdZSlmssATyMlSjjIczwjxJmZnWLayFAQ7I4VS5slJ/OGY7VLQJb1+/m3k95d8GIV0y8Qp5L2moaGhUQhYYcoSfQFNh39Z7So0WSoCwhK8w8ad+EspufwwYl/BOTgsD2WJ1JmmtCBLrY3Zrfi031g0AjuTEQNd0xZi0kXfyqGy0MXbT5baGhu5skSz5joC+Y46861i1bffucfPM2upqUktw/lBZMk/BFcGxTCUVlYAACihyjSE0T1o3/x5GcEdjUHwE22lDEeeJd/5UpUl8U8nxOBt5+i81NDQ0OhpiDKcavCOaLLUt6BGB8hkKXsUBZBt0g399q5c2EJCA5XwcP8YFHW75ozJ33ytAUNCOVmKRWFnpG64VIa3cHZUlqHuLJqpxu9vbOKeJT9ZDMOQ0aPc4+fwSPnxw/yvAIispY7Q0OB6tzokS+3hf6w0fJcG/ooynChHBp02Sxojw7I8S8HH8p87ObuJyFKu2An5TSWTfNlAqZi9tbKkoaFRYBAZikT9ZMn90p3RZbi+AVVZkv4dYsqWyyS5yUewSqX8O881NmdMMBgwI25JrrkumyzR2mPxqDcbzusQS6a5MbwjtHsdXzHfNwTHcbiylErnt+r+w918qLbG/AIsAWDVosU8a2mTcdt2uH19gzt2JWoEt9hTcnNQGz8h7XXQJbxYBstL4zY6UpYyooQWMNY48Fh+z5IcHUCEh+bw8ceEkFO19Jad9eXer5UlDQ2NwoK+OGYpS971KpdPtqvQZKkICFOW5G/r8v05J9jL+5X/LasACjmTPUt+ZUn8uzHtvumoJBfkAaILYzRqws5Y/M2USllZyaphaPUSsGlMiIy46a47nYdHCwCqBg8MXWsukFkwn6yl+jqXLMVMBtvKJkSUqJ3M0Q2X9EakxL3Sny0NxS0vDydL8ow9f7UrVFnyvXfaWgXh+u9DT6B5XR3m/PMF9TFWMDlX3lPSfmVPmT/gUkNDQ6OnQcoSfZknmJ7SZOWYR9pV6ATvIiDUs+QEe5by7QYLG8rLwrrhcpThGtMqj25aXRdwOLkM18K74VLpDGIl5Vn7DEIrV5aCyJKnVOWpLJVX9wcANNSszmt7QrK1FRXx/hiWR9bSOi8c0zQAlgkiS+55848qUY7nxTBQx6DNxLnuX+35mAK8P3IdPig6IAh+siSngs977Q3Me+0NjNp0MIAzxXEyIZ4ludwmq0nS9v6BzhoaGho9DfriGImoFMb0olsyOZqKugqtLBUBoeNOQr7R+7uV8oEToiwpbpQc17WmjEpemtatCT1GPBaBJc2GS6UyiFF0QAdkqcVrxY9EcpClPA3eVNZasyy/QEpCmzdHrv/woR1uWy8liUfsbPWIlCW568yP9iZ3HxTVb0lkqbp/DrIkK0u+34WdZj/RbgsgcZl0eHRAqLIk5SzJ5Ep7ljQ0NAoNoSypFMY0vVDgdk2W+gTClaXukaWwoby24oVSHhD6eFlZYowFdrTRBT0SjaBlXR0PJUilMryLrkNliWatRbPfilSGS1n5qRUUdb/6uyV5bU+gYMrKgQM63rYlyU+bYWcTIipbtuUYHtzmdRbyc2RIZIkrS9mkw1JCKdXfhStL4dEBBH93pWoKl9+fcslYzlyShvPmq4JqaGhodBHUUZxVhvN+TueYGtFVaLJUBITFBcgXIJlQ5etZkqEkeOfdDSf+3ZSOhG7H1+sdIxaNoGFVrSjDJTPcs9QRWWppIWUp+63IR4rk8fTjiQQvga1YuKjjB0hoqHXLdmX98staIg9zNEBZoviEZHu4Z6nVU7J4oFokAnq5+vVzfUwdleEAQ3m9ws5z2vfe8c+bA3LPHlSOYcukSPxbfn/q6AANDY1CgwzcRhZZMpXf9yQ0WSoCwrre5BESqrIkRwrk2G+I/ylMWcoVHdCYEW8Np4Mp9LFYBA01giw5kRgipJp0cPFsanLJEhEdGfGIV9bLgyyN2FYEUq5ZsrTjB0ioX+kO3U2Ul3WwpQsiSxEnW23jylLA4GECKVlUXzdNkw/Grax01xA4usRnWlRLqiHKUlp97YK69PzKkupZClaWHGkbOdrCP7hXQ0NDo6fBlSXfdcPwVPpUW/7xMflCk6UiQOkYUhK8ncBt7JDcm+wdi38qbd5Zg3S9zUPIEmMMrRlhIHbCWsmlMly6WbTrl/avRrwk4e0r98WTZq2R10dGZ5Sl4Vtu6a4pz7RvGWu8obuxREkHW7qgXKRoAFkitOXwLLWsc83y9IdumCYnYBWVrrIUlNLuD1rLR1lSiXaI+uQvw8lRFUochdQBJ5XeMkrmkiZLGhoahUXGszkYfrLkXUe0Z6mPILQMFxJK6S+l5NiztN+QUEp1IQj60b14CvJihQwllMtw8iDcRPUARLzpzx0qS57BmxQZGTxnye54DtrgzTd1196FP5LaxUvcNQSoW0EgHhNlOUptreHr4JlV3nOWlSWaDRekLPlnuCkjBkPOcz6jYvzHCp0Np3iWJIN3WpfhNDQ0eg/0OW/4vmTTZ3haK0t9A6qROySUUs5ZSgd7SPxQ5smFfNtX1Qj1IkmPb2xsVe63UsEqCe03EjEVslTav78wL3dQlmlsaA39Xcx7d6acjt+mAzcZAQBINrd0uK0fNYsWA3AJ22AvBTwXaJZb1FHJUjQa5aQvV3RA0+q1/HiJigpFWaJQyrBgSIVoS4Q2jKT4O93CkE8IqpLULRF4OS1XK0saGhqFBvcs+b5k08+ptvDrSlehyVIRoI44kYP+JM9SVwzeShkuuIynVgCDy3A1NQ3K/ZkQskSKRDQaUWa7JfpXI8aVpQ7IkjeY1jCMrJEnNEg35WTHCvjRb8hgAMIP1Bmkk0m+zqF5ZC1lvDJcHCqhqagQ41JyKUtUhgOAfkMGeWTJ3ScN0s2HdLA8lKX809/lxwQrnDKZV8pwUgCnjg7Q0NAoNFJJryIRUg1IecG/PQlNlooARU0KMWXL26Tz8J34f6d0LimeJRa4vfzz99/XKFfisNKW7dWjorEIn2kGAGX9+3ODd0cXT1nFqqpSDdaUJpBhHb9NKwZUAwAaVmfnQeUDKjUO3XyzDrflZMlUn9smm7gJ4oyxLMIpw3Ecfq4rBw2CYRpcWSLSGaYsyVBTIILPs+xHypMrqUSNyfdLPjhJTUqn5REqmixpaGgUFtyzhGCLRqpVl+H6BEKN3Jlgn1FXSim2EkkQYvD2ERkqHc39+FvlQpxqDWbpllSG44oIA8oHVPO2+I4M1w0NYt+UMUSIUhRBHspSaWUlAKBuxcoOtw0C1bgHbjK8w20FWVKf28iRA/m/OyKJdO4rB1XDMAzY3j4FWeqYdOTlWQoJmMwFVVmS36vB2UpprSxpaGj0IrhyJHGlaCLOy3DJVl2G6xNQQill1ccJzlnK/4IXbPBWvCY5OqgmnXIbHnt0Fm666VlFUQh74xHpk8twDgPKqqoQzbMMZ1kWX0dVP6EsmaYJil7KGB2TJepk62wgJaG92U3V7jcsd4q3aZpIc7Kknr8RI9xQy3xKaPT6VFRXwzCEZ4lKkXYYyVSUQWl/oWW4zpuvldJdSBBlpj3JX7eUlGmiPUsaGhqFRlA0QKKsXPy+pefJkp4NVwSEld5k02yYZynvnCUr+CKZS1l67bW5eO21ufRbfn+YaZo6raIRmSwZSFRWILLW/Tn0oh8AuQw3aFAV/3eaxYI25zBNkye31iz6Lu/jyWheV49Bm45C5cCBOberHDyIRweU+DjckKH9AeTnMbMzFqLxOMqr+3tlOM80TrONQlLbGRNfpuS3Qpiio5bhuulZko6RTibx1dvvIRKLItEgRsBYmixpaGgUGJl20UVtRqNwLAullaIykQyphnQHWlkqApyQKe1h96fT+SlLYcZxSzF4B1/8svYlHaetqTlwG0cqwxFZYgxIVJQj4pXhWF6t6+6x+vcT3wwGDa7i+7PN3MrS4M02hWEYYIxh5dedS+8mNK1xO9TKq3OnePeTyFJpQv2uMWRIfwBAKo8UTfJIlfWrdMtwFHTpyWlW6IgbmfgKDTpM0Umng71rWXsNG6+jEHB1Tf84/3Lcf87FyngUPe5EQ0Oj0JDJULzMzaaLe6HCjLGsmJWewAZDlqqrq/HYY4+hsbER9fX1eOCBB1BeXh66/ejRo8EYC7wdd9xxfLug35944okFfS4shLBYVvCFzR8amGPP/F+KGVe+mEnXMidPpYFmmflBvppI1ETcK7s5cEePRGMukcgnJJIu1BTICABDBrukJeMAkWhuZWn41lvy/aS7GHNfv7IGgBjGG4aqIYNg8c41NcRy4EDXNxWUku0HxTGUVrmkkJQlIkth6hTrZBku3YUMpLCGArlMLENJ8O5CKKiGhoZGZyCX4UpK3etGSVl+Exi6ig2mDPf4449j+PDhmDhxImKxGKZPn4777rsPJ598cuD2P/zwA4YNG6bcd/bZZ+Pyyy/HjBkzlPtPPfVUvPbaa/znhoaGHl+/jDBvEgtVlvLshnOCy3CKsqReYcP3JW3XUt8QuA2V4SKRCEpKPHLEDMQSJYhEPe9NHl1dtu0gGo2gUmq9HzDAJR4Zx+D7CsOQzUe760l1TFLCsHbZcgAdp3hXDKjmBu9SqQMQAAYOcGXgXLEBBBr0WFpZAcMwsgbjhpfhggNGw1Qj2Siey08kvy2UXC+Z2Ic8Xl6rrUMpNTQ0Coy0FA2QKC9DI6RxVfm2/XYSGwRZ2mabbXD44Ydj1113xdy5rqfm/PPPx6uvvorLLrsMq1atynqM4ziora1V7jvmmGPwzDPPoNVnWG5oaMjatpAILZeFmHFlxSknWQpL8JY74+Rj57qwScdpDckuEqGUBo8OcBgQicUQ6YSyRBf6SsmzRCpNhhl8hloYKJAyrGsvH9Qsdr1O/inWflQMrOYJ3vES9c+nX39XlWoNGFbrR9qruScqygFDeJaomyM0tT1EWQojQlaIdy0X1EG6cldl8JpkFUxHB2hoaPQGGGMwDIMrSnFPYcrXm9lZbBBluAkTJqC+vp4TJQB444034DgO9thjj7z2MX78ePzoRz/Cgw8+mPW7adOmYc2aNZgzZw5OO+20DvcVj8dRWVmp3DqDsNwjefaW3Kadd1ZOSOeSFUKWWEhZxX+cZilEUQZ16UUiEd7F5Xg/U+ksH2WJ1I+KcklZIrJkGzA78Cz19zrYwsqF+WDVNyLFu3pkeHxARf9qnuAtB3ECQFWVS5YamzombUTs6A/dzzE6W4bLrRqxvLcBwpXMMPVK9izpQboaGhq9iVipe90g79JGTZaGDRuG1atXK/fZto26urqsUlsYzjjjDHz11VeYPXu2cv8111yDE044ARMnTsQ///lP3HPPPTj//PNz7mvy5MloamritxUrVnTq+TBF9QnOrvGXPOQht6H7VcadSCMoZM9SyBT5gJ3xfzatXRe4CZmQTdNAXOqGg2EIZSkPox2RLjkBm8zeGcfImv/jR+VAt2U/jNTlg2RLCz9/w3OkeJf2q+QGb/JpEWj9uUa4iOO529C3IdmsDajZRTIUsqR41DomKXmX4ZSuzHCDN0E2o+dDjjU0NDS6De9Dq8QjSeRd6iiupqsoKlmaMmVKqAmbbmPHju32cRKJBH7xi18Eqko33ngj3n//fcybNw+33HILbrnlFlx++eUdrruqqorfRo4c2an1OGE5S4oRO/gF79JsOCf4oppvN1yjN8vMD3k23DHH7AkAaM2YfOaZu47wYbMEIktlZYIsUUkrw4wOB9yW9XfN4A013Sul0riZIZuNDj9WVZVEllTFi+a6rasL7h6UQblOsYT7nG3f65oO8yyFxEDkR5ZyEZkQZSkkB0yGTK7ySR7X0NDQ6C7oGkWfofyLZ4HIUlE9S1OnTsVDDz2Uc5vvvvsONTU1GDJkiHJ/JBLBgAEDUFNT0+FxjjvuOJSVleGRRx7pcNs5c+bg2muvRTweV8Y4yEin06G/ywdhoZR2SDec8ticBu9g4mUpZZLORQcwxpAMiQ6g8kssFsWBB+4IAPiy3iUMlHmRj9JABmEiGwBQ5XXGpe3cqhIgSlnrlnctvZuQam9HNB7HgFHh5DdRUQ7LO4VRn/GcUszXrW3q8FjtTUSWSrzoAPV5ysNpZYR3wxVIWZLVq5DXUhu8NTQ0ehv0WRj3ynDUnBPWiNJdFJUsrV27FmvXBqsWMmbPno3q6mqMHz8en3zyCQDgoIMOgmmamDNnToePP+OMM/Diiy/mdaydd94ZdXV13SJDHcEJK8Mp3XAdd0Pl+p1MlpQynCRh5DRf075yXPvIkL7JJoNgmgYcx8HC+ihgCpZv5xHQmPaIQVm5RJY8s7fFDBiGgWgiDiukJT9a4pKU1d8v7fBYuZBsbkF5v34YMDw8xbukvJx3w0WjquJFvq3Vqzv2TrU2uNvESsSYGGUtIVlNLMTvlo+xOn/PUsfdmjLSWlnS0NDoZZDKTtca8iyFKeDdxQbhWVq4cCFmzJiB+++/H7vtthv22msv3H333Xjqqad4J9yIESOwYMEC7Lbbbspjx4wZg/322w8PPPBA1n6POOIInHHGGdh+++0xZswYnHPOOfj973+Pu+66q6DPJyxnyZHUhLBwv7w9S7acfdNxQGXYvnK98Whfpucp+ujDRUhnvBEonp+HSlu5QGUfuRW/wqcslVVWZT8Q6jygVd8u7vBYudBa1wDATekOQ0lZKR93EvV16cU8n1ZtbUPHx/LIEo9Y8HuWQrK1FEIsvXy5krPpIWFxBP79KuN1QpRPGXLUgA6l1NDQ6A1Qpy4pSrES9/+F+gzaIMgSAJx88slYuHAh3nzzTbz66qt49913cfbZZ/Pfx2IxbLPNNijzBVOdfvrpWL58OV5//fWsfWYyGZx33nmYPXs25s2bh1//+te45JJLcMMNNxT0uYS19Stdcl0hSyGjU5QynOJZ6vjimUt9UmaIMYYrrpgOy1PkyGcUdoGVkfLMzIlSQZbKvZKcx71Q3j84WXvYmC14evea77qnLDV6RvbyfuEp3rFEAu2W+9woQJJAP69cGWyIl9HixTHw8+R7uVMhKppawhX35y53Ujdcft2PaZm0h8RcyNCeJQ0Njd4GfR7FPc8SV+kLkN4NbCA5SwBQX18fGkAJAEuXLuUKg4yrrroKV111VeBjZs6ciZkzZ/bYGvOFavCWvEVS6c9PZChTIh81CFCVJTmY0LIdPlwsV22Xt5vnKKPJF+g1a5rwzjtf4sBUigctuo/vWFkisiQrS1SS42nZ/YKVpWFbjnHX6zjdNvbVr3A9T4nK8BTvWEkcbR5ZMgwDI0YMwMqVdTAlE/qKlR135VHnHj9PPmUpFdYNl1WGcx+Xi6TQ2yL3NnkYvO0QZSkT/F7r6zjnnHNw7rnnYrPNNgMAfPnll/jDH/6gBNxqaGgUBvTZlKUsFegL2wajLPUlyEQojPx0TVmSyJJiug1Occ6pNHiPsXJ4t+SL5N/ufRWAmqza0eMJRAzk3CIKuaSnUVYVnGU1ZLNR7nbe+JDuYO0PbgQEdVcEIRqPwWIicXvrrV0z+IgR1Zz4LP+hY29c8xp1myzPUjKMLMkGb+n1zoMohs+byzNnKcyzlA4u+fZ1LF++HFdeeSV22WUX7Lrrrnjrrbfw73//G9ttt12xl6ah0edBn0exuEqWCqUsabJUBDhW+Lf1MK8QXbNyKkshKoB8kZS/+efTDZdJhpOQ5uZ2b582brzxGQDZ057zUZba211CFUSWqPMsERL8OWCkm96dbOn+lOnV3y8BgJzjVUzvd+QR2nxz1ww+atRgAO55a8ojlLJxjVqq87+sYcqSUqpVUt7zeC1zkiV1W35/Pp6ljbQM9/LLL2PGjBn49ttvsWjRIlx99dVoaWnBnnvuWeylaWj0eXCy5ClL1OiTzzWnK9hgynB9CQ6TCUtnlaXw/SpKg/SGkS9gmTyynNx1ub/LNZj2T396FgcfvDPuvfdVPlajrVFtm7fyeOMmPbIkjw8h4kTX4dKK4NJYv6FDvON2Pb2bIKd4Vw4aiOaAME4ah5JO24hHTYwe7R5/+HA3GDPvYbVtbby0CnSxDKeQpXwiGsK/cYUplioB18pSGEzTxPHHH4/y8vKs4FtCPB5HSYno+Oxs8r+GhoYAfR5RMxFvKtrYPUt9CSyPUpj/wpRXgreiAgSbuq1Mxxc/+ThpabqzHw0NLRg//kLlvmyy1PEbt73dVa+o9V7+d9qrTyW83CY/KgdWAwCa1mQTm86ipa6eE5jhW40JJEtEbtra06goi2GTTQYCAIaPcMlS7uBHFTJZ8nMsUtuyHhNSws2nxJbJ07MkQxu8c2PcuHGYPXs2EokEWlpacMwxx2DBggWB206ePBnXX3997y5QQ6OPgj5ro94XkGi8sMqSLsMVAUqeUsgFKJsseffnoQYBKruWL2CWHWzezd6Xe8Bka8ejO2S0+IbuWnl4iVpb3W2o9d79t6fgeOQuUR6sLJVWucbv7qZ3E8jQPmSLzbJ+Fy8r4+SmudkttQ0b5pK1IYPdDjo5o6gjKK+X76VIhnTDOcpjJBKch8E73+gAdY1yXlfwh5D8nDc2Zenrr7/GzjvvjD322AP33nsvHn74YWy77baB23Y3+V9DQ0OARmnFPJIUiXk+11RhMhK1slQEqOpAZ5WlHPuVy3BS+7esKMhjNHLNbaMLOc0wyxfN61Q1xgpJopbR1kZkSeQWRbxyV8ojSyXlZdkPhJgLtO6Hzs3nC0MmmUQ0HsPgTTfJ+l2/IYP5v+vXNgKbDcZgjyQNHuL+P4zkBMG2LO6PsvJUlpyQnKxcqhFFB4TNm/PvS3mkfLwQX5Rchsu9jr6HTCaDxYvd8u0nn3yC3XbbDRdeeCHOOeecrG27m/yvoaEhQNWTCJXhvC/bWlnqQ1AueKFluBDFKYca5ChKg+RZkg3eeQYIfvzSq0i2tuHdJ54L3SYI/nJYPt1wrR5ZkkMeKbOo3bsQl5QFk6VozP1DqfXM2d1FsqUFANA/IMWbyBJjDGvXuB6p6gFueXCg9/8wkhME+Y86b2XJDlZxcuUsEYdOd8WzFBJHIUMmS7nKgRsDTNNUfEkaGhqFAX1+Rrmy5F4L8rnmdAVaWSoCwkIpAbhXNsMAC+mSy9uzlJFNt7Ky1PH8OQCYceffMePOv4f+PgwNq9RyWK5uOkKL11UnkyVKBW9vt4AYEC/LbuePl5XxUMdV33zb6bUGrqW+AdUjhqP/0CFZv6sa7PqSmOOgpsYtN9JYluoBrlm3tTXcEO+HlcoAnsfXP1ON1DY/VIO3+Hc+fqRMSCq4u6/g95esfIbll6gG742HLN10002YMWMGli1bhsrKSvziF7/AAQccgB//+MfFXpqGRp8HWU1InY94ypIuw/Uh5FKWKGbQ7/0QkQL5zoaTSiPSt335gplzNlwXUe8jS/mU4Vo8gkFqkhzw2NKWQrxKpLTKGDHWC6RkrMfKcHUrVmHU9tuictDArN+VD3D9SY5tY8UKV0Er80hcP480EfHLB5mUIFb+Cld7HsqSPOIkHz9SKmTenLxN9vHkMlzw462Q91pfx5AhQ/DII49g+PDhaGxsxOeff44f//jHeOONN4q9NA2NPg+hLLmKElk3eiJzLwiaLBUBcgZSaLktxLOUkywpXW/B0QHptMVf9EK0WNavXKX8nMlDEm32comIJA0YIBLAm1tSGIjgoMhhY7YA0LOkr2bx99gJQGlAW3elR5asjIWlS1cDEBEHlR5ZamjM3+OVbhdkya8sJcM8S06whyhX1yEvw+UgrmGeuHyiA+jxhmFsVAbvM888s9hL0NDYaEFfxKn8xjPwCqQsac9SESCTmqz5bESKLH8Zzv1/bs+S3Lkk+Uik46UlElUIZclKpxWVIpMjp4lA4ZakLJFpWv5dvDSbLA0eval3jJ77JrH8q4UARNCZjDJvZpydTmPxdzUAgGjUXXO5N56lob4l72OlpLRzf4UrrJznKJEQwcZ9P7iylEcZLvt+2QfXMbne2AzeGhoaxQEpS1SGM6OkLOVvhegMNFkqAuw8fCB+xSk/z5IcShlsuk0lZbJUGBVAJmH5SKJEiGi03+DBbhwAYwxN61xvUHl1/6zHVY8cDqDzHXu5sOzzL721GFkm7zJvPl06lcKib1aI7fpXoLTUJUtr1zXnfSw5dTzjey3Cu+GCA0ZzGbyJCOXTDZcrwTufmUu5B/pqaGho9Ay4suSRJbJqNK7ufuZeEDRZKgIUdSBgYC6QbZTlZbgcBEfJ4JEUJDk0UJ455jeR9xQUVSsPSZRKV1R6GzTIVXAch6F28fcAgLKq7EG6/b3utNaGhm6tV0ZLXT0/j6N3HKf8rtQLxky3tWP58nX8NRk7diQSCVcKXrdWDeXMBTnDKuPLDghVluxggpRLWSIDdl0O1SusDKccL4+WXK0saWho9AbI4kFkibriln8VHArbXWiyVASwfJQlX8mDvvnnmqYhqwCW0g0nleEkD1Gh/CUyQUonOzY8NzWqs9QGeG34juNg+YKvAYghiTLIcN3kG0rbXVBZb+S2Y5X7KRgz3d7urc99McaMGcYDNWtqG/I+TrJJEKuMz+Hd1paHwVt6jXN1uv3u8n/gnXe+wF+nPh+6DRHErG64PGIuZGzs0QEaGhq9A8oSNKMRDN1iMxiGAcYYln72ZUGOp8lSEeDk8CwJBanzypJaMpE7lMS/2+UyXIFm6Mjz5PJp42z0DN6GYaCsLIEBXhu+ZTlY8unn7u9Mg8+BI5RWuaTK34HXXdCcuSGbj1bup2BMKvuRYXqzzYby2IPaGjXBPBdapdEw/jJcS0uwsiSrSUqXYw6D9/Tpb+CA/SeH7hOQPUu+MhzrnIk810BfDQ0NjZ4CWTzMSASb7rg9APcaSFl5PQ1NlooAuUyVnbNE24SQpRyeJUV1kBQk+aKabBceokJl4qRaJeNyHubr+jrh8xkwoBz9+rsKTiZjufPaPBK42c47KI8rKfXSu5ct7/aaZTStdpWqASOGK/eTyZzIEqk/m4waxHOhKFIgH7Q2iOG/aWlmH2Ms1Ewtd1LKBCmdQ1nKB8Kz5D+enOsUfowvvliKlpZ2vPnmZ91ah4aGhkY+kMnSyLFbAwBSOWaZdheaLBUByiDdrIsiKUjBoZT55Cz5SylydIBMlgqlLMnMPp2HwVtWPKr6laO/RJYAIB1SFqOW0drvvu/egn1Yt3yluxZf1hLFF9Cw4JYW9w9z882GcL/V8k6QpZa6Bv5v22Y5zfsEuWxr9eAA2/AynFwyDleNdt7pfFRVnoC2tsJ0omhoaGjIILuHGYlg8OZuZ7T8BbSnoclSESCPjfAP0iWHf2PtauV+7lnKZfAOUYoUg7dkHC5EdAAAtDcJpSidJ9Oni3S/qjJUVbrlLgpRpLLY0C1EWay8uj8nKCu/Wdz9RUuo+fY7AECiUh3eSwZCMpRTTMDmmw/lz2HF8k6QpXV1/N9hMwL9kNVA2aeUK0MpH+TXDVcYcq2hoaHRWZDdw4yYqB4+DADQWNuzlgwZOpSyCFBLG+pF8tHLr8G2+07AJ6+8rj7GyacMF0yk5DJcW6tQenJ5ULoDmd1n2vNTGrwpL+jXrxxVVW55jeajNa1ei+rhw5Sy2PCttvQex7KIZXexfIGbtUTkiEBx+vT8KCZgyNBqvk2uHCw/mtYKYsVsG4yZMIzcw5IVL5pUak2ne0pZ8t3vkbN8VC8NDQ2N3gIpS4ZpomKg+xm8ZskPBTueVpaKADU8Ur3ILXx3Np6f8tesx+Rl8GbBv5NNt8mkrCwVhiw1rxMm53QeoZSAeH6VVaWoqPTIkpc1tPYH15MkjyAZOmYzAIVJIaduCsMwMHj0KH4/tai2rHUVITJzV3rr7Wx3YbNElhzbyStLS36+SbnrsEDKUqHURw0NDY3ugLqSTdPkncore2hGaBA0WSoCbGWYbX4XI64s5UrwDlWWxPHk2WX5hAx2Bc3rXBLQGTWCnldlRSnKy9yYABomu2qRW2ZLVFTw7TfbyTV7p3owkJKQbGnhJEHOWqKhvc11LllasdL9PyWPd3YuWmtdvdL9mBdZkk3dSZksddfg7Xj/D48O0NDQ0FhfQF/EDdOE6c2F+2H+VwU7niZLRQBTgv7yu8iJsMo8PEu+a229561hjCGZlA3ehSFLXSmL0fOqqirDkKH9AQCtnln4hy+oLBbj248atw0AoPa7Jd1YaThobtuIbd0uC3m4L3XLLVu2Rn1MJ9Udxzd3LUzdkSErS+mkHDzavdfStjv2LGloaGisL8hwz1KEZywtX/hNwY6nPUtFgHyRZHmWOfLxLIkLm7rN0qWr8czT72BdXQvsjFwCLEwZbulnX4ExllfiM1+LR5auufZEVFe7OUsfzHYDKZd9/gUf1Dp0y81R++336D/MNVUv/vjTHl69i9aGRiQqyjHEK8NVDBzADeX1Hhn83psPRwgbUZILzHFgRCKwLTtU3ZGhluEE8U11swzHQrrhChUvoaGhodEd0Bda+ly2LaugTSiaLBUBMmHJ1xBM2+WjLAVdak866S8AgM1+JLKKbKt7F9gw1K1Ygb+ffYFiYO4I5KsiovTGG/MwefLDAFy5lUjF6B3HobWugZuvP3v9rR5evYvG2tUYuMkIVHum8qohgwB46pzX7bdo0UrlMVQ27Axsy4YZiYA5Nn9t8yVLaSkGItfct7zWEdYNp8mShobGeoi0r3moEJYMGZosFQGKwTvP8onwLOWhLOXqmMuEm8t7Eos++LhT21NOEGMMTz7xNn75y6nK71NtbSitrMTIsVshVlICwzDg2DZWFcjQt/aHFdhil51R4Y1UqRrskiX53C5eXMMVLyA8dTsXbMtCrCQO27IkshROiGW1LillGlHMQlfhhBA1rSxpaGisj/DH0jTX5T89oSvQnqUiQO5Cy9/gnY+y1LFKJbebr08T4t9990s4joPbb38xiygBQGt9AwBg8GabYuxeewBQu8l6GjU+U3nlwAEAfD4jx1GUmKamzn+zsb3Xw7byVJaUocg9V4YLKwHyHDAdHaChobEeIdWmzhStX7mqoMfTylIRIKs7Tp4G7/y64TrOxJFruk6BynBdwTFH/ynn7xtqVmPQpqPQf9hQxMvcVv1Cton+8JVrKo/EojBNExUDXLLk93ml0xYSCbck2NjQebJEs/OcfJUl6fhtzeLDItPNnCU6dphnSVMlDQ2N9Qkp37SA1UuWFfR4WlkqAmxJTco3x4ZUoFxT3cNGVsiwpDKO1c12897EmqVu2FjFwGo+hqSzpb7OYNkXX0qm8i0wdq/dAYggNEJSat+vr+88WaLRMKnWNl6KzKUeymW4thZBllLd9iyFRAcQOdNsSUNDYz1Cqk39vF25oHCdcIAmS0WBrCbZeZbh7rr7Faxd24Tbb/93+H5DogNkWFK5plChlIUAqUhllZWIRKNgjGHezDcLdjwrmebn84hLzsMWu+wMINtQ3twsvt2sWdvU6eM8P+U2LJk3H6/cfg9v/89NltzXjDGmZCulUp3vxJMRGkoZ0mGpoaGhUUzIA9sB4Pt5nxf0eLoMVwQow0nzLMNNu/tlTLv75dz7tcSFNAyyMtGZ1v5iY9l8L1XbyzuyM5keH3PiR7qtHaVVldhm7z0BuOrWc3+4WdmmsbEVo0a55u+1azo/xPHbDz/GXb9yFbJ8lCVZGZRN3d1WlkL8UhsSodbQ0Nh4YKXTXP1njGHdDysKejytLBUBClnqwW4jcaHLUYaTlKX1yeDdEVYu+EYhgQ01hSVKANDimcoBIJNK4c6Tz8zaZt06oSbV1HSvG4OS1q0cr4tMcOUQzGSyp8iSStQcq2MfnIaGhkYx4bdHFAIbDFn6/e9/j/feew+tra2or8//onTDDTdg5cqVaGtrw3/+8x9sueWWyu+rq6vx2GOPobGxEfX19XjggQdQXl4esreegSWZdK0eVHdIBcjpWbLEm6onj11oOI6jmJuXewbsQqKhxp1gzRjD9AuvQFtjdpltdW0D//eqVT1DlnIrS8JDJKtJmW4ORQ6LDihUyruGhoZGT6G9ubngx9hgyFI8Hsezzz6Le++9N+/H/O53v8MFF1yAc845B3vssQdaW1sxc+ZMlJSU8G0ef/xxbL/99pg4cSKOOOII7LfffrjvvvsK8RQ45AtQZ6bUd7hf7lnK0Q0n+VzyLQGuL5BDxxa8+0HBj/fatPvQvLYOr95xL75+b07gNiu9+XAAsHz52m4djzracitLLtllYApZKpSyRJ46rSxpaGisb6DPpc4EIHcVG4xn6frrrwcATJo0Ke/HXHTRRbjxxhvx4osvAgBOOeUU1NbW4uijj8bTTz+NbbbZBocffjh23XVXzJ07FwBw/vnn49VXX8Vll12GVasKk9uglOF68Jt78zpX2ZCzlLKO7WUDGYYBaz2KDsgHzXX1KK/uD8YYPv/PrIIfb8mn83H9gT/Nuc2yHwRBWr68e3+wVFbLRZaWzXdHySSbW3qULFH6uH8gL83BK+QYAQ0NDY0uwSNL65av7GDD7mODIUudxeabb47hw4fjjTfe4Pc1NTVhzpw5mDBhAp5++mlMmDAB9fX1nCgBwBtvvAHHcbDHHnvghRdeCNx3PB5X1KnKyspOrS2TTHHCQsMAewLvP/0vbDpu2w67xKx0GpFYDGuXLu+xY/cG6leuwrAxmyPdnkTaF0hWLCz5XpTqGhpaurWvpEd+cg3FXffDCtx0+PFoWbcOYzYfzO/3k5zO4oYbnsS2247CDX94Urn/s5lv4sO998Q3H3zYrf1raGho9DRIWar59ruCH6vPkqVhw4YBAGpra5X7a2tr+e+GDRuG1atVo7Bt26irq+PbBGHy5Mlc6eoKki0t+Pr9OTAMM9AH01U4loUnJt/Q4XbXH3Qk4iUlPONnQ8H7zzyPrffcvWDz4LqCGTPmorGxtdt+JQC4955XsfPOW+Dvf38t53Z1K9yujwULfsDatU1obU0qPriu4IsvlmLcuPMCf/f0tbkDQzU0NDSKgaWff4lR22+DD59/qVeOx4p1mzJlCusIY8eOVR4zadIkVl9f3+G+J0yYwBhjbNiwYcr9Tz/9NHvqqacYADZ58mS2cOHCrMfW1tayc845J3Tf8XicVVZW8tuIESMYY4xVVlYW7Vzqm75tzLfKysoN7m9wQ1yzvulbX7vl+3dYVGVp6tSpeOihh3Ju8913XZPXampqAABDhw7l/6af582bx7cZMmSI8rhIJIIBAwYoj/EjnU4jncMXpKGhoaGhodF3UFSytHbtWqxd270OojB8//33WLVqFQ4++GB89tlnAFxv0R577ME76mbPno3q6mqMHz8en3zyCQDgoIMOgmmamDMnuPtJQ0NDQ0NDY+PCBhMdMGrUKOy0007YdNNNEYlEsNNOO2GnnXZSMpEWLFiAo48+mv98++234+qrr8aRRx6JcePG4ZFHHsHKlSu5cXvhwoWYMWMG7r//fuy2227Ya6+9cPfdd+Opp54qWCechoaGhoaGxoaHotcM87lNnz490NO0//77820YY2zSpEnK42644Qa2atUq1t7ezv7zn/+wrbbaSvl9dXU1e/zxx1lTUxNraGhgDz74ICsvLy9IzVPf9E3fCnMrxt/glVdeyT788EPW1NTEamtr2fPPP8+23nrr9XrN+qZv+qbe8v07NLx/aHQDlZWVaGpqQlVVFZp7IUlUQ0NDRTH+BmfMmIGnnnoKH330EaLRKG666SaMGzcO2223HdryiLbQnxsaGsVHvn+HfTY6QENDQ6OQOPzww5WfTz31VKxZswa77LIL/ve//xVpVRoaGoWAJksaGhoaPYB+/foBAOrq6gJ/390wWw0NjeJhgzF4a2hoaKyvMAwDt99+O9599118+eWXgdtMnjwZTU1N/LbCCxfV0NBY/6HJkoaGhkY3MW3aNIwbNw4nnXRS6DZTpkxBVVUVv40cObIXV6ihodEd6DKchoaGRjdw11134YgjjsB+++2XUy3SYbYaGhsuNFnS0NDQ6CLuuusuHHPMMTjggAOwZMmSYi9HQ0OjQNBkSUNDQ6MLmDZtGn7xi1/gqKOOQnNzM4YOHQoAaGxsRDKZLPLqNDQ0ehLas6ShoaHRBfzmN79B//798fbbb6OmpobfTjzxxGIvTUNDo4ehlSUNDQ2NLsAwjGIvQUNDo5egyVIPQuemaGgUBxvy396GvHYNjQ0d+f79abLUA6CTrXNTNDSKi8rKyg1mdIj+3NDQWH/Q0WeHng3XQxgxYkSHH9KVlZVYsWIFRo4cucF8oMvYkNe/Ia8d0OvP9xgrV64syL4LhXw+N9YnbOjvw56GPh8qNtTzkc9nh1aWegid+ZBubm7eoN5IfmzI69+Q1w7o9Xe07w0NGxq5I2zo78Oehj4fKja085HPWnU3nIaGhoaGhoZGDmiypKGhoaGhoaGRA5os9SJSqRSuv/56pFKpYi+lS9iQ178hrx3Q69dYP6BfRxX6fKjoy+dDG7w1NDQ0NDQ0NHJAK0saGhoaGhoaGjmgyZKGhoaGhoaGRg5osqShoaGhoaGhkQOaLGloaGhoaGho5IAmSz2M3/zmN/j+++/R3t6ODz74ALvttlvO7Y877jgsWLAA7e3t+Pzzz3H44Yf30kqD0Zn1T5o0CYwx5dbe3t6LqxXYd9998eKLL2LFihVgjOGoo47q8DH7778/5s6di2QyiUWLFmHSpEm9sNJgdHb9+++/f9a5Z4xh6NChvbRigSuvvBIffvghmpqaUFtbi+effx5bb711h49b3977Gp3D73//e7z33ntobW1FfX19sZfT6+jsZ31fRlc+fzc0aLLUgzjhhBPw17/+FTfccAPGjx+Pzz77DDNnzsTgwYMDt58wYQKefPJJPPjgg/jRj36EF154AS+88AK23377Xl65i86uHwAaGxsxbNgwfhs9enQvrligvLwcn332Gc4777y8tt9ss83wyiuvYNasWdh5551x++2344EHHsChhx5a4JUGo7PrJ2y99dbK+V+9enWBVhiO/fffH9OmTcOee+6JiRMnIhaL4fXXX0dZWVnoY9a3975G5xGPx/Hss8/i3nvvLfZSeh1d+azsy+jq59eGBqZvPXP74IMP2F133cV/NgyDLV++nF1xxRWB2z/11FPspZdeUu6bPXs2u/feezeI9U+aNInV19cX/bz7b4wxdtRRR+Xc5s9//jObP3++ct+TTz7JZsyYsUGsf//992eMMdavX7+ir9d/GzRoEGOMsX333Td0m/Xtva9vXb+tr58Dhbx19rNyY7rl8/m1Id60stRDiMVi2GWXXfDGG2/w+xhjeOONNzBhwoTAx0yYMEHZHgBmzpwZun0h0ZX1A0BFRQWWLFmCZcuW4YUXXsB2223XG8vtNtanc98dzJs3DytXrsTrr7+Ovfbaq9jLAQD069cPAFBXVxe6TV85/xobH7r6WamxYUOTpR7CoEGDEI1GUVtbq9xfW1uLYcOGBT5m2LBhndq+kOjK+r/++mucfvrpOOqoo/DLX/4Spmni/fffx8iRI3tjyd1C2Lnv168fEolEkVaVP1atWoVf//rXOPbYY3Hsscfihx9+wH//+1/86Ec/Kuq6DMPA7bffjnfffRdffvll6Hbr03tfQ6Mz6MpnpcaGj2ixF6Cx4eKDDz7ABx98wH9+//33sWDBAvz617/GtddeW8SV9X188803+Oabb/jPs2fPxpgxY3DxxRfjlFNOKdq6pk2bhnHjxmGfffYp2ho0uo4pU6bgyiuvzLnNNttsg6+//rqXVqShsX5Ak6Uewtq1a2FZVlY30tChQ1FTUxP4mJqamk5tX0h0Zf1+WJaFTz/9FFtuuWUhltijCDv3jY2NSCaTRVpV9/Dhhx8WlaTcddddOOKII7DffvthxYoVObddn977GgJTp07FQw89lHOb7777rncWs56iJz4rNTY86DJcDyGTyWDu3Lk4+OCD+X2GYeDggw/G7NmzAx8ze/ZsZXsAmDhxYuj2hURX1u+HaZrYYYcdsGrVqkIts8ewPp37nsLOO+9ctHN/11134ZhjjsFBBx2EJUuWdLh9Xzz/fQFr167F119/nfOWyWSKvcyioic+KzU2TBTdZd5XbieccAJrb29np5xyCttmm23Y3/72N1ZXV8eGDBnCALCHH36Y3XTTTXz7CRMmsHQ6zS655BI2duxYdt1117FUKsW23377DWL911xzDZs4cSLbfPPN2Y9+9CP2xBNPsLa2Nrbtttv2+trLy8vZTjvtxHbaaSfGGGMXXXQR22mnndioUaMYAHbTTTexhx9+mG+/2WabsZaWFnbzzTezsWPHsnPPPZdlMhl26KGHFuXcd3b9F154IfvZz37GxowZw7bffnt22223Mcuy2EEHHdTra582bRqrr69n++23Hxs6dCi/JRIJvs36/t7Xt87fRo0axXbaaSd2zTXXsKamJv7+LS8vL/raCn3r6LNyY7t19PnVR25FX0Cfup133nlsyZIlLJlMsg8++IDtvvvu/HezZs1i06dPV7Y/7rjj2MKFC1kymWTz589nhx9++Aaz/r/+9a9821WrVrGXX36Z7bzzzkVZN7XS+0HrnT59Ops1a1bWYz755BOWTCbZt99+yyZNmlS0897Z9V9++eVs0aJFrK2tja1du5a99dZb7IADDijK2sMgn88N4b2vb527TZ8+PfB133///Yu+tt645fqs3NhuHX1+9YWb4f1DQ0NDQ0NDQ0MjANqzpKGhoaGhoaGRA5osaWhoaGhoaGjkgCZLGhoaGhoaGho5oMmShoaGhoaGhkYOaLKkoaGhoaGhoZEDmixpaGhoaGhoaOSAJksaGhoaGhoaGjmgyZKGhkaXsO++++LFF1/EihUrwBjDUUcdVdDjmaaJP/zhD/juu+/Q1taGb7/9FldffXVBj6mhoVFc9MTnzPHHH49PP/0Ura2tWLJkCS677LJO70OTJY0ewfTp0/H8888XexnrLa677jp8+umn3d4HYwyMMVx44YV5PWbWrFn8MTvttFO3ju9HeXk5PvvsM5x33nk9ut8wXHHFFTj33HPx29/+Fttuuy2uuOIK/O53v8P555/fK8fX0NhQ0BNfXuhzo76+vodWJTB9+nS+/47W2d3PmcMOOwyPP/44/va3v2HcuHH4zW9+g4svvrhL+yt6jLi+rd+3jnDdddexqqoq1q9fv6Ksb9asWXwtyWSSLV++nL344ovsmGOOKfq5o1t5eTkbMGBAt/Zx3XXXsfnz57OhQ4ey0tLSvB5TXV3Ndt11V8YYYzvttFNB3yNHHXWUcl88Hmd/+ctf2PLly1lLSwv74IMPujUK46WXXmIPPPCAct9zzz3HHn300aK/vhvqLWxkyZgxY4q+tvXxJo/1sG2bNTQ0sE8++YTdfPPNbNiwYUVfH92GDh3K4vF4t/ZBI4sGDx7M75s0aRKrr68P3d7/GRB2q6qqYkOHDu3UY8KO0dHnzOOPP86eeeYZ5TG//e1v2bJlyzp1PrSypNEhhg0bxm8XXnghGhsblftuvfVWNDU1obGxsWhrvO+++zBs2DCMGTMGxx57LL766is89dRT+Pvf/160NclobW1FXV1dt/djWRZqa2vR3t6e1/b19fVYs2ZNt4/bFdx9992YMGECTjrpJOy444549tln8dprr2HLLbfs0v7ef/99HHzwwdhqq60AADvuuCP22WcfzJgxoyeXvdFhxowZyt/zsGHD8P3332dtF4vFirC69RNbb701RowYgd122w0333wzDjnkEHzxxRcYN25csZcGAKitrUU6ne72fhoaGgry+dHU1ITa2toe2VdHnzMlJSVIJpPKY9rb2zFq1CiMHj26U8cqOgvWtw3nFvbNYvr06ez555/nP8+aNYvdeeed7LbbbmN1dXWspqaGnXnmmaysrIz94x//YE1NTWzRokXssMMOU/az/fbbs1dffZU1Nzezmpoa9sgjj7CBAwfmXNOsWbPYbbfdlnX/qaeeyhhj7OCDD+b3jRs3jr355pt8AO3f//53ZUo6PY/JkyezmpoaVl9fz6655hoWiUTYLbfcwtatW8d++OEHduqppyrH+vOf/8y+/vpr1trayhYvXsz+8Ic/sGg0yn9/3XXXsU8//TTrOJdeeilbuXIlW7t2Lbv77ruVx/hv/n3I9y9dupQlk0m2YsUKdscddyi/Hz16dK8rS6NGjWKZTIYNHz5c2e4///kP+9Of/tSlYxiGwaZMmcJs22bpdJrZts2uvPLKov9NbMg3/9+tfJs1axa766672G233cbWrFnD3nrrLQZ0/DdaVlbGHn74Ydbc3MxWrlzJLrnkkqy/0SCFoL6+Xhm+vMkmm7Cnn36a1dfXs3Xr1rEXXniBjR49Omvtuf6G4vE4+/Of/8yWLVvGkskkW7RoETv99NMZALZo0SJ26aWXKmvYaaedciprpCz5VfREIsEWLFjA/ve//ynv12uuuYb98MMPLJlMsk8//ZT9+Mc/5r+nv8vjjz+evfPOO6ytrY19+OGHbKuttmK77ror++ijj1hzczN79dVX2aBBg/jjdt11V/b666+zNWvWsIaGBvbf//6X/ehHP1LWI59fOs4xxxzD3nrrLdba2srmzZvH9txzz5zvjaDXKF9l6brrrgtULP3DyrurLOXzOXPWWWexlpYWdtBBBzHDMNhWW23FvvrqK8YY6/AcyDetLGkUDJMmTcLatWux++6746677sK9996LZ599Fu+//z7Gjx+P119/HY8++ihKS0sBAP369cNbb72FTz/9FLvuuisOO+wwDB06FM8880yXjv/www+jrq4O//d//wcAKCsrw8yZM1FfX4/ddtsNxx9/PA455BDcfffdyuMOOuggjBgxAvvttx8uueQS/OEPf8DLL7+M+vp67LHHHvjb3/6Gv//97xg5ciR/THNzM0499VRst912uPDCC3HWWWfh4osvzrm+Aw88EGPGjMGBBx6ISZMm4dRTT8Wpp57aqed47LHH4uKLL8avf/1rbLXVVjj66KMxf/78Tu2jENhhhx0QjUbxzTffoLm5md/2339/jBkzBgAwduxY7lsIu02ZMoXv84QTTsDJJ5+MX/ziFxg/fjwmTZqEyy67DKecckqxnmafx6RJk5BOp7H33nvjnHPOyetv9C9/+Qv2339/HHXUUTj00ENxwAEHYPz48Z06bjQaxcyZM9Hc3Ix9990Xe++9N1paWvDaa68pCldHf0OPPPIIfv7zn+OCCy7Atttui1//+tdoaWkBAPzjH//Aaaedphz3tNNOw9tvv43Fixd3ar3JZBJ/+9vfsM8++2Dw4MEAgAsvvBCXXnopLrvsMuy4446YOXMmXnzxxSxl9YYbbsCNN96I8ePHw7IsPPHEE7jllltw4YUXYt9998WWW26JP/zhD3z7yspKPPzww9hnn32w5557YtGiRXj11VdRUVGRc41/+tOfcOutt2LnnXfGN998gyeffBKRSKRTzzNf3HrrrYpSeemll6K1tRUff/xxjx4nn8+Z+++/H3fffTdefvllpNNpfPDBB3jqqacAAI7jdOp4Rf92o28bzq0zytI777zDfzZNkzU3N7OHH36Y30c16z322IMBYFdddRV77bXXlP2OHDmSMcbYVlttFbqmMGUJAJs9ezZ75ZVXGAB25plnsnXr1rGysjL++8MPP5xZlsWGDBnCn8f333/PDMPg2yxYsIC9/fbbWc/lxBNPDF3TpZdeyj766CP+c5Cy9P333zPTNPl9Tz/9NHvyySdD9xmkLF188cVs4cKFORWpYihLJ5xwAstkMmzrrbdmY8aMUW5Dhw5lAFgsFmNjx47NeZO/US9btoz95je/UY571VVXsQULFhT972JDvU2fPp1lMhnW3NzMb+TvmDVrFps7d27W+c71N1peXs6SySQ77rjj+O+rq6tZa2trp5Slk08+Oet1jcVirLW1lU2cOJGvPdff0FZbbZWlLMu34cOHs0wmw3bbbTcGgEWjUbZ69Wp2yimnhJ6vMGUJAPvxj3/MGGN8f8uXL2eTJ09WtpkzZw67++67GSD+LknpAsBOPPFExhhjBx54IL/viiuuyPkeNwyDNTY2sp/+9KeB5zfoONtuuy1jjLGxY8eG7jdMWWKMKe8XuoWpRHvssQdra2tjxx9/fF7HyHXryucM3UzTZCNGjGCxWIwddthhjDGmfL50dItCQ6NA+Pzzz/m/HcfBunXrFNWDatZDhgwBAOy000448MAD0dzcnLWvMWPGYLfddlM8SIcffjjefffdnGswDAOMMQDAtttui88++wxtbW389++99x4ikQjGjh2L1atXAwC+/PJL/hha5xdffJH1XGjdgKt6XHDBBRgzZgwqKioQjUbR1NSUc21ffvml8s1m1apV2GGHHXI+xo9nn30WF110Eb777ju89tprePXVV/HSSy/Btu1O7aen8emnnyIajWLIkCGhr1Emk8HXX3+d9z7Lysqyvgnatg3T1AJ5dzBr1iyce+65/OfW1lb+77lz5yrbdvQ3WlpaipKSEsyZM4ffX19f36nXmY6z5ZZbZh0nkUhgzJgx+M9//gMg99/QzjvvDMuy8PbbbwceY9WqVXjllVdw+umn46OPPsKRRx6JkpISPPvsswCAL774gnta/ve//+EnP/lJzjUbhgEAYIyhsrISI0eOxHvvvads895772V1pcqfk/SZ6P+clD9rhgwZghtvvBEHHHAAhgwZgkgkgrKyMmy66aY51ycfZ9WqVXxfnX1tmpqaApXCb7/9Nuu+UaNG4YUXXsCtt97Kz2tPIp/PGYLjOFi5ciUA4Oc//znef/99rF27Nu9jabKkUTBkMhnlZ8ZY1n0A+MWuoqICL730Eq644oqsbVatWgXTNJUP4RUrVuQ8vmma2GqrrfDRRx/1+LoZY3zde+65Jx5//HFcd911mDlzJhobG3HSSSfh0ksv7fRxOnvhX758OcaOHYtDDjkEEydOxD333IPLL78c+++/PyzL6tS+Oovy8nKlpLD55ptjp512Ql1dHRYtWoTHHnsMjzzyCC699FJ8+umnGDx4MA4++GB8/vnnePXVVzt9vJdeeglXXXUVli1bhi+//BI/+tGPcMkll+Af//hHTz6tjQ6tra2hZSeZOAEd/43ma953HIeTC4JcXquoqMDcuXNx8sknZz1WNhzn+hvKpwnigQcewKOPPoqLL74Yp512Gp5++mn+uJ/85Cd8Tfnsa9tttwUALFmypMNtZcjPgb6k+e+TPxcefvhhDBw4EBdeeCGWLl2KVCqF2bNnIx6Pd/o4Xfmi4ThOXmXKsrIyvPjii5g9ezauvfbaTh+H0N3PmYEDB+K4447Df//7XyQSCZx22mk4/vjjsf/++3dqHZosaaw3+OSTT3DsscdiyZIlocoI+Q3ywaRJkzBgwAD885//BAAsWLAAp556KsrKyri6tPfee8O27U5/u5Kx1157YenSpbjpppv4fZ3tsugOkskkXn75Zbz88suYNm0avv76a+ywww7dznXqCLvuuiv++9//8p9vu+02AMBDDz2E0047DaeddhquvvpqTJ06FSNHjsTatWvxwQcf4OWXX+7S8c4//3z88Y9/xD333IMhQ4Zg5cqV+Pvf/674OTQKi47+RhcvXox0Oo099tgDP/zwAwCgf//+2HrrrRWFZ82aNRg+fDj/ecstt0R5eblynBNPPBGrV68OVLHywfz582GaJvbff3+8+eabgdu8+uqraG1txbnnnovDDjsM++23H//dsmXL8j5WIpHA2WefjbfffpurFStWrMDee++Nd955h2+3995748MPP+zS85H38Zvf/IZ3gW6yySbcJ7U+4bHHHoNpmvjVr37Vrf30xOfMpEmTcOutt8IwDMyePRsHHHBAp79Ea7Kksd5g2rRpOOuss/Dkk0/illtuQV1dHbbcckucdNJJOPPMM3Oa8crKyjB06FBEo1FssskmOOaYY3DxxRfjnnvu4X9ojz/+OG644QY8/PDDuP766zF48GDcddddePTRR3kJritYtGgRNt10U5x44on46KOP8NOf/hTHHHNMl/fXGUyaNAmRSARz5sxBW1sbfvnLX6KtrQ1Lly4t+LHffvvtLHVAhmVZuP7663H99df3yPFaWlpw8cUXd2ic1ygcOvobbW1txYMPPoi//OUvWLduHVavXo0//elPWX+7b731Fn77299i9uzZiEQiuPnmm5VW98cffxyXX345/v3vf+Paa6/F8uXLMXr0aPzf//0fbrnllg5VZQBYunQpHn74YfzjH//ABRdcgM8++wyjR4/GkCFDeEnIcRw89NBDmDJlChYtWoQPPvggr/MwZMgQJBIJVFZWYpdddsHvfvc7DBo0iDeTAK7R/YYbbsDixYsxb948nHbaadh5550D1bLOYNGiRfjVr36Fjz/+GFVVVfjLX/6iWAvWB1x//fU45JBDcOihh6KiooKbzxsbG7Pa+DtCdz9n1q1bh7322qtTxwyCLvZrrDdYtWoV9t57b0QiEbz++uuYP38+br/9djQ0NHTYtXD22WejpqYGixcvxr/+9S9st912OPHEE5WU1vb2dvz4xz/GgAED8NFHH+G5557Dm2++id/+9rfdWvdLL72E2267DXfffTfmzZuHvfbaC3/84x+7tc980dDQgLPOOgvvvfcePv/8cxxyyCE48sgjeyTTSUPDj3z+Ri+//HL873//w0svvYQ33ngD7777bpb36dJLL8UPP/yA//3vf3jiiSdw6623Khf89vZ27Lfffli2bBn+9a9/YcGCBXjwwQeRSCQ69ALKOPfcc/Hcc8/hnnvuwcKFC3H//fcrChYAPPjggygpKcH06dPz3u8333yDlStXYu7cubjyyivxxhtvYNy4cViwYAHf5s4778Rf//pXTJ06FfPnz8dhhx2Gn/3sZ4Hens7gjDPOQHV1NT755BM8+uijuPPOO7v1Za8Q2H///VFZWYnZs2ejpqaG30488cRiL61b6HZHhb7pm74V/haWs9TRrTe64fRN33LdcnWsFvu2zz77sFQqxTti9c29dbZTbX09Rk/dtLKkobEBYYcddkBzc7PSvZQLr776Kr788ssCr0pDY8NDPB7HyJEjcf311+PZZ59d79SZ9QFPPvkk9571JO69994ue9GKBQMua9LQ0FjPUV1djQEDBgBwDbL5lCNGjBjBQz+XLVsW2I2ooVFozJo1C/PmzVuv/GaTJk3Cgw8+iHnz5uFnP/sZbyvXcEGhjrZtd7rDryMMHjwYVVVVANzS7vrmuQqCJksaGhoaGhoaGjmgy3AaGhoaGhoaGjmgyZKGhoaGhoaGRg5osqShoaGhoaGhkQOaLGloaGhoaGho5IAmSxoaGhoaGhoaOaDJkoaGhoaGhoZGDmiypKGhoaGhoaGRA5osaWhoaGhoaGjkwP8DHlVFj4ej9s0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -82,7 +82,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAIYCAYAAAB9p6hbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADPxklEQVR4nOydeXwURdPHf7s5ycVNAsgpAnIocghBBQFBUFF4UETxAeUSORRRgaBc6gOiciggyvGAB4+KF4eCQY5XBQEVBFE5JYICCWBCAuTOzvtHZDOT3d7t3unZmUnq+/ks7E56amp6Zqdrq6qrHQAUEARBEARBEF5xmq0AQRAEQRCElSFjiSAIgiAIwgdkLBEEQRAEQfiAjCWCIAiCIAgfkLFEEARBEAThAzKWCIIgCIIgfEDGEkEQBEEQhA/IWCIIgiAIgvABGUsEQRAEQRA+IGOJIAiCIAjCB2QsEQRBEARB+ICMJYIgCIIgCB+QsUQQBEEQBOEDMpYIgiAIgiB8QMYSQRAEQRCED8hYImzJihUr8Nlnn5mtBkEQBFEOIGOJkM6KFSugKAoURUF+fj6OHz+O2bNnIyIiwmzVyg1kTBIEQcgj1GwFiLLJxo0b8cgjjyAsLAxt2rTB22+/DUVRMGnSJLNVIwiCIAghyLNkM8IrRJryEiUvLw9paWn466+/sHbtWmzevBndu3cHADgcDkyaNAnHjx9HdnY29u3bh379+rn3dTqdWLZsmfvvhw4dwuOPPy6tD/USFRVhyitQtm3bhtdffx3z5s1Deno6UlNTMWzYMERFReG///0vsrKycPToUfTs2dO9D881CAkJwWuvvYaMjAycP38eL730ElauXEkeLYIgyhzkWbIR4RUiMev7baYcO+nGLsjPyQ1o3+bNm6Njx444ceJEsaykJDz00EMYOXIkjh49ik6dOuG9997DuXPn8M0338DpdOKvv/7Cfffdh7///hsdO3bEkiVLcObMGXz00UcyT0uYqKgIXLr8sSnHjom+F9nZeQHtO3jwYLz88su48cYbcf/992Px4sXo27cvPvvsM8ycORNPPvkk3n33XdStWxc5OTlc12DixIkYOHAgHnnkERw8eBBPPPEE+vTpg23bzLlHCYIgjMIBQDFbCYIPuxhLK1aswEMPPYTc3FyEhoYiMjISRUVF6N+/Pz7//HOkp6fjtttuw65du9z7LF26FFFRURg4cKBXmQsWLEBCQgLuu+8+9zEqVaqEvn376j85AexiLKn7Z9u2bQgJCUGnTp0AFHuNMjMz8emnn2Lw4MEAgPj4eKSmpqJDhw7YvXu3V5mlr8GZM2fw6quvYs6cOW65x48fx08//RT060IQBGEk5FmyEfk5uUi6sYtpxxZh27ZteOyxxxAdHY0nn3wShYWF+PTTT9GsWTNER0fjq6++0rQPDw/HTz/95P48atQoDBkyBHXr1kWFChUQHh6Offv2yTgVXWRn5yEm+l7Tjh0oP//8s/u9y+XC33//jQMHDri3paWlAQBq1Kjh3ubrGsTFxSEhIQHff/+9Ru6ePXvgdFJ0nyCIsgUZSzYj0FBYsLl8+TJ+//13AMCQIUOwf/9+DBkyBL/88gsA4M4778SpU6c0++TlFRsD999/P1599VU89dRT2LlzJy5evIhnnnkG7du3D+5JMNBjtJhFQUGB5rOiKB7bALgNHatfA4IgiGBCxhJhOIqiYObMmZg7dy4aN26M3Nxc1K1bF998843X9jfddBO+++47LF682L3t6quvDpa6BPxfg6ysLKSmpqJdu3b49ttvARQbWq1bt7aEB5AgCEIm5C8ngsJHH32EoqIiPProo3j11Vcxb948DBo0CA0bNsQNN9yAMWPGYNCgQQCAo0ePom3btujRoweuueYaPP/882jXrp3JZ1C+4LkGCxYsQFJSEu6++240btwYr732GipXrgxFoTRIgiDKFuRZIoJCUVERFi5ciAkTJqBBgwY4d+4ckpKS0LBhQ1y4cAF79+7FzJkzAQBvvfUWbrjhBnz44YdQFAXvv/8+3njjDfTq1cvksyg/8FyD2bNnIyEhAe+88w6KioqwZMkSJCcno6ioyETNCYIg5EOz4QiCkILD4cDBgwexevVqTJ061Wx1CIIgpEGeJYIgAqJu3bro0aMHvv76a0RERGDMmDFo0KAB/ve//5mtGkEQhFQoZ4kgiIBwuVx4+OGH8cMPP2DHjh1o2bIlbrvtNhw6dMhs1QiCIKRCYTiCIAiCIAgfkGeJIAiCIAjCB2QsEQRBEARB+ICMJYIgCIIgCB+QsUQQBEEQBOEDMpYIgiAIgiB8QMYSQRAEQRCED8hYIgiCIAiC8AEZSwRBEARBED4gY4kgCIIgCMIHZCwRBEEQBEH4gIwlgiAIgiAIH5CxRBAEQRAE4QMylgiCIAiCIHxAxhJBEARBEIQPyFgiCIIgCILwARlLBEEQBEEQPiBjiSAIgiAIwgdkLBEEQRAEQfiAjCWCIAiCIAgfkLFEEARBEAThAzKWCIIgCIIgfEDGEkEQBEEQhA/IWCIIgiAIgvABGUsEQRAEQRA+IGOJIAiCIAjCB2QsEQRBEARB+ICMJYIgCIIgCB+QsUQQBEEQBOEDMpYIgiAIgiB8QMYSQRAEQRCED8hYIgiCIAiC8AEZSwRBEARBED4gY4kgCIIgCMIHZCwRBEEQBEH4gIwlgiAIgiAIH5CxRBBEwHTu3BmKoqBz587ubStWrEBKSoqJWnkybdo0KIpithoEQdgUMpYIopwxePBgKIri9TVr1qyg6bFt2zbNsbOzs7F//3488cQTcDgcQdNDNitWrGD27+233262egRBBECo2QoQBGEOU6ZM8fAA/fLLL0HV4c8//0RSUhIAoFq1anjwwQcxf/58VK9eHc8991xQdZFJbm4uhg0b5rF9//79JmhDEIReyFgiiHLKxo0bsWfPHlN1yMzMxKpVq9yf33zzTRw6dAhjx47F1KlT4XK5TNSOTWRkJHJzc5l/Lyws1JyXP6KiopCdnS1DNYIgDIDCcARBeKAoCqZNm+axPSUlBStWrDDsuHl5efjhhx8QFxeHGjVquLe3bNkSK1aswO+//46cnBycOXMGy5cvR5UqVTxk3HTTTfj++++Rk5ODY8eOYcSIEV6P9fDDD2PLli1IS0tDbm4ufv31V4wcOdKjXUpKCtavX48ePXrghx9+QE5ODh599NGAz/FK/tS1116LVatWIT09Hdu3bxc6zysyrrnmGrz77ru4cOECzp49i+effx4AcNVVV2HNmjXIzMzEmTNnMH78eA89wsPDMX36dBw9ehS5ubk4efIkZs+ejfDw8IDPjSDKKuRZIohySsWKFVG1alXNtr///tskbUqoX78+XC4XLly44N7WvXt3NGzYECtWrEBqaiqaN2+OESNGoHnz5ujQoYO7XYsWLbBp0yacO3cO06dPR2hoKGbMmIG0tDSP4zz22GP49ddfsW7dOhQWFqJ3795YvHgxnE4n3njjDU3bJk2a4P3338dbb72FpUuX4vDhw37Po3TfFhQUICsry/35o48+wtGjRzF58mR3jhbveV7hww8/xMGDBzFp0iTceeedmDJlCtLT0/Hoo49i69atmDhxIgYOHIg5c+bghx9+wLfffgsAcDgcWLduHW6++WYsWbIEBw8eRMuWLfHkk0+icePG6Nu3r9/zI4jyhkIvetGr/LwGDx6ssLjSRlEUZdq0aR77pqSkKCtWrHB/7ty5s6IoitK5c2f3thUrVigpKSl+9di2bZvy22+/KVWrVlWqVq2qNG7cWJk9e7aiKIqyfv16TdvIyEiP/e+//35FURTl5ptvdm/79NNPlezsbKVOnTrubU2bNlUKCgo058eSuXHjRuXYsWMe56woitKjRw+u/l2xYoXXvt22bZsCQJk2bZqiKIqyatUqj315z/OKjDfffNO9zel0KidPnlSKioqUCRMmuLdXrFhRuXz5sua6DRw4UCksLFRuuukmzbFGjBihKIqiJCYmmn6f0oteVnqRZ4kgyimjRo3CkSNHTNXh2muvxfnz5zXb1q5di6FDh2q2qfODIiIiEBMTg127dgEAWrduje3bt8PpdOL222/HmjVr8Oeff7rbHzp0CMnJybjzzjuZMuPi4hAWFoavv/4aPXv2RFxcnMYLdPz4cWzatIn7vHJyctC7d2/NtoyMDM3nN99802M/nvNUs2zZMvd7l8uFH3/8EXXq1MHy5cvd2zMzM3H48GE0bNjQve2+++7DwYMHcejQIY0HbOvWrQCALl26YOfOndznSxBlHTKWCKKc8v3335ue4J2SkoLhw4fD6XTi6quvxrPPPovq1at7JE9XrlwZ06ZNw4ABAxAfH6/5W8WKFQEA1atXR1RUFI4ePepxnMOHD3sYSx07dsSMGTOQmJiI6OhoD5lqY0m0blRRURG2bNnis403mTznqebkyZOaz5mZmcjJyfEIp2ZmZmqMomuuuQbNmjXzMFSvoM4XIwiCjCWCIAQICQmRKu/y5ctuo+Krr77Cjh07sHfvXsycORNPPPGEu93q1avRsWNHvPLKK9i3bx8uXboEp9OJ5ORkOJ3i81QaNmyILVu24NChQxg/fjz+/PNP5Ofn44477sD48eM9ZObk5Og7US94kyl6nkVFRVzbAGhqVzmdTvz8889eE78BaDxzBEGQsUQQhBfS09NRqVIlzbawsDDUrFnT0OMeOHAA7733Hh599FG8+uqr+PPPP1GpUiXcdtttmDp1Kl544QV320aNGmn2PXfuHLKzs3HNNdd4yG3SpInmc+/evREZGYm7775bYxh06dJF8hnxw3ueMvj9999x/fXX+/V+EQRRDJUOIAjCg99//x2dOnXSbBsxYgRCQ43/ffXyyy8jLCzM7fW44ikpXdV73Lhxms8ulwvJycno06cP6tSp497etGlTj8rZ3mTGxcXhkUcekXYeovCepwxWr16Nq666CsOHD/f4W2RkJKKioqQfkyDsDHmWCILwYNmyZXjrrbfw8ccf46uvvsL111+P22+/HefOnTP82AcPHsSGDRswbNgwvPDCC0hPT8fXX3+NCRMmICwsDKdOnUKPHj3QoEEDj32nTZuGnj174ttvv8Ubb7yB0NBQjB07Fr/++iuuv/56d7tNmzYhLy8P69evx1tvvYWYmBgMHz4cZ8+eRa1atQw/R29cvHiR+zz18u6776J///5488030aVLF+zYsQMhISFo2rQp+vfvj9tvv930fDaCsBLkWSIIwoOlS5fipZdeQqdOnTBnzhw0aNAA3bt3x+XLl4Ny/FdeeQUxMTEYO3YsAODBBx9EcnIyRo8ejVmzZqGgoAC9evXy2O/AgQNuo+7555/HkCFDMG3aNHz22WeadkeOHMG9994LRVHw6quvYuTIkViyZAlee+21oJwfC97z1IuiKOjTpw8mTZqEli1b4tVXX8W0adPQrl07vPbaa6bPkiQIq+FAcQ0BgiAIgiAIwgvkWSIIgiAIgvABGUsEQRAEQRA+IGOJIAiCIAjCB2QsEQRBEARB+ICMJYIgCIIgCB+QsUQQBEEQBOEDMpYIgiAIgiB8QMYSQRAEQRCED8hYIgiCIAiC8AEZSwRBEARBED4gY4kgCIIgCMIHZCwRBEEQBEH4gIwlgiAIgiAIH5CxRBAEQRAE4QMylgiCIAiCIHxAxhJBEARBEIQPyFgiCIIgCILwARlLBEEQBEEQPiBjiSAIgiAIwgdkLBEEQRAEQfiAjCWCIAiCIAgfkLFEEARBEAThAzKWCIIgCIIgfEDGEkEQBEEQhA/IWCIIgiAIgvABGUsEQRAEQRA+IGOJIAiCIAjCB2QsEQRBEARB+ICMJYIgCIIgCB+QsUQQBEEQBOEDMpYIgiAIgiB8EGq2AmWFWrVq4eLFi2arQRDlltjYWJw+fdpsNYSg5wZBmA/Ps4OMJQnUqlULp06dMlsNgij31K5d2zYGEz03CMI6+Ht2kLEkgSu/DGvXrk2/EgnCBGJjY3Hq1Clbff/ouUEQ5sP77CBjSSIXL16khx5BEELQc4MgrA8leBMEQRAEQfiAjCWCIAiCIAgfkLFEEARBEAThAzKWCIIgCIIgfEDGEkEQBEEQhA/IWCIIgiAIgvABGUsEQRAEQRA+IGOJIAiCIAjCB2QsEQRBEARB+ICMJYIgCIIgCB/Yyli65ZZbsG7dOpw6dQqKouCee+7xu0/nzp2xZ88e5Obm4ujRoxg8eLBHm1GjRiElJQU5OTnYtWsX2rVrZ4T6BEEQBEHYEFsZS9HR0di/fz9Gjx7N1b5+/fr44osvsG3bNrRq1Qrz58/HsmXL0KNHD3eb/v37Y+7cuZgxYwZat26N/fv3Izk5GdWrVzfqNAiCIAiCsBmKHV+Koij33HOPzzYvvfSScuDAAc22999/X9m4caP7865du5QFCxa4PzscDuWvv/5SJk6cyK1LbGysoiiKEhsby2wTGhmu1L++pVK3ZXOp/RBVMU6qvPDISCU0PNzSOoZGhiuhkdbW0RkaqoRHRVlbR6dTiYyJsbSOvC+e76DVXlbR2axrRi96WeHF+z20lWdJlMTERGzevFmzLTk5GYmJiQCAsLAwtGnTRtNGURRs3rzZ3cYb4eHhiI2N1bz8Uf+66zD2vSV4fNVSj7+dO78KmVmr4XSyL0dc9Wp4+adv8cxnq9zbhi58FS9sT8YdT4zUtH38id4oLFqLefOG+dTp36+8gFf370DL7rcWn1dUFGZ+vxUzd2/xaPvnXytxOfsTREaGM+VFxsRg9p5vMHnjJ+5tA1+agRe2J6PflAmatoMHd0Nh0Vr8979P+NTx3qkT8er+HWjf724AgNPpxKxd2zBr9zY4Q0M1bY8cfQu5eZ+hShX29QgND8esH7Zh2rbP3dv6Tn4KL2xPxr9feUHTtnfv9igsWouPP0nyqeNd40fj1f3f4dZHBrq3zfp+K2bu2ozImBhN2337Xkd+wRrUqevbc/mfnZvxwo5N7s+3jx6OF7YnY/ib8zTtbr65OQoK1yJ50/M+5XUb/jBe3f8dej3+qHvbizs348XvNiGuejVN2+3bX0ZB4Vq0aFHPp8wZX2/AzN1b3fftLQP744XtyRjzzluads2a10VB4Vrs2PGyT3kdB/TDq/t3oO/kp3y2I+QxbFHxM0R9XxAE4Umo/yb2JSEhAWlpaZptaWlpqFixIiIjI1G5cmWEhoZ6bdO0aVOm3KSkJEyfPl2KjjExkahaNQ4A0PnWFti29Wf33+58chSa3pyI0PBwRFSIREhoKBIaNXT/vVnnmwAAXYcOwobX3nRvnzdvOBwOB54Ydw+efHKZe3tstaoYvngeigoKEF4h0i3rgRen4sBX/4emN3WAw+FASKjnbVG7dlUAwNBhPbBoYYmh0X3kEFzXvQtCw8OhFBUhNDwMVa+q5f576zuLQ54d+/fFJy+UDJZLlo6B0+nEw4/chiFDXnNvj4yJwWP/XQhXQSEiYqIR37A+AODeKROx+5N1qFy7JpwhxYNz9fp1kHYsxb1vo0bFx502/QE88fgS9/bOgx5A27t7ITQiAjmZWQiPjER4ZKT77zc/cC8AoFXP2/DuM1Pc299590k4nU78618dNX0RGh6O0SsXA4qCyLhY1KhfFwDQe/wY/N+KYmM2NCwMANCsc0fs/aLE6Lnu+gYAgDcWjUTv3iXGWYd778FNA/ohNCIC50/8iciYaABApZrxuHAmDd1HPAwAaHpTB40u7743HiEhTnTvfgNKM+adNxESEooKFeNQvV4dAMBtwx/GxteLjZmIqAoAgJse6OfeBgAdb7oWALDy7SfRts049/bWd/ZAl0ceQkhYGE4e+BUxVSoXn+OtN+OXrd/gjnGPAQAa3HCdRo+VK8YhJMSJxI7Xeug4ctkCRFSogKhKcahWt1jHmx+4F5/NnOPRlpDPtZ2KnyHdhg7S3AMEQWgp08aSUcyaNQtz5851f46NjcWpU6d0y1VciuZz1yH/BgCEOIq3FykeuwgxfPFc1G56DQAg3OlCvisQHbU79Rw9HADgdChwCOno8Lp18Nz/4Kprm+jSsTR3P/P4P0dUEOIACjl1dDi863jftImo27KZVB3vmzbJrWPthnVQ8I/M0vcEr449x4xAgxuuV+mogNXnvAx8acY/7xTUaVTXfd4ul58OYBy2fb+7cU37tlJ1JAiCMIIyHYZLTU1FfHy8Zlt8fDwyMzORm5uL8+fPo7Cw0Gub1NRUptz8/HxcvHhR8+LF4XCgbotm/O2hYNS1f+Oxa/+GA94HTtaAWZpKCcXn2bJyLkY3S8cNVXO0cpwlcq5u15pbRwAY3iQdjzf/223YBUqV2jUBAI0r5mF0s3R0qHFZ83d1qPKa9mKzFh++JgNjm/+NcKc+66bKVbUBAPVj8jG6WTo6J1xithXV8YGrL2BMs78RFcLW0Ve49gpV/9GxdlQBRjdLR/fabB0btvH0SvmiX/0sjG6WjriwImabUB/h2itUrpkAAKgeWYjRzdJxVx3+7xFBEEQwKdPG0s6dO9GtWzfNtu7du2Pnzp0AgIKCAuzZs0fTxuFwoFu3bu42RjD67cXcbaNCFYQ6gTAnEO5kGyK1mzXhlnnbPwPnrTUvM9s8tmyB1+0OxkAdFVqsW6Vw9gDaoltnDu2KDbbbahXrmFgjh9my76QnvW53MozHShHFBkjNqEKmzM6DHvCv4T/iOyUU91/rarnMtjf2vcuvPDXxFYr7r0FcPrPN3c/4zvMC4HbQtK+RDQBoUTmP2bRh6+u9i2DY4HVjCgAA11Ziy3zwP9P8q/iPcX7FaL+mIvucCYIgzMRWxlJ0dDSuv/56XH998cO9QYMGuP7661GnTnGuw8yZM/H222+727/55pto2LAhZs+ejSZNmuCxxx5D//79MW9eSZLs3LlzMXz4cAwaNAhNmzbF4sWLER0djRUrVkjVXVFKPAWh4WFe26g9O94bsP8UV7WKfyUEIhx+dQngENX+8Xb4FiByXJ1xSS/UaFCS1KwwxevX0Z830Ndfa/yTxwUUT0gIRL4WY/uRhZiOBEEQ5mErY6lt27bYt28f9u3bBwCYN28e9u3bh+efL54JVLNmTdStW9fd/o8//sCdd96J7t27Y//+/XjqqacwbNgwbNpUknC7evVqPP3003j++eexb98+tGrVCj179sTZs2cNOYeYsCKMaJKO//t6FgC+kIo/Emtcxv5tSWjXrrHPdg7OQT4yxIXhTTLww4/z/DcGwDPYtqmWjU3LB+D226+E91iDPN8Rw5wKhjTOwMFD/F46f1xXOQerpt6EBx7w7QHjHeRDHAoGNbqAP078V4Z6AIBrK+ViwbCGGPnYHT7bsTyAHu2g4MGrLyA17T0Z6gEAro7Nw4t3V0RS0n3FG1i3h8NWjx+CIMoxtnpaff3113A4HB6vRx55BADwyCOPoEuXLh77tG7dGpGRkWjUqJHG83SFRYsWoX79+oiMjESHDh3w/fffG3YOHapnIzpMQadOLQAEZiwtWzYWGRc+RIV/8lo61MhBaIgD777rPSzlj7AQBX+n/w+vTL0HANCqag5iwlxo06aRR1tWiKs08+YNw4XMDxHzT15Lp4RshIY48M674/3s6V2+06Eg7ex7WL2qOATVpGIeKoa70KTJVVz6eGPGjIHIzFrtDh12q30ZoU5g+X8f960hsw8U/HXqbeza9SoAoG50AapGFqGunzIBvhg98nZkXVyN6hWKQ4c9r7qEMCewcGGgU70V/H58KX4+sBAAUDWyCPEVilCjRkWPlrzG9b/ubIWsi6tRN7b4fry73kWEhwD/mTnI536+bqVfflmEI0eXsBsQBEEEEVsZS2WB0gOEM4Bw15ChPVCxYhQ6xmfrO/g/3JhQhMqVY3Fbx+Jp7b404nUGPDHuHsTFRaGrj7woARXRuFIBqleviM43+c/N4vX8TJk6ALGxFdDrKsHEYob4WlGFqFWrCm5sz58/5o8Xp/dHTEwF9K3PTtD2BqsPKoa70KBBAlq0qAenH48gr5fv+advR0xMBdzfWOx+ZOkY4lDQrHldNGpUE23aehrsMuBZOmnGjBk4ffo0srOz8dVXX6FRI60ulStXxnvvvYfMzExkZGRg2bJliI6ONkRfgiDMhYylIMHKLVHD67W5QpiPhG9vsKSHhcjPWblChI9ZXV5h9IHouYrA1pERKvTh/eJFNF8nUlI/+jOQ9CBq9zsYlrdaTHiYMdVN/C2dNGHCBDz++OMYOXIk2rdvj8uXLyM5ORkRERHuNqtWrULz5s3RvXt33HXXXejUqROWLCFvGEGURajOkskE4lm6gseeJiXM2j1N1576S9A6SCfO80OBRaATDfzx5Zdf4ssvv2T+fdy4cXjxxRexbt06AMCgQYOQlpaGPn364MMPP0TTpk3Rq1cvtG3bFnv27AEAjB07Fhs2bMDTTz+NM2fOeMgMDw/XGFs8lf8JgrAG5FkyGRkJ3twwxp1CC9nMrKGxSLGQSWODWVwsz5ViJdPQov3YoEED1KxZU7MMUlZWFnbv3u1eBikxMREZGRluQwkANm/eDJfLhfbt23uVm5SUhKysLPdLRiFbgiCCAxlLJqP2LLXqfafH34V+k3v5Ba9e1kOGK6HxrV38NxIkunIl1adiHfUEi2q3bqtHHa9UqV1S9uCKt0OPjnGN2Mvp8OF59JqNS3JqeGfD+SI8PvDkeRYNVDWdZPSjESQkFBfL9LYM0pW/JSQkeMyYLSoqQnp6urtNaWbNmoW4uDj3q3ZtjlIaBEFYAjKWgkTpZUK80ayX7+ngfvHyS/2up0ar/qzfWKp+fRvdMkpz//PPlnyQ4GwIv+pq/UJKMWjOC/4bCaDE1dAp4R9DQ2UgD3l9dslfJfRjbnicfiGlGPJ6yfqA1vQrGYeeyv8EQZgLGUtBprTzR0/OEs9v8rDICgZI1eJz9hzrGKqDXFnQtXgHE4ZQxiHVOoZXKNGR1+iU6THhOWKYxovIKTMIbh21QRemytlhJXircZpQi+nKUke+lkFKTU1FjRpagzckJARVqlTxuVQSQRD2hIylICNaOkDvLLCiggLNZ29rt5XeUlojf3lVunUsLFl+xAEHnFAQqnONudLo1dFVpFrGxeGAAwpC/cgUNfv06qj2XhbP2OPoR0EldeuoqmRfHIZTDJ3pGAgpKSk4c+aMZhmk2NhYtG/f3r0M0s6dO1G5cmW0bl2yhmLXrl3hdDqxe/fuoOtMEISxkLFkMqVzSyZP7o+/099Hl67X4YaqORjSOINfmLdZR0UFOPb7Uny7fTacDgUjmqYL66g2lhwAxo7tjfSM99G3byKaV8rFqGbiMtUU5hfg19/ewJ698wEHMKRJBkJ13JkOB/DvQV2RnvE+/j2oK66Jy8OYZn/r0rGosAg/7pn/T8VwB/7d6AIqhetbkLdv30SkZ7yP0WPuQr2YfP06FhXhm29fwvGUZXA6Hbi/YSZqR7PXwfOHA0CXrtchPeN9TJ7cHzUrFOjW0eVyYePG6fjzr5UIDXWiT70sNDFhTTh/SyfNnz8fzz33HHr37o0WLVrgnXfewenTp7FmzRoAwKFDh7Bx40YsXboU7dq1Q8eOHbFw4UJ88MEHXmfCWYlGN7bFkAWvlMoVJAjCF9aZBlVO8DWL2gEFL/7n3wCAd94Zj9qCBR29hbC6tauNhg0T0LBhAn7eB0RKqKn02usjAAArVo5DXJxYsURvNK0djWuvLR6kNv6fgtgwfUYIAKxcOQ4OhwNLl46FEqJfx8oVgNati3OhqqVkomqk54LBSqkZe/56evVHkxAS4sTrr49Aep7gtfZCuMOFm29uDgBoUrcItXwsGMzL+vVTERUVgRf/82+cuCRYBNUbriLc3rM4761Lu6vQILbAo0kw/Ext27bF//3f/7k/X1kvcuXKlXjkkUfw8ssvIzo6GkuWLEGlSpWwfft29OzZE3l5JYsHDxw4EAsXLsSWLVvgcrnwySef4PHHfVd/twKPLS9eJPvRJa+ZrAlB2AcyloKEOvyghlWIMjzc/6XhiaBcXbskSZd3glTpwYq1H4+OPNSPL8m1qRAuJ2fpSl5RaGgI8v3YXuwjlvREg+olix9HhstxyIaEFMtxOBz+DQSOvKo6lUoahYVy9qOfA0dFleQYBVouSb1fjaiSDy4OeUZV1riydJIvpk2bhmnTpjH/npGRgYEDB8pWLWhUr1fXfyOCIABQGC7oqJ/P//pXR81gpCYnVzw0ERtbAR1vulazLSyk5H14CN8Aqm7Vt28iYmK8J4nn54t7LiIjw3HrrS0122IqlNyGFcJY9YHY9O7dHnFxUV7/5nK5UNpW8tcLoaEh6N69lWZbbETJXtERIeBBfZyePdugShXvRQgVReEyHDSyHcUy1USHq95HejdkPQ6jUvL221ujRo1KzGOW1pHnbrrrrnaaz9GhJUJiKoSVbk4QBGFJyLNkIh9/koRz5zK9/i0slG9AVlOzZhVs3/6yZpv6l3lYAKbxJ59Oxt9/e5/ifMUzIkJsbAVs3TZTsy1MleQeGcD4uXbdc7h4Mcfr3xwOBxhOPSahoSFI3vSCZhaXOocqMoCO3LBxOvLyPENObh0F5TkcDmzYOB1FRSUnF6ZK5o6KFL9/Nn45QyOvNIEUtFy3fqrGqA5xlMiPYhh0BEGUP5rdejNOHz6KC2fS/Dc2AXpaBZnSoYzq1UtWe1fbHiEhnoNdIAEqtTcpgvNqlx64q1b17hHxOpMvACXVdmFkqMOLBv6JjfXu/XI4ABcCk6kO06hnbFXgDMOVPmJEhMoSLNVPrgArlKsN1lCNjoFdbF8GsKj36wrqcK3WoCPPEkEQQJu7euLBWdOgKAqevq6j2ep4hcJwwYLDu6Ge5u3k8dpwjK+hKpdIhITkbvUhHQ6H3wGUqz6Q2liSPH7y6MiD2rPEayyJICOpWaNjhH8dRc0zGTqGONXGkn+DLqjLAREEYQo39r0LgJzCyUZBTyILoU4pCiTE5Y1wlSUSLh6Z8UCtltMpxxBRh+EieBOTBZAxyIcF4KETQcdas27UxnYgoUJ/SLnWah0ZN6R1H5cEQZRXyFiyEOowir7K3iWEqdwNnPndPlEPyIoiyRBRGUgydCx9Uwca4lKj9tqESLo2amToGKbRUf9Xu7RGMhbhVXuWQmVcbIIgiCBAxpKFUFfX9hZ+CGRoUSeKOxnVnEUMntIVwKUM8ip3Fduhxn8c9YCsKHK8NupQoQxD1tMQ0Y/W2JYgsBRSwpmqE5f1g4AgCMJoyFgKEi6OhXTV3gue2C3PUBOqsj5YNZ1ECCmlo19DRDCvSsYAqnVYKDzpYn4JdRrt/fLdnutaayYIcNw/JtgqaoOOx0PnIIOKIAgLQMaShdAkeBsQhpPhbVDrWDzTTD9GhgoBSZ4llUtERj+GlFoPTUo/hqgNOmsaGWoPHY9BRxBE+eOaDm1RpXZts9XQQKUDLITGWPIy2AUytIRoBlD9VoN6fPPmWQpMR7X3ywAdS2kVUDgzRLKx5GHQ6ddRnQPEl1flu69LX4vSEh0BXCu1h867p9Nai+oSBBFcGra9ASOXFi/J81TLRJO1KYE8SxZCE+Jyehoiw5umo0KImA9CnejrbfzsWOOy0PgUovEsOf6pYVTCQ40uIDbMc900X/gb5G9NuCSWV1Xaa1Nq5z71s1AlQqz6uLofQxyeX5vutS8K5n75/vtttS+hRqSYjhpDxMs3+846WYLX2vffO9TIQe0o74U2mTLV4UwvB+hbL0tIHkEQZYsbenU3WwWvkLFkIZwehkjpvwOtq3mvVM2Uqc5j8TL4ta8hKE/jtfEe4kqsIbbgqlqmNx1vqJYrJq/UZ2863qpapJjHB6PpRy/fmhaV8zw3+pLHcdCeV3mvnM5C7ajxZnQ2rqhdQsefCqVFeHME3SNo3KhlevMs1S+1sK6MPDuCB+pngvAFGUvBgiNxRn0xnIzkadH8G3WiuIw0KG1oxtOgCwSHw7f3S1ye/Hwgp9PIfgTEFzzxJMRgHWWgNjqdDNcV2UcEQVgNMpYshGaAc8iZqi3bWNJW8PZuvImqrfU2BKJVKXmq94Gsu+YN8X70fVT9GUVeZPrxLIlihI7qa0P53VaCcsUIwhdkLFkIzzCc52iizxDRX2ep9K9+GXWWtIM8o5GAkqV19JpGLNiRmn6U8K0xYka81qDzfgA911qGyjw60sBNEITVIGPJQpRyLPkd0HkGr4A8Sz4MII98IH/H5zhcIDr6Oq4xhohavgFeGz8iufKqAjDofPajx1/1GzFaHf2fFRWuJAjCCpCxFCRciv/MmdJhODnho5L33GEPH7kqjlLeLxk1jAIJw/lqVjrwJmO4dRqa+yXLa6OWz9Hez3GN8SyVvGfpSOYRQRBWg4wlC6EJw0FOMUXN4KRfnKcMLyOb+UnopeTrFylsdPprYkg+kGTvF89sOFElNfcjeY0IgrAJZCxZCO3YIWcgcajksEMz/McqPWDKuIEC8n75kudD/hXEDRFjDTqv5y2cV8Vzrfnx6EcvbUT7MUSyQUcQBBEMyFiyENpZXPA6OnUQrIuk9Sx5H9rqxGjr7/jMWSptLHkJ2bWsEnjNIVYSeoNYrY4iOUveZDZQ1fPhGbO1HhHvba6J4z9vj1ChFx2rVyhS/Z1DJkeI69pKWh1996P2r94qwFcIFTOXePrxuiq5qjb0iCIIwnxs9yQaNWoUUlJSkJOTg127dqFdu3bMttu2bYOiKB6vzz//3N1mxYoVHn/fuHGjdL0VnjpLpQYjOV4b/x6RhrH8VZhLD/Jy6iL5nyHVrFTRR9+5Nubo2FqgeKaHZykgrbTwJKF3jFcVDHX47sfS958MR1Dp0hPeuCVBrKgpQRCE0djKWOrfvz/mzp2LGTNmoHXr1ti/fz+Sk5NRvXp1r+3/9a9/ISEhwf1q3rw5CgsL8dFHH2nabdy4UdPugQceCMbpeOAR4pIyyMuV5+m10S/TweFZEqH0TS07VMibPM0rz9vnQJBdr6q0TjJCpBodKZWbICxLzcaNcMvA/marYRlstZDu+PHjsXTpUqxcuRIAMHLkSNx5550YMmQIZs+e7dE+IyND83nAgAHIzs72MJby8vKQlpZmmN68eAzyEgwH9XAkWx7ADu0FKlNG6QBPo1OuASa7uGexTAn9qDpxrrAdxMKZgSyc63FMh/f3BEFYi6c/eRcAEBoRjm3/fc9kbczHNp6lsLAwtGnTBps3b3ZvUxQFmzdvRmIi38rEQ4cOxQcffIDsbK2b/9Zbb0VaWhoOHTqEN954A1WqVPEpJzw8HLGxsZqXDIyYxaUWImcKfSnxEuoDiQ7y/ihtwEkJH4kO8n7aGF06QE7IzHwdHWRREYSptOjSCbc9+jCSNnyMuOrVzFbHNGxjLFWrVg2hoaEeHqC0tDQkJCT43b9du3Zo2bIlli1bptn+5ZdfYtCgQejWrRsmTpyIzp07Y+PGjT4TS5OSkpCVleV+nTp1KrCTKoURa3Hx5IiIYPggL1meLJlqoVKMztLiJcs0xDCWIFM9O5PMIOIKMVUqo2bjRmarQTDoNeZRVKtTG4+85hnBKS/YKgynh6FDh+Lnn3/GDz/8oNn+4Ycfut//8ssv+Pnnn3H8+HHceuut2Lp1q1dZs2bNwty5c92fY2Nj/RpMCsdCb6JeGx5kGyKiAyiP+SffoGPLlyFT9nUxSqZueQbIF+1HnokRhDycoaFwFRYG/bjT/+8LOBwOzLlvME4fOhL04xN8xFatbLYKpmEbz9L58+dRWFiI+Ph4zfb4+Hikpqb63DcqKgoDBgzA8uXL/R4nJSUF586dQ6NG7F85+fn5uHjxoubFS/PK7OnlpcNHPBcnMsR3ZXDNL3nOwa5JJX4decJw4U4/OgZg0DWKZesYyCDvbVo8SyZvFK5e6ZIMKgIx6PwtCSxqdDoAXBXNngkZmBfRj46aa+1fIoXhgsfdE57Ay3u/Qa/HHw36sa9c59Z3dA/6sQmCB9sYSwUFBdizZw+6devm3uZwONCtWzfs3LnT57733XcfIiIi8N57/pPUateujapVq+LMmTO6dfaGr+TgQLwNXWpe5j82Z7sqEUXMvwUS4upQw/dU8EASvBvGyR3kb6jqu35VIPlAvkoJeNZZ8i+vdI2k0qgrYvOaGF1rse+fQAy6ejG+y1CUXtKHsA6d/z0ADocDtw1/2GxVCMtSfr+0tjGWAGDu3LkYPnw4Bg0ahKZNm2Lx4sWIjo7GihUrAABvv/02Zs6c6bHf0KFDsWbNGqSnp2u2R0dH4+WXX0b79u1Rr149dO3aFWvXrsWxY8eQnJwclHNSE8gsq4rhbMMGkJ/0G8gMqbgwP+viGZ4P5F/HmFB/Hjrv7wPF0xDxr2OUiI4GLPbLc60r+PV0suUTBEFYFVvlLK1evRrVq1fH888/j4SEBOzbtw89e/bE2bNnAQB169aFy6V9WDdu3Bi33HILunf3dO8WFRXhuuuuw+DBg1GpUiWcPn0amzZtwpQpU5Cfzw6hBILi4lhINwC5IgMOz4DsDyMSkx3MDwHKCyQfyF84UfKMPQ9DJIB9PP6uCXHJnebPc/xAZBIEYSf4nisV42vgrvGjsfmtFUg7/oexKgUJWxlLALBo0SIsWrTI69+6dOnise3IkSPMX9m5ubno2bOnVP30IDobjjcvRaS9PwyZsafSS0oBST+f/bX32sZoQ8QAA0xve4/8NEH5Xo8p6OmkxXYJwpPwqCg88tpL+HHtBuz5/Euz1fHgif8tQ8Ua1dGiSyck3eg5Ll+her06+PtPObPJjcZ2xlJZJpBxwd+wbfhsOMmDvBTvVyCJyX4O6xni0qdnIDoKXWuLztiTXd6AIMojD8+bicYd2qFxh3aWNJYq1iheVSO8QiSzTZu7euLBWdNwKeMCUo/+HizVAsZWOUtlnUCMJaEwnEWn5UPyIO/Rj1LCcCr5HIaSf68NW36gMrVGp36BhtRZknytCaI8UqNBPbNV0E33kUMAADGVK5mrCCdkLAULjnoxMrwqvpAT4jJgkVrGexnyAANuciO8NvpFljJE5C9tY8VaUET5oUXXThi+eC4iY2LMVqVcQeU7iiFjyUIYn54hI8Ql1t6MvCrP8JHkNc10S/OWDxR8Hf16vzxChXInCPDoSDlLxBUeeW02mt6ciCELyn4V6Wa33uxzFQki+FDOkoUwelyQId9oHY0xRPQTSC0oboEwJ8FbVJ50Q5bsICIAajSob7YKhjJ65WI0bNMKpw4dxdz7BpmtDlXR/wcyXS2E0WE4OWO8sbPhDPEs6RcpLE90gWHpOkrIajdCR7KVCF84HDQkNWzTCgBQu+k15ipCaKA700IYPXiY5b0QOa4RfSB9zTQj6izJ1tEAIVKMRMnhTIIgiGBAxlKQcCn+i1KKDpiy6+pwyRAWIlo7Sr7nyl/YjMdbJu4RMdlrYwODjmvCHnkayhUKx3OSIMyAnkTlCDtMajBiNpxszPLaiMqULU52GNcGtyNBEAQAMpYshfGDvPzp5LIxx/slX76w10+yR82IfpQzY49MJIIg7AcZSxaCZsNZc1ZYaaFGeL/M8KiJG3SCO3g9JnmWCAIAKtWMx+2jhyM0MtxsVQgOqHRAsHCZX5TSqrPhtPJ58JcPZMCMPfV7KQUf5Zc30MgzwBKRLpJDIJWaIcoqE9e+j/AKFdCoXWssevgxs9XhpPz+xKFHkZWwQQ0jw3W0Q9KSBIxYd00jT1ojVXPJZR1scJkIwjDCK1QAANS7voXJmhA8kLFkIcpq6QAReNZd80dA5Q0ktzVlpqL6vR08SwRhAnVbNMNLP/4fHpg51WxVbEj5LVBJxpKFoARvexh0dpiWb4xBJ/f+IePL/twysD+q17fXoq6D5vwHYRERaNu7l9mqEDaCcpaChIsnZ0m4zpJoDSMx+TJkGFJk0t/fA3Dr+OtJWwzyNgiRinq/aH0s63LHEyPRbdhgKIqCp6/raLY63ISE0bBHiENPIgthh+rYtigdYPA+pnm//BbXVL23ahjOspYmIUqLrp0ByC0HQUVICatCd6aFMHymmeSp30ZgVR2FE5MFlv2QhdHeLzsY2wRB+Gfi+g8xZfPaoByrVtPGmLzxY7Trc2dQjmcUZCxZiEAGUJEFoW1R8FGGDDvoGMhOIrFCA3SwQz4ZYT7hkZF48buv8MT/lgvvS8udGE9oeDhq1K+LSvE1cHW71oYfb+SS11D1qtoY8MJzhh/LSMhYChY8a8MFIFZkAJNRUNLw2XASqmNboTij9LwqDqHqPxtRPFSKTOFyBWRe2Y3bRw9HhdgY1G3ZzGxVCG+oRn1niPEmQGRsjOHHCAZkLFkIOwwLpCOhB7o2ZZ/Q8LCA97VDztLDr83GsEWvmq0GEWRoWoCFsMOPaEvoaEI+kB0oi6ftNHp9HcI0wiMjERoRjuzMLLNV4SaqYhxadu0EAKhevx7O/XHCZI2IYGF9M74cYYdxgXS0LlYo6+CP8nptCE/+s2sLXtiejMi4WPc2q+cshUVGut9XiIk2UROz8P0FjqlSOUh6BB8yluyMDQYeq87KMho76GgEss/bYZJ15XQ68fzzz+P48ePIzs7GsWPH8NxzngmqM2bMwOnTp5GdnY2vvvoKjRo1MkFbGQS/n6/kyzS7JdEQ+aHh4eg4oB8iYwLLmaEaX2IMmvMfzPh6A/rPmGy2KoZAd0OQcLmM+sVk/fLz5dVwkI30fqQLw2TixIl47LHHMGbMGFx77bWYOHEiJkyYgLFjx7rbTJgwAY8//jhGjhyJ9u3b4/Lly0hOTkZERITh+jW79Wa0vrOH4cexM48ufR39nn0aE9e9L7xvZFwsXtrzNaZuWWeAZsFj4roPMOyNOZptTtWwL54jxh5vru/RFQDQ/l+9BWXaA8pZIgjCsjhNSkDr2LEj1q5diw0bNgAATpw4gQceeAA33niju824cePw4osvYt264gF10KBBSEtLQ58+ffDhhx96yAwPD9cYUrGxsR5teBm64BUAQMq+A8g4dYZrn8i4WORmXWT8VYER1rPT6cSMb7/E5YwLeOmu/tLl+6LBDdcBAOKqV+PeJzImBrmXLqHLww8iJDQUFWtUN0o9w+l4f1/UaFAPNRrYazkaq0KeJYIgiFJ899136NatG6655hoAwHXXXYebb74ZGzduBAA0aNAANWvWxObNm937ZGVlYffu3UhM9B5WSkpKQlZWlvt16tQp3XomNKzP1e6Zz1bhPzs2oVXP23QdLzQ8HHc+OQo1r7maq33r3r0QFReL6vXq6DpuMKh5zdX4z86vMOObjWarIoUKsXFet7tQEuUQzxErv+5oMpZsjC1uWxsoWV7zquyAWXkjL730Ej744AMcOnQI+fn5+OmnnzB//nz873//AwAkJCQAANLS0jT7paWluf9WmlmzZiEuLs79ql27trEnoSKhUUMAwN1Pj/XT0jcDZ89A1yH/xlMfv8PVPiQ0REi+maUDbh8zAgAQU7lSQPtXrVMbTW5qL1GjskdUxTgMXzwXzTrfZLYqwlAYLkhYfJJHuac8Gjfl8Zx56d+/PwYOHIgHH3wQv/76K1q1aoX58+fj9OnTeOcdPkOhNPn5+cjPz9etm5mJx1e3vQEA4LBY8nOD1tcjZe9+U3WYvOFjAMDioWNx7PsfTdXFG8MWvYq87Bx8OOU/OqToy5EdtmgO6l3fAk1vTsS5E3/qkhVsrHXHEwQHthjkbaGk9TGrZtYrr7yCl156CR9++CF++eUXvPfee5g3bx6SkpIAAKmpqQCA+Ph4zX7x8fHuv5U3al5zNcJVU+sDIZDSAeM/egdj3n4Tg+fNQtObE/Fs8qemei6uv72r5nP3kUMw6fMPER2gx0oGtZo2xrWdbkKrnrchNCLcND2qc+RPWbVqPxlLBAE7zCkkgklUVJTHDNaioiK3VyclJQVnzpxBt27d3H+PjY1F+/btsXPnzqDqagWa3NQeT3/6Hl74blPQj127aXFeWctunTF04SuoUqsmhrz+ctD1UFO5dk206NYZANBz9HBUr1cXD8+bZZo+0ZVK8pes5hX0x7W3JKJuC/OXzrFXrwEYNWoUUlJSkJOTg127dqFdu3bMtoMHD4aiKJpXTk6OR7uyUyvFeljzN4In0usDSZZXXjEr5LR+/Xo8++yzuOOOO1CvXj306dMH48ePx2effeZuM3/+fDz33HPo3bs3WrRogXfeeQenT5/GmjVrTNHZTDr9ewAAIDQs8KVOAP05S86Q4hwpsw2CZzd+gkfmv4S2vXu5t8VWq2qiRiVY1XNzBUW1Onx8owYY9sZcPPG++KLMsrFVzlL//v0xd+5cjBw5Ert378a4ceOQnJyMJk2a4Ny5c173yczMRJMmTdyf1RcCKKmVMnjwYKSkpOCFF15AcnIymjVrhry8PGm6K6CkJcJaOMifxmTs2LF44YUX8MYbb6BGjRo4ffo03nrrLTz//PPuNi+//DKio6OxZMkSVKpUCdu3b0fPnj2lPje8YjPPQHnkikHS5u5efloSvri6bWuzVXBjq2/d+PHjsXTpUqxcuRIHDx7EyJEjkZ2djSFDhjD3URQFaWlp7tfZs2c1f1fXSjlw4AAGDRqEWrVqoU+fPgafDREoFv9h9A9kiMjArArely5dwpNPPon69esjKioKjRo1wpQpU1BQUKBpN23aNNSsWRMVKlRA9+7dcfToUVP0LStYfbkTwnis6vmyjbEUFhaGNm3aaOqaKIqCzZs3M+uaAEBMTAz++OMPnDx5EmvWrEGzZiWxz0BqpQDFxeViY2M1L4IgCKJsIGvAliGn2a03IzTcvKRsohjbGEvVqlVDaGioUF2Tw4cPY8iQIbjnnnvw0EMPwel04rvvvnPXNwmkVgpgTHG5QLCm/R0M5Hptym8/Wh+zKnhbGVqzrPzw8PyXMHTBK5i0/gNpMs3O5/JH6VQZq2DtXtPJrl278O6772L//v345ptv8K9//Qvnzp3Do48+qkuumcXlCEIWZIcQJVjzZqhapzZuNGGtMd4Bu32/u9Fj1DDdclg073ILAKByrZrc+7S+swdqNW2s67hqrBoWCza2SfA+f/48CgsLddU1KSwsxE8//eSe7aaulaKWER8fj3379jHlBFJcTjFsIV2CIIiySdIXH8HhcCC2qrkzyeKqV0Ohl2d+/+nFdbeO7voh2Cp5pUW3zhj40gwAwIbX3jTgCMYbTlY1zmzjWSooKMCePXs0dU0cDge6devGXdfE6XSiZcuWOHOmeOFJqpXiDWu6QNVY86ukxQ462gGnSQnelkb11JYXUrHm9/7KwHlDL31r2ukhqmIcpm1dj+e//ZLZpmZj/nIzMVUqy1DLK9fddqvfNqLGiFXDYsHGNp4lAJg7dy7efvtt/Pjjj/j+++8xbtw4REdHY8WKFQCAt99+G6dOncLkyZMBAFOmTMGuXbtw7NgxVKpUCc888wzq1auHZcuWuWVeqZVy9OhRd+mA8lorhSAI+1G5dk1UrFYNf+w/YLYqZZJGN7YFIMfj8dQn76JW40b45D+v6pYVKPoMbOMNJ6saZ7YyllavXo3q1avj+eefR0JCAvbt24eePXu6ywHUrVtXU3W3cuXKWLp0KRISEpCRkYE9e/agY8eOOHjwoLuNabVSCOtAK+laFqu65K2C4nLhuS8/BQC82u/fOHPkmMka2Y9rOrTFqYNHgnKsWv94oHqN1Zc3SwQfWxlLALBo0SIsWrTI69+6dOmi+Tx+/HiMHz/er8xp06Zh2rRpUvRjobiMsZbtMJRQ8UM5UJVxwhctu3UmY4kHlQHe4d57cN+0SSgqKMRv335nolJ2ofw+NWyTs0QEBzsMyHb4utpBRztAOUueOMvwY1vvcieidLz/XwCAkDDb+Q0CxqxCr3an7H7rbIxIzJanpRExYNkySUeOtgbINEOeUTIJ+2Bqrahyfu9ZPWfJqpCxZGMcDvJglCfK47WmnKXyhVWWO6H7zhjs3KtkLAUJqrNEEIQULF6BmQg+90x4Ak1uas/V1kHDfkBQrxEabGH5G6Ck7B+StuhHA5B93pSzZA+EPTEMg48nZykQr0/1enXw9KfvoW3vXlzt7RQmvuOJkej07wEY8eZ8rvZBTgvTYJ9e9YSMJYIop5AZYi9qNm6E+Ib1zVbDljy65HXUvOZqPDBzalCPG4xw3tVtWxt+DIKMJaI0NhhB7TBjj5CD1Rf9DBaRcbF4+pN3MWHt+whVzdyySv/I8sTw5CwpioIuQx7CjK83oG7L5lxyY6qqqmbrMGBoJln5Pf/yM1+SIAgt5fe5ZztqNmrofh8RE22iJhxwGCN6Z8Pd9eRoAMDwxXN1yRFF1DiVGc67pkNbDFs0Bz+s3aBLjqkzEW0M9VqQEJoiLjmwKyKPd/w0U0dzZfIJNasfjcDMa1Puf8j7obxPHAmvECm+kx2+dF4YNGcmQsPDkXhfH32CdCUt2bPvZEDGUlDhrpRj0nHNlGkHHY1Afk0k3rGA3w4pr9eGCAibGiM8mDmTLCQ0xBC5DVpfjxvu6G6I7LIEheFsTHn90W2m94s73aG8XhzJWCUnx0rQ1G/zMHMmmSxKzzAd8/abAIC//zyNTv++H/Wvb4GXeg9g7F1+H2xkLFmQ8hjissePUQWyHxbGnLdcPYV05DysPa53eSLIgyDD6Aj2ciflEkZs+5r2bXFDr2IPU++nxgRTI1tAd2aQKK+5BVQIl9CDk24gwgRYU/7LS3J0hbhYxl/K76+c8nHlbUZ5XNvLDjoagZk68oczBXTkbGqHa2NVjHG+GH89eAyNoCx3oscALwOeL6fqHIwqAloWsf+VtxFG3HK2qDlk8erYdrguRsmUjuxrTU8oWyA6oDotPvSUaWNel/Fji6eQIVj7ji2nyPfaSBVniEwzp/nzy5MqzjYy7XBtiLJBUHKWdNx7ZW35Hd4ioAQZS0HDqDpLfE3tMPVbfjEoe3zHBe4LA7UI9pH56yzRI8oOcD3fykK+j02NJbURqm+GqS0eqoZQBu7e8g3PV7e8ei/sgBEFQ/nlcZra5fTaWBUrJhnrWUhXPZArigsP/GcKntv0GcIjAyg4aVNCw8PRqudtuq8tVw6SLoPPnsaiDKh0gAUxM3ma95lnqo7SZcq3BvgNEetbImYm39NaXOWPtnffAQDoN+UZkzXRD68R+dQn76JG/bo4/sC9hugRlMT5Mo71fqKUYYyYfcTTkmaaWVOeqExu009yCW87XGvCXPTcI+qBXO0ZiapYUZdORiArLFz6q1ejfl0AQMPW1+uSGwyjqFnnmzBy2QLEVKnsv3EZgowlC2JmaEa2l4XXwwLI9wSVtTG+rPhYipdk4bs45Fjygk3zuCwTPtRVOkBsXyv+0NBXCkDB0IWv4pr2bfHoktek6WQHKAwXJBSXS2C0K1seETPk/SOVu6WIUScTKz5MS2NEiJQQQ52Ua+cZWTf+qzcUlwsHNn/t9e9lLVzEMkzM/Nbr846VnE/VOrX1K2MjyFiyILIXQjXCU2Wu94sP7n4UUJB3fTj+3C/+Y5shzyiZvNDacGWH6MqVcP+MyQCAYz/s9drGKqUDWEYOz/0Y7CKOVDQyONCTyILYwWtT1jwiZlFedbTBaVsKzXJJNvUsVaxR3f0+qmKciZoEjuiEA0t+v3WG4corZCwFESO8NnZAdhK6Wf1YrKPVL44i3TNpDLw5S/Y0DGRjvIdNYj9zXDNmeMoiYTiu5xHzHIL7jBA9nmVyx2wG9VqQcAkVpZQb43K55H95RWSaF4azumEjeG0c5pRCMOL+IQInGIU646pXw8DZMxDfsL7hx7IizDBcuTfezTt/s408ylmyIGWrhhGvPIHGptWC4m9rVj8Wy5Qtzzwdqc5SMZownDFHgPqufeJ/y1EpoQZadO2EpHZdBEV5v7g8g11QcpZ0UCYqypeBUzAD6jYLQjlLciiPhgit41Y20YThguDdqBhfnF/EW0XbVh4Xja6Bh9LM9nQEij6DtPw+C+x5tcs43GMTZ1jGzBlSRnhYzPTayMbUmWac7cw0wChnyZOyMEOQ5aGxSs4Sk3J4P1rGEDb5vrf/t84uCOR9kGdJDvJ1tEs/Wv/+IcQwPgynD1vdIxpdvettGQPBcpTffiFjyYLITqiVnTAuLJNLnlRxAADZ44tdQlxWDxUWy+RrR4NWMWpvkhXzuLiuE8doY/mcJbV3w9qqalD3q6hn0laGsIHY6HIXM2rUKKSkpCAnJwe7du1Cu3btmG2HDRuGb775Bunp6UhPT8dXX33l0X7FihXu5ReuvDZu3GiI7uYlT5s7G44Pu3ht5GKqYcyJMbPhrH9trIovw2Tsu0sw6/ttxtUx4nmICVZttaKBxPweaVLHrFegkge9y52Yhdk5Yta7S33Qv39/zJ07FzNmzEDr1q2xf/9+JCcno3r16l7b33rrrXj//ffRpUsXJCYm4s8//8SmTZtQq1YtTbuNGzciISHB/XrggQeCcTpMuFdkB9+zy9RZXAZUspato4g8I2TyIvuxy19l3DzPkp2X9pAJbxiufquWCK8QiT6TnjRYIy2y7hGr5CzpMSisaCDJoyyfm29sZSyNHz8eS5cuxcqVK3Hw4EGMHDkS2dnZGDJkiNf2Dz30EBYvXoz9+/fj8OHDGDZsGJxOJ7p166Zpl5eXh7S0NPfrwoULQTgbNnbIMbKB08YWniU7hPbssCRLWUezNhyHRyMkVF5VmOtv74ZX9m3HfdMm8VaY9bqZzxNjbW+NaDgr2M8gVv+pQ7dW9OTZAdv0WlhYGNq0aYPNmze7tymKgs2bNyMxMZFLRlRUFMLCwpCenq7ZfuuttyItLQ2HDh3CG2+8gSpVqviUEx4ejtjYWM3LHy6BBBqRsIfs6tjcxzUgVChbTVOLKRrgtTHrbMy8f8r2r/QAEeiT6MqVdB/uwZlT4QwJQYd779Et6wrqkErQrzHH8dT3p8bQ4NBbs68F71/b2kom622bbqtWrRpCQ0ORlpam2Z6WloaEhAQuGbNnz8bp06c1BteXX36JQYMGoVu3bpg4cSI6d+6MjRs3+oyPJiUlISsry/06depUYCfFwA6rvJfHWVxme4HMXeZFqkTJ8so+gcyGm7plPZ7/ZiMa3dhW38GNHvAtmHBsRSOHB+PDmPr63p69WoxtjCW9TJw4EQMGDEDfvn2Rl5fn3v7hhx9i/fr1+OWXX7B27VrcdddduPHGG3HrrbcyZc2aNQtxcXHuV+3atbl0MG8levkDMq/XxszcHSOS0GXXlzImwVvutTFiaRuq4C1GILWVKtaoBgC4c9xjstUJCOY5qAzBoOQsCT5gFZd3TxFPOMsqqQCa8KEu15L2+9j2njvxXPKnqNuyuQ6Z9sA2y52cP38ehYWFiI+P12yPj49Hamqqz32feuopTJo0CbfddhsOHDjgs21KSgrOnTuHRo0aYevWrV7b5OfnIz8/X+wEBLCDR0QkrGgWxvSjXJl26EdjdLTGIGJHjJkVpM8oleWJsUo+Dc+zg0dVK3qoZOYvPfDicwCAR5e8xtVez7feabJvxxp3JgcFBQXYs2ePJjnb4XCgW7du2LlzJ3O/Z555BlOmTEHPnj2xZ88ev8epXbs2qlatijNnzkjR241QzpLcwcnMnBPeI5sd4jILIww6Mz2TvPm/Nrg0lkIThrPNU9sH6nOwUUVyWcac9UwoXrx/ccOjKgRZj+Bjn7sUwNy5czF8+HAMGjQITZs2xeLFixEdHY0VK1YAAN5++23MnDnT3X7ChAl44YUXMGTIEPzxxx+Ij49HfHw8oqOjAQDR0dF4+eWX0b59e9SrVw9du3bF2rVrcezYMSQnJxtwBnwjhB1WeZcdhhMJcfEKNSLEVaaS0DkxIgzH+12g5U6KMX6JE333IZcnhiux2hqeVlkeIav8YFOfjtrgs0p/s7CSZ842YTgAWL16NapXr47nn38eCQkJ2LdvH3r27ImzZ88CAOrWravxyjz22GOIiIjAJ598opEzffp0zJgxA0VFRbjuuuswePBgVKpUCadPn8amTZswZcoUQ8Ns/rBDoULZOUbGhAqt8aDyhdnXxgx5xTKliyw3WCVUpcZKg5qRqLtez3Ww7+1fPq6zN2xlLAHAokWLsGjRIq9/69Kli+ZzgwYNfMrKzc1Fz549penmDyOKKUaEyP3aGZGQHe7kCs5wy+NFRMcwLh35MaIfQ7mEmtuPIZyLO3MnoZeTQdgf6jCcqQvpSroczHpAwTAEBUsHaHcVW3bGivcvy8tkRTT3OlXwLh+44EKHGtl8bQU8IrFh/t2oIvJuqJbD1U5EZq3oQg553OLQrFIuVzsRHZtW8u9JFJlpdnVcnv9GENOxbXX/10bEY1MnuoCrnYiOXWpd5mpHniUxTDWQONDjfbSgPUEVvJmU3y+utb+BZYw21fgGedlLaohwI8eADBg1LZ9PZocafDqamTzduqp8g44X3vNuUcUcHUVyv2i5E09MHYwZ141HJ76p9tYrHaBGdCaZZXKWNAsxiw372mtbfr+PARlLFStWxNChQzFz5kxUrlwZAHDDDTd4rLlGBAZ3AToT1/aSP2NPqjgA5k7Ld3CGo4yY+Si/FhSVDjAbTRjO4qETHliDt1WWO+EKwzHUsHoFb80ixjb6MWL2QrrCOUstW7bE5s2bkZmZifr162Pp0qXIyMjAv/71L9StWxeDBw82Qs9yRZH0go+B68LCDsnTriL5hTNlG55m9qPDxNmZ3AadFQcbEyjLYTgrQvddCTKvrZ17VfgbOHfuXKxcuRKNGzdGbm6JG3/Dhg3o1KmTVOXKK4qZ0/J5Jdpgxp7LxGmx3AaYiWE4bnk2MIyNoFatWnj33Xdx/vx5ZGdn4+eff0abNm00bWbMmIHTp08jOzsbX331FRo1amS4XlZ0LHGF4STpHfTFaRneFysupMtEdX30eWgscj4mINxr7dq1w1tvveWx/dSpU9xrtJVLBMZtF/cio5yFIY3wLFnlIeAD+bk2UsUBkN+PIuJ4fzwboSN3Xp5JYYJKlSphx44dKCgoQK9evdCsWTM89dRTyMjIcLeZMGECHn/8cYwcORLt27fH5cuXkZycjIiICOn6lLUwHAur1P1hh+FYH7xTFjxUMnOWRJ8kmqOZHDIUDsPl5eUhLi7OY3vjxo1x7tw5KUqVd1xFfA8MsenpisAe/rFDwUf5HhGBfCCTCmfaYf06Izydspk4cSL+/PNPDBkyxL3tjz/+0LQZN24cXnzxRaxbtw4AMGjQIKSlpaFPnz748MMPpepjqzCcrplk1igdwNzV4teBC8H17YhihHtq3bp1mDp1KkJDi+0sRVFQp04dzJ4926P4IxEY3NWxzUzwlm7QAfLXXZNrNYjoyG2IcPYjL3bQsRhrV/C+++678eOPP2L16tVIS0vD3r17MWzYMPffGzRogJo1a2Lz5s3ubVlZWdi9ezcSExO9ygwPD0dsbKzmFQiaGVk2Gry1ydEOr++DDyPExqEfTzgr6CFDhvHj1CTUi/W3ZUKJJiP8TXvqqacQExODs2fPokKFCvj6669x7NgxXLx4Ec8++6wROpY7uMNwnPLsET4yImdJvkeEF25DxMwHkalhOKkipdOwYUM89thjOHr0KG6//XYsXrwYr7/+OgYNGgQA7pSDtLQ0zX5paWnMdISkpCRkZWW5X6dOneLWx/gwnMSFdLmWPjHRyNNz82krOnI0t0gYTpoexn9xNX2mMuzMXvpIOAyXlZWFHj164KabbsJ1112HmJgY7N27F1u2bDFCvzKDyPRr2V4bI25w3vMRub+lr7tmgNdGfhiufJYO4M5ZMukB6XQ68eOPP7p/AO7btw8tWrTAyJEj8c477wQkc9asWZg7d677c2xsLLfBZIwHKYAvnKwK3ozT4clZkntPeO8D1v1p9vR1f3D1H/yXP/C1d3kl4OVOduzYgR07dsjUhfgH2YaIISvRSy9vYP1aUCKFM7kllsvZcBZ3KwE4c+YMfvvtN822gwcPol+/fgCA1NRUAEB8fLz7/ZXP+/bt8yozPz9fypqToknGPiSp3uvLaZR1zwXf4+Q/DMfckyOcZZUwHLO9BY0/q4b9uIylsWPHcgtcsGBBwMoQxXDnLHEOOkbcfEXc3i+RY8vVk19HPoz4DvPqKIZcQ1a2jnaYDbdjxw40adJEs61x48Y4ceIEACAlJQVnzpxBt27dsH//fgDFnqL27dtj8eLF0vVhrQ0XdE+HngrejOrXop4iU0sHqHOZbLQAhjbPTc93ypqGTDDgMpaefPJJzefq1asjKioKFy5cAFA8zTY7Oxtnz54lY0kC/MYSH8Z4beQmobtc8mdI2SKvysRZhfxVxsvfA3LevHn47rvvkJSUhNWrV+PGG2/EiBEjMGLECHeb+fPn47nnnsPRo0eRkpKCF154AadPn8aaNWuk62O8B8Aa4ZXglw7wH4bTJHsLGhrBDiOz+k+eYWf8+aj7zKlZuNgGFbwbNmzofv/AAw9g1KhRGDp0KI4cOQKg+BfX0qVLvdZfIv5BJGeJ84EhEoaTTRFvqFD+obkxos6S7L7k7UdehPKqOGXK1hHg19Gs0io//vgj+vbti1mzZmHq1KlISUnBuHHj8L///c/d5uWXX0Z0dDSWLFmCSpUqYfv27ejZsyfy8vgWUQ4YwSRjNvJuZtHSAcxCjxYpHaAesEV/JFkmqZuBQ9r9E8CxRdtbqC+Fc5ZeeOEF3HvvvW5DCQCOHDmCJ598Eh9//LHmYUIEhjHeBtnT8o2oBSUXO6xpVh51NOJ+NIIvvvgCX3zxhc8206ZNw7Rp0wzXhXu9SCHk5SyJLqRrp/o+rHOzYs4SC1YYzooJ6+o+s0r/AQGUDqhZs6a7xpKakJAQxMfHS1GqvMObI8L9q9vM8JFQErrVc5YMCBWaGYbjlGnM2nDWng1nZfTUzAkKwp6YYOdd+dePWcEb/nOteBbSDfZVk/c90vcs0LO32c8C4bt0y5YteOutt3DDDTe4t7Vu3RqLFy/WFGgjAkd6Qq1UacXIzqsypryB3LwqIzB1IV2Tqozboc6S1dDka1gwyVg8VMWSY43lTvR4k6yOvjBccHOWzDaQ1Ah/04YMGYLU1FT8+OOPyM3NRW5uLr7//nukpaVpKtwSgWNMdWy58IZmnGauX2fiLC5e5Ie4rK9jsWHMOxvOGsaAnWEPOPLuE6ZxoRn4VNsZ19WK4TmWTnrCcDK/obpmIpYB4y9YCOcsnT9/HnfeeSeuueYaNG3aFABw6NAhHD16VLpyZQmhopSySwcY4L0wYv06O4S4ZCN/KRF+HXmfk0Ysd0KepcCRNw2cb1+HJG9CWTB8Rb0eZS8MZzzMEKgdZsN54+jRo2QgGYT8opTyE2rl197h9zbwYofEZDNrGPFipo70w7cYByP0xjMISr0fZF0PzXR8STIlwh6wrXdD6pmtJx7GLb+/coSNpeXLl/v8+9ChQwNWhihGep0lA25w7uRpE6uMG1PwUS7ydZTvobNDPxLGwfP8YBoXDu+5VppZWKo2QVnuRNKabjwhQ8uE4dS6Ck4Q0MoPbs6SlX4tCRtLlStX1nwOCwtDixYtUKlSJWzdulWaYuUZ7hpGZhoiNkjw5tWRFyNChfJ1NMCzZGIpCzuFD4KFqdWYdVTwZk5TVxlI1sxZCjzh2Cr3r1X00IPZ5yBsLP3rX//y2OZwOLB48WL8/vvvUpQq7xgx5V02/AnefPIMGeQLi6TKK8baoUJjZhVSzpLZsJYH0TeAWGQAFTSQdD8n9JQO0LFMi1Ho6Y+gh3E5sFJtJTVSzHhFUTB37lyPZVGIwLDFbDhDcpbkYsxMM6ki7TFjzwAd+WfDWWNAInzDdc+ZWDlaFC5DiDmjL/Dq34Eg7u1SvRf+flnTkAkG0nyeV199tddilYQ4/AnenDeuLZKnpYoDYEz4qDz2oxHer/K43lxZRnj6OmOQtkqdJQ3OwL1JVvE+afOUxIZ9M3OWtOvy2Ww23Jw5czSfHQ4HatasiTvvvBNvv/22NMXKM4WFcj1LRixSa4d8ICO8X+WxH43Jq+Jr61Q9LG+//XZcunQJO3bsAACMGjUKw4cPx2+//YZJkyZJ1dFqaPKkGTVzmPtyDdjGDIIavdWz+Bi/062Ss8T0CGkMJ8F9DYLneCxdLWPMMQhEv/b97kajG9tg1US5yxAJG0vqyt1A8a/Oc+fO4amnnsJ///tfaYqVZ6TXBzIieZrToOPFGK+N9StPy+5HwIjcL2usX/fKK69g4sSJAIAWLVpgzpw5mDt3Lrp06YKZM2fKVtCyWLHCsfD0daf1zkENn6fMGoad9n4QM57FZ/Tpe7bwXGm9z6/+05MAAGdTTuCrN+XZJMLGUteuXaUdnPAO72w4keRp2Uhfid4Qj4h5lad5ka2jEb9qjdCRe/061YO9QYMG+O233wAA/fr1w+eff45nn30WN9xwAzZu3ChVx7IE3z2hQI93STQMp90uVjpAN3pyfAS7yCrJyg4docRSkvQrI4Ce/qt9bROJmgS4NlzFihU9tsfGxmLLli1SlCrv8M7iEquObfGkX1h/NpwdErwB+R41qySh5+fnIyoqCgBw2223YdOmTQCA9PR0xMbGStXRamhnYXmvmWNJBGfxWSUMp8bByPfRU8FbJurvEsvY5FmOJhjwfOvZOUs2Kx1w6623Ijw83GN7ZGQkbrnlFilKlXeKinhr0PDJM+LXDW9eFS9G/AArlG4syTc6jelHa+sI8Fud6gfk9u3bMXfuXOzYsQM33ngj7r//fgBA48aNcfr0aTRq1EiyntaEtd5acA7ufbOuMJwefQJBoysr0VxlgDA8q1YMHxLGwW0stWzZ0v2+WbNmSE9Pd38OCQlBz549cerUKbnalVPkh7iMKEpZ/pKnjcCIUKHVrzUQmDk3ZswYvPHGG7j33nvx2GOP4fTp0wCAXr16YfPmzeXGWLIirJXsuTwDFiwPwZqFJeqhsUwYjpWnJOyZNP58rNJnpeHuqX379uGnn36CoijYunUr9u3b537t2bMHzz33HJ5//nkjdQVQPAMmJSUFOTk52LVrF9q1a+ez/b333ouDBw8iJycHP//8M3r16uXRZsaMGTh9+jSys7Px1Vdfmf7QlR32KJ76bfHQjMuABG/p/Wj9GXvFOlq7H0XCmeqH/J9//onevXujVatWmskk48ePx4QJE6TqaDU0hoaOaeC60XFr8YThgrLcifaIhh7PKt4nTRjX+wo0vJKk6BMIZifUc3uWGjRoAIfDgePHj+PGG2/EuXPn3H/Lz8/H2bNnDan0q6Z///6YO3cuRo4cid27d2PcuHFITk5GkyZNNPpcITExEe+//z6SkpLw+eef48EHH8SaNWvQunVr/PrrrwCACRMm4PHHH8fgwYORkpKCF154AcnJyWjWrBny8vIMPR8W8r02UsUBMCDEZeL6dfzIN+hk96MRyNcxcIPO6XSib9++uPbaawEABw8exJo1ayTqZn20ThxrDMYadFWUDvaAKOYREp1JRohj1T7m1uTkyZM4ceIEQkJCsGfPHpw8edL9Sk1NNdxQAop/QS5duhQrV67EwYMHMXLkSGRnZ2PIkCFe2z/xxBP48ssv8eqrr+LQoUOYOnUq9u7dizFjxrjbjBs3Di+++CLWrVuHAwcOYNCgQahVqxb69OkjVffwcP70MPl5LNYPcZm5fh0v9tBRvmfJEB05ZdZvXB+97rsNQHH4/+jRo3j77bfRt29f9O3bFytXrsTRo0fdxhPhiRUNKvUg6Az2cicc8M3u87+vJUNKDhM9kzaGawTv3bs3Nm7ciMLCQvTu3dtn2/Xr10tRrDRhYWFo06YNZs2a5d6mKAo2b96MxMREr/skJiZi7ty5mm3JycluQ6hBgwaoWbMmNm/e7P57VlYWdu/ejcTERHz44Yde5YaHhyMiIsL9mWcmzm23tfLb5gquIvmJybIxRkdre22MmVUo37MkP1RowKxCzmvds+u1uKVTM8R+tBnLli3DL7/8gjZt2uDChQsAgEqVKmHlypV4/fXXpepoNRxlYIAzZn27gBRRfRALw7E8Haxrwsxx8ntUuWhDb3r63rycJVYh02DBZSytWbMGCQkJOHfunE+Xt6Iohi15Uq1aNYSGhiItLU2zPS0tDU2bNvW6T0JCgtf2CQkJ7r9f2cZq442kpCRMnz5dSP+MjEvcbWXnJRuySC3njD1e7DAt35B6VQb0o/RaUCZe60IX4HIVP9BbtWqFtm3bug0lALhw4QKeffZZ/PDDD1J1tDKig52Z3g3RqfZWXO6Ele/Dci1Z3ZskvGuQlzspdXDNx1Er3kBRYSHeGv54cPUAZxguJCTEnRMUEhLCfJWXteFmzZqFuLg496t27dp+97lw4TKXbEUBd4iC16gyJB+IM+yaWyhSOVP2IM+nY1Y+74PEiBAXn47nc0O42hkTcuXT8W9OHUX6ccC0b1Ax4k4AwJEjRxAfH+/RpkaNGjh+/DjnscsWVsnpEP5eqD0xgsu36EbSF0SPR8yC5lRQ0GNq1WhQF1e3vQGNO7RDTJXK0nTixRrfNA7Onz+PwsJCj4dlfHw8UlNTve6Tmprqs/2V/0VkAsUJ7RcvXtS8/CHiWeJ98PCmNhkxi6uwgC80U6jwfT1cLgWy0954jSURHc3qR17njqLIX6SW/1rzyRPxLEWGhSE2NhaxsbFISkrC66+/jn79+qF27dqoXbs2+vXrh/nz52PatGl8Am2KmUndDo4hjlk6QN2Isa6aFXOq1PB4k0TPIOhhOMFSCGqs4imLiI5yvw8JCwv68blcQWPHjuUWuGDBgoCV8UVBQQH27NmDbt26Ye3atQCKL3S3bt2wcOFCr/vs3LkT3bp1w2uvvebe1r17d+zcuRMAkJKSgjNnzqBbt27Yv38/gOL8o/bt22Px4sVS9U9P929QXcHFeXMWKQ7w/EYxMx+Ie5A3caYZd5TJkKKUnDq6+B6vxhSl5O1HgSGAsx/ffe4FKM+WlCRxOBxYvXq1+zpcediz8gvLIsywkD6psgRp0XiN5IgMfo6TbXwKTDQGknp7kM9N9Mlkpa7nMpaefPJJLmGKohhmLAHA3Llz8fbbb+PHH3/E999/j3HjxiE6OhorVqwAALz99ts4deoUJk+eDAB47bXX8PXXX2P8+PH44osvMGDAALRt2xYjRoxwy5w/fz6ee+45HD161F064PTp09KnI+fnF3K35Q3DiRhL0kMzvF4bgUHeLB25DRE9yrCOLdn7ZUhRStn9KGB0TlmyCNvf/9hvu3bt2uHVV1/lklmmCMJoognj81TwtognQg9cpQN0JNrbqYes7vkLFlzGUsOGDY3Wg4vVq1ejevXqeP7555GQkIB9+/ahZ8+eOHv2LACgbt26mhIGO3fuxIMPPogXX3wRM2fOxNGjR9GnTx93jSUAePnllxEdHY0lS5agUqVK2L59O3r27GlajSWA3+3JH5rRoQzr2JwxM5HwkWzk62hAojynjtz5aSbqaEQY7sDvx/DNN994/VtMTAweeOABDBs2DG3atOETaFO065MZcQQFerxLfFPtA19jTU2wSwcwQ1jqHRhVyK0SwmLpaq7nxhp9w4vtMrIXLVqERYsWef1bly5dPLZ9/PHH+Phj379Mp02bZqGcB/6cE36vjQGJybzeBk6PiCHrrhXwefPEdNSjkZdjG9CPspWUrWOxryJwS/+WW27B0KFD0a9fP5w+fRqffvopJkyYgP/7v//jPL7NYUzBZzaX6RkQzePmKBcQ9CR1wf7Q40GyjFdGZSBp6lpx9L1xBp/gdTC5LwO6C4YMGYIDBw4gNzcXubm5OHDgAIYOHSpbt3KJAiM8S+ZVx+bPBwpcF+axOQ/OXQPUkGn5cr02gPyu5NVRzPvF19blKs6Xio+Px8SJE3HkyBF89NFHyMrKQkREBPr06YOkpCTs3buXT2AZQ17NJc6BSHC8EvcaBXu5E5YerFo/Kiy5pp2FknzKGMI9O2PGDLz22mtYv3497rvvPtx3331Yv3495s2bhxkzZhihY7mDd3A6nc03I8Dlkl88oIizUGFqDq+OLtO8Nufz+BysLsUIHfn6MSOPb1q+ETP2eHW8WMD3OCmescd3bRQFWLduHQ4fPozrrrsO48aNQ61atfD448Gvs2IqOgoJWiYUxDqHYHuZOPrDwZzR591Dw/KgWaXv1ZhaENTGCN+Zjz32GIYPH47Jkydj/fr1WL9+PSZPnowRI0Zg1KhRRuhYZjh5ic9w4P2C/ZweyS+PN0ckPcJ/I/BPJz+SGc7VTmQW1/a0KP+NwD/I818X/muz6a8Yrna8/Xg+lzdizh/OXHfCf+V5gF/HiwW8dZbAfT8qriL06tULy5cvx7Rp07Bhw4agLK1kF+QNddzTVsVg1FDSYxQF3QDR4UEKtjHC8sxpQm+anCVre6K0Mz9tFoYLCwvDjz/+6LF9z5495aYoZaCk5XB6MGQXpRRYif4c56Ase5FakfpAvF4WI3Tk7ccL+WbpyD+bkte4MbMfXUUu3HzzzYiNjcWePXuwa9cujB49GlWrVpWqk51wMAo6GnY8SYnfrFQZO0WOWB4kNaZWTGfVgZJmtFnPUxYshG/Td999F4899pjH9hEjRmDVqlVSlCqrcN1mBsxmUhQjwnDyB1D+tnztCjg9IiLHlf0clK8jf/I076kY04+cOioKdu/ejREjRqBmzZp46623MGDAAJw+fRpOpxPdu3dHTAyfF8/OOFmzsOwKw8tkxeVOmAaS03s4y+phODXi95K+u8/O925ArqChQ4eiR48e2LVrFwCgffv2qFu3Lt555x3MmTPH3e6pp56So2U5g7coJS8G1KTkrxJt4pT3AskL6Zq5JAsvZtar4kVkVqGiCrllZ2djxYoVWLFiBRo3boyhQ4di0qRJeOmll7Bt2zapOtoFZ7DrLPHAzE3yr2tZS1A2LAzHuCRMY5Nh2FkxSZ2F2flVwsZSixYt3DNPrr76agDFS5GcP38eLVq0cLezukVtVRTwh1G4ZQp4G/jkGeD9MmL9OsnGkpmlA/gxr0yECCJhOG8cOXIEEydORFJSEnr37q0pNFvmYQ18FsTBVTrA3MVZ/Te3YEK9jlmJZt4zwhW8LXR/CxtLXbt2NUIPQgWvZ0nh/MYYkRAre/0xY2Zxcc644pTnEsi14ZUp2xAR6UezdBSqqeWnncvlwtq1a7F161ZkZWVJ0M6iqAYNUW9S0KfaG2wsBH0AdfoPvdkVcc9kkJ0gFurjsuXzLCMoko0bI0Iz8kOF1veIGJOzxL8MDhciSnLnfsnVMZA6S4S10VPBO+gDoo4vMdNDY/FwFqsIqHhRU/PO0+wQrbBnKSIiAmPHjkWXLl1Qo0YNTeIhgDK/7IAeuAcIyQOySFVn7hqSnEryer+EErw52xmThG5xgw4CydOcMg0JFfImoVM43wPRQZqvDw0aBBn1ivQcTe49EeQK6CahMTQscz5i9a7MRthYWr58OXr06IGPP/4Y33//PT3MJKOAvz4QLy4DZsPJDu0ZkQdVyF2amw+hxGTOdvJ1lO/9kq2jy8VfJkIxIF/KjjisEgriWUhX3ZzDGWClAfEKXAvpCnpogg6PTtKM7UCwl6EqbCzddddduOOOO/Ddd98ZoQ+hALJnz8q+1xUjZBqQPC0/xCX/wSHbMJadzA/I1xEQSfCmMFxwUMAavHjqLHENalYx+DTwGEWMCuM6kqaDfsaMeld2QluzK/j3jHC3nTp1ChcvXjRCF+If7JAPVGjEIG8HQ8TieVVQ5Cffm5ngTX5r3wTd0OCK6Hk3LljLg5gLjyFoFV29w5cvpm5v4kLMNkb4Lnjqqacwe/Zs1K1b1wh9CMhP8HYVyV/TTHZ5A5dAlXFeZBdTNGKmWb5k71fx+nVy+1G2jkIJ3uRZAgA4wJqCb/xCuno8lZYcaCXpxDJAeAjGjwC7hkDVsDxIZizTIhyG+/HHHxEZGYnjx48jOzsbBQUFmr+X52UIZKDAmARv+TlL8r1fsjEmZ0myQZcvvzq27GW+ZOsoVAvKghWdzcbqA5zwQrWmziTjuA95Fv0VrOAt84yNzhuWKZ/nvK1SE6o0wsbS+++/j9q1a2Py5MlIS0ujBG8B+Geaya0PJDIbjk+eAUUpDfAs8YbhFEVgxp70WlB2CBWat9wJqygl8Q/SwijsnCVZ8CwVEpTlTjT3nmCukaBDIxiDPV8ozWjPZBDQLPljA89Sx44dkZiYiJ9//tkIfco9igE5J0KeJe76N/INOum1oKT3o/xp+cbMhuOdls8n04jZcPx1lshYArTeF+1K7HqkBuGHrmCZAysO3iyVWIsE83z/dPc8QwDXQrqs9wxkGnzC522h+0FYk0OHDqFChQpG6EL8g2zPgEt+eSDIHsPkz64zwFgSqA/Ei/SZZoYsyWJeGE52/l6ZQNryG9bwepgLT8jQ+6K/PNfBsDCcSgC7zIF1DI0ryLobzDg14UNOmjQJc+bMQefOnVGlShXExsZqXoR+zPQs8XuCrJ8P5DJER97GfM0KDVm/Tna9KvPCcIRvrDggsmDmolhw+RaWTqxjc3l0DIIrjKkjD0j7XTX+e6u9T+D1vRkIh+G+/PJLAMCWLVs02x0OBxRFQWiosEiiFNKNhiK5uTYK+IsK8uJy8c/Y464KboMZe4Wy14YTmpbP14+ydVQUhb8CPOUsAWCHfIIyGIuv2qp6y/M+cN2CAdtA0mGA6NKIjejCxRobj+sc9F0s0fNm9WvplUOCgbBl06VLF+bfWrZsqUsZovhmMmRwkvz1NCQfyPI6ipQO4HuoFOSbNy2fW6b86Zn8FbzJA+WBPG9SAH0rXMGbVfE68HPQfU+IWmfM2XDWsPKY/SGY+B187PXdFjaWvvnmG83nmJgYPPDAAxg2bBjatGmDRYsWSVOuXCLwq5sXl1AeC98DwJhZXBLlwaDwkeQcGiPCcLLDj1e8frLGBgVkBElD10Xh9NCKruHFM3hb0OhQw1KJqauJ58AThrNOqQY1ojMR1S7V4Bt5AR/xlltuwcqVK3HmzBk8/fTT2Lp1Kzp06CBTt3KL/HXXJIePDEieFjLoeGdSGVIJXapI6UuyiHm/+DB1ViHVWQIQjAGOLV8ThjPAxg26d0PwS8wMw1lmyRbvsAwkrpCciWhtaosoBUHPUnx8PB5++GEMHToUcXFxWL16NSIiItCnTx8cPHjQKB3LFcW/ugUa8zSTPivMCEMEwg8xvzINSZS3dukAI9avk24sCeR+kQfKE9FcGTMHcmaulZljoOg6bhb3gvEs+svEguejgZmzZOG14datW4fDhw/juuuuw7hx41CrVi08/vjjRupWbjHGs8TZllcmb84JrzxDqowbUcNIqkhbzIZzuVxSr43I/UhFKb0gbfDmm+Wk65tpIc+ACKLeJDMNKisacCx0BY1NPk9uz1KvXr3w+uuvY/HixTh27JiROpVZuB45ikHhI6kSzQ0V8rRSYFSCt7U9S0aUNzCkXhV3nSXyLAH6Bgoz6yxpjqajXpFWjk69y6G3klWqwbbVvE2Au3duvvlmxMbGYs+ePdi1axdGjx5N68AZgAL5A0RRkVyXSLEhIk0cgH8W+5Up0Ii8qiL5i9QWFkpeSFckxMUp04jlTmT/IChP6EnWZfe6RMOJWSeHlStjEc8I14w+htGhahPs0DHPTEStgaTaHGRvDVfPMPqVtVxOsOA2lnbv3o0RI0agZs2aeOuttzBgwACcPn0aTqcT3bt3R0xMjJF6liu4p1VzylMUyYYIjCn4KL/KuBFr7PE25mtmh8V+zS3BYI0w3MSJE6EoCubNm+feFhERgYULF+L8+fO4ePEiPv74Y9SoUcNwXfSEfII9xAgPxjqqYus+Bkc9JZbREXRUXcBTB0oPMg0qrSSOWZYaPcz1fAkfPTs7GytWrMAtt9yCli1bYs6cOZg0aRLOnj2LtWvXGqFjucKIadXSlztRBLxfvM1sMcgbkTxt/bwqU2fDWSAM17ZtWzz66KPYv3+/Zvu8efPQu3dv3HfffejcuTNq1aqFTz/91BAdjBko+HKWxMUKlg6Qd2RpiPZ30PNpdJWK8j9LLjiIlg4oee+0U+kAADhy5AgmTpyIq666Cg888IAsncouPKvbKwZ5Gyxe8NEl2bFkzIw9uQZd8fp10sQVyxTJB+KU6XLJvXtcisKduO2Svi6dGNHR0Vi1ahWGDx+OjIwM9/a4uDgMHToU48ePx7Zt27B371488sgjuOmmm9C+fXtDdWKFVwKQpFsX72JZhShZCdFBNkxEv8Nci9Oa5/VgF6X0n5vE05dSn3kcbayaRyVFE5fLhbVr1+Kee+6RIa5cU+xZkmwsCazyziUPQKERRSll52oZUfBRso6yc5YUAUOEF5fLJd3xwP0ANjm3adGiRfjiiy88lndq06YNwsPDsXnzZve2w4cP48SJE0hMTPQqKzw8XMpamkGfbaU2qkQPLRomDEYuinBCOet94MNnMK6gjSbJMWH+MDDh5KxjtvmhcuXKeO+995CZmYmMjAwsW7YM0dHRPtu//vrrOHToELKzs3HixAm89tpriIuL07S74i1Qv+6//36jT8cndpjFJb2GkWTvBWCPfpSNMaFCyWdjQMjVCO6//360bt0aSUlJHn9LSEhAXl4eMjMzNdvT0tKQkJDgVV5SUhKysrLcr1OnTnHrws5LCXxfw+Co+6MrSV3qvaMjf8l/81KYd88zZx9yGCBmT9m/gtl62MZYWrVqFZo3b47u3bvjrrvuQqdOnbBkyRJm+1q1aqFWrVp4+umn0aJFCzz88MPo2bMnli9f7tH24YcfRkJCgvu1Zs0aQ85BJOwhk6IiF/daZTyITMsXCvXITYMyYLFf+R462YgtSMxHYWGR9BApf86SOQneV111FV577TUMHDgQeXl5UmTOmjULcXFx7lft2rUDExTkteE0P2N03Aia/Bgnw10TDCRV8Bavd6WaMSekAT/MEBszT8kgRWSh0dvp9X2wEF4bzgyaNm2KXr16oW3bttizZw8AYOzYsdiwYQOefvppnDlzxmOfX3/9Fffee6/78/Hjx/Hss8/ivffeQ0hIiGY69IULF5CWlmb8iXBgRKKzIjvrV5GfmOySrKNikI7y/V+Qu+6aUIiLr5kRSejc8wNM+jHepk0bxMfHY+/eve5toaGh6NSpE8aMGYPbb78dERERqFixosa7FB8fj9TUVK8y8/PzkZ+fr1s30anfZtZZskxZACY85QLkLACskS9Fip9jSMoFC7oXmFF6wmxs4VlKTExERkaG21ACgM2bN8PlcgklU1asWBFZWVkedWMWLVqEc+fOYffu3XjkkUf8ypGVe8BC/iAvMOhwD6AGhLikSrTHbDjZGDOrUKo4oTCcWQneW7ZsQYsWLdCqVSv364cffsCqVavQqlUr/Pjjj8jPz0e3bt3c+zRu3Bj16tXDzp075SvE+CWtp7hjMNBO/favX1DOQKMHI/TEsS/boArCWTC+PsyFdNW6qrcHufI46wg8zwON3iYY4bbwLCUkJODs2bOabUVFRUhPT2fmB5SmatWqmDJlikfobsqUKdi6dSuys7PRo0cPvPHGG4iJicGCBQuYspKSkjB9+nTh8+DBiBCX4nJJ9YgYMtNMoJgilzwI9KNQeYPAdQoGRuRVGeKh47425oThLl26hF9//VWz7fLly/j777/d25cvX465c+ciPT0dWVlZWLBgAb777jvs3r3bUN3Mzt3wCzNsxZqdZbRCxqBRW/AkdD9GmJFB+cZzUIwonmOY7KU01ViaNWsWJk2a5LNN06ZNdR8nNjYWX3zxBX777TcPI+fFF190v9+3bx+io6PxzDPP+DSWZs2ahblz52rkiyRr+kQxZsq7wOH52tnCs8Q30PI+C6SXDlD9L+sxYEydJflFTa1udPLw5JNPwuVy4ZNPPkFERASSk5MxatQow4+rZ0BUfHySBdeMMR2r6sotHaAwtmsOWPKWY8AW9ZIYBdub5D2sGAxvjfAdp9LPGWzvXSlMNZbmzJmDlStX+mxz/PhxpKamelTGDQkJQZUqVZj5AVeIiYnBl19+iYsXL6Jv375+p2rv3r0bU6dORXh4ODO/QFbugTcUyDdEhMJwvDJNXBuOF+k6SvZ+GTFWifUj3wPH5YJppQOstJBuly5dNJ/z8vIwZswYjBkzxvBjs501YmEUh49PRsBKJjbVm8QKw7FqEfEYHaYWdyxB2BPLEYaT+czjSoNnFdC0y0K6RnD+/HmcP3/eb7udO3eicuXKaN26tTvhsmvXrnA6nT5d3rGxsUhOTkZeXh7uvvturlktrVq1Qnp6umHGEA+yi1LKXnetOHla9ow9ha9opwDS169zuaBI1pEX3qO6ilzSPZNG1IIq4l2Kpiy4oGQT5CneDklGFbsopVgRwmDcEzxeFpYRxYPuM2A6wVQGHGu7ZZLuS06C65qq9DajgrctcpYOHTqEjRs3YunSpRg5ciTCwsKwcOFCfPDBB+6ZcLVq1cKWLVswaNAg/PDDD4iNjcWmTZsQFRWFhx56yD1dFwDOnTsHl8uFu+66C/Hx8di1axdyc3PRvXt3TJ48Ga+++qoh58GdIyI5T0MkR4SXQukFH/kHeZ5WimLMIC8zh0Yp9b8UmQKFM0WOK710AK+OJpUOsDKig7TotHapWDEhiRWGY8AyOtjig2Dgc9XXYhhIrLBiEAwQbc/wGM/WuX9sYSwBwMCBA7Fw4UJs2bLFnSfw+OOPu/8eFhaGpk2bIioqCgDQunVrdOjQAQDw+++/a2TVr18fJ06cQEFBAUaPHo158+bB4XDg2LFjGD9+PJYuXRq8EyuFEWE42QUfRZKneSlev87as7iMCGfywp1LZkDpANkIJaGblOBtNVh1ZfR5DAKosyR4CFb+UtBnjzHhqaFki0njAMS/L1pDUK4usmHVjQoWtjGWMjIyMHDgQObfT5w4oenMr7/+2u+XMDk5GcnJydJ0lIIBIS5D6iwZse6aVIlG5VVxthUSDGk/7GUvG2OEcShi0OVdypavgM1h3SriOSfq9jKnGbAOx8oPEkuglqqHYBOmh8bqBpWdZh9a1Mtk8Stc/hDx2mSnp3O1k70QKsAfHrmcdppTnsC0fI52xf3Ip+Olv/7gO6xLblFKEUn5p1P4ZBq0JAuXyL//4pPlUriLUp45+rv/RoRPpA4yPNdNj+EQ9AGRIwzHNJC8tzF7UL+CaKVu9lIuQZglx1wix/BDc0PGksUorm7MN8gXFfAlocuuDyRi0OVn5/DJNKg6Ng/5ly5xtTOqKCWPxLyLWXyyTFx3reDSRa52ikN+qLmsw1w1XlrOCeeoJDrosmaMmZlkzPP9sHixTy646l35fx8MeDxIap2cJix3QsZSEOHOEDBgbTiZKJCfRFxUxL+mGddxDRiLi1wuuGTOhhPQkfd8XALlDbgS5fkOK9RadqJ8eYPH06GGfT8EYVaZWj9mG+/vDYMrDMcasNUfvBtUbE+MiT8QWAVBJdWNCgoUhiNKw52zxNtMduVpxWGL5U6K5XK04ZYlN/dLRBLvc8Kl8Ie4RJA7Y89hiI7lHfFwSemcJQ4kXTeNpjoKVAYDloEkXoU8uD+0xG8Ha3jQHIz7QXNrmHCbWO/OLOeILADLXYpAINeGX6b89eusXtZZpCilabPmDAoVysTMUKFdYa4gz5htxiKQXtdTZ4kZPjTTKGLde8wK3hYcJrmqQbAMO44yAmoxpuYsWcOAA8hYsiTGzIaTKE8gDMct0yU5DFfqf1/wfh0N835JlsVdw0hSG1EUA0LN5QlmKIjZPvDiiYEgOoNJT3upcOXNsIwOtWEiXzWj0JyC5g8GHY+pB0sRdRtzjW0yliyGAvnT8l0GLABrSBhOttUgGSMS5aUjuxaUovlPCi6X9b1ftkR4lA6gzhKXGgxDg5XgbUHrwggjLxiw6lfp0dUq31Wz+5iMpWDCkz+jGFWUUnKdJQPCcDJDhULT4jnbuYwKcXHlH/A9KIRCXLI7SaD0g+wfBGUdZh4HRxiFr86Sj2PrCsMxPuiYph7swdsIo0i3FMFnBlPvIHtrFB+fSvRg3Ceae508SwREcpb4HhpFRUXSQz2ysdKCqSxcRUVyE7wN8NoUyTa0hRrzed4oDKcPU8NWXKUD1B/EhhizvQdXYC3mahmYMx/9P0eZC9UyakXJPH8H4xNPnSWzrwMZSxaEN8TF+4uvOHlah0KlKK6zJH/9uuBkVHjCe9Ri75c5OvL/mlakrrFnCDZIQrcjRt2Zwl5phoHE4TAIDlwVGlnnwEquFwxtCbXmhx2GUzey3rDPV2fJ3LCn9XqtnFNsiBgQhuMuM8DXjtdW4h7iBWaaiRxX7pR3kRpGZhlVDtMKZ3LLUkClAwTRM77x1VnivF/1XDeeUKIVnTgcRgcr2ZspU4Zi3o6t2a7+4N/4Y3W+Ec9lXsz2JqkhY8lqGDCI8FYE58aAnCXpCd4GYIfQkewQlxG5X9bvRWvDTtwVfZwHMBBxheF0eACC4fVQ/BuJVjfgWPCF4Vj3jyEqicNR2oBmw5VxuHJkReos8Xo5XPKnp0sPwwmsX8fbj7yNuY+rKFI9RuZ7v+TDI7PIpXCvLUh4wgwF6VpChH3l9CR4s6bj6/EYBMXbwJUQLRqSU7y804/6+84zEcA6VlEJPM8ss71MZCxZDKEwHOfNI3vmUbGOnG1520muji0Cf86S9YspipXU4jjzK0noUnPerN+PlkPHL+ngL6QrWqPIzFwUnmllHEYH1/VxeHmnH32Gp/oD4zyDAFeZA1Y17yBBxpLl4E/Q5aV43TVrlw6QvjZcqf99wmt0Su5HEe8XLy6XeWE47scr5SzpgpmLoqvOEntfPWVHuHKpBb0ecg1t//k+Zns03CiM9+rNql+nPFXfzTSQRB98Zl8GMpYshgJID1EoLpfcEBcMylmyeDaLS8BrY0SuD68s/rCixAO7j853XDvkf1kWweToYNdZYk5Nt2ARRxZ8JRkY7Y0Kwzm8v+cLYanfm9f3rNIB2s3ec5P05efph4wlC8IbhuMdcFwio7xJuFwKFCXI4YIrTblzv4zxfslEccldSFfE+cW/bh6F4UQxPsdH3vXgmZ2lfS+2VIjuwV6zP08YjiNkyJUoHeQwnGANLjONKObzwEI2NRlLVkORn7Nk1JpmXMfmbSfZsyQyyPN+H+0wyCswLfVLCKrgHTh68mYC6XVd30su6ydw8frRuGi8t7BKbrTgZRD1JgUjCZzp47SI0eYLMpaCCM+97oL8Oksu2TWMDClvIFILiiOvQeTJwp0oL9kbpGj+kyNSARTwVoAXkMvRxuFw8N3jFIbTh+AsLM1sKe1fAjg2Txv/CbpcdX8Y6H6WMb0YgRsLooaJ7jCcSoBwf5ho/em5/zQeSF0zPwODjCWrYUDytJhnyRyrXv7g+c95yAxJueTO2DMkDKcogMRwpiFL4dnAQ2c1jFkLy5jvOk8FZh87S9bGHyxvEs/sLBO9IRzGGY+uPHaTcecW+KxJMyBjyWIIlQ7gHHAKDZppJpOioiLpM/ZU//luynlcEe+XWbgUg9Zd4xDJe1yhe5zwgCeB2jAkXTbrhF0EDTgevY06H9G+F+3jIMyMY50Ce2041TlQUUqiNPwDCWfOkmyPiCFhONm1fPjhfTDIrjLuzquSKVMB+Oc+csgr9b8veF3j5FnSh6h3I9gL6WqPzShtYBljyTtmDMZ+EZ7tyBAjaBQF47vK40Ey+y4JNfn45QuOe64gJBJTv94AIFPaYXtMnoyQqgqAPL9teb4Whc4wvLJvO4AMvaq56TB8JKIrhgDIlSKvEE68sm87XMoFyPo53LzfAMRGhYFLR45DFinFOhYpmQBnnpE/rrqlG5QQTh05cCkOvLJvOwqULABF/ndQ4PepVrl5G1zfpAOAHAkalg8EU4U4MWYQ1BpI6u08+1ojDMcKczGnr5to/LF0Yuuq2dlreysiOmtSNhY0n8s3BUoInCFybVhHWCQKJV7qfJcTzpAQafIAABEVUAh5MguUYh1lZn8pEVEodMi7NoWKg1tH3geZK6wCihxh+hRTUfSPjkUSx9XC0Ai4nPJ0LHfwJFCr4KuzxL6/NHWWJE0vdTAHbI5FaKWWDhBN5GYZgkEIEcmc2ut1X2t4/lj3Bg9OQ3L7/pFtmGQiIISKCvIWAQSkJv0agaLwzaQy6OB8zQxyBHMdnfPQpga3uKczGqtGWUd0YDa1CCFHorQVPRpmF0D0Ck8YTvWW6U2yIMI5SwYaRSwscheUDzLy/XtOFPc/cuEVmZUvt1aLEfHuy4UcOgpOy88t4niaCJQOyHMJTB/mykIH0nJ4vFr8RidPapxIzhIAnLjk32OkCOhI/ANHPpg+o4N9RUTrLOmazcTzNZRaOsD/IM2CK8ylPbB/3XjRGEXqPobX93xGK+NQEp/hrNIBGj04KnszIc9S2eD4xXD/jYRq+TjwxclYHpHcpOZIDo8owMcpcVJFXuAwOtXH94vDgY+OV+QTxdmZuUUcXy3BGXtrT8i91tI9ZQ4HvjwlV0fCE578EzXswY7vSogvd2LADDMz4TBAeKbyqxsFdJbqy6Vjmj9PjlNwELtPfIXnqtapjYZtb5Ckl3cowTuoCHgbOEnP4/BWCRlg/hH9oZHJ6VEzs7zBRR5vlaDc7EIHokJ9/WLnx+FwIJtDRzFjGzibE4IaFdiJ26rfflzy8niMRJDBpAuugdk77H43aKA0IPRm2KDOEwoy05jj8PxoCpBasL/5Ug7EcvIAYPKGjwEACx4aEaBm/iHPkuXgD1FYfeFZEYyanWpUnpEMSkJcQX4YBSBQuiFbdm7doODkyk3yL8fh4xMLzXNGcFqeuKfDTGNEeOqe6i3POShe3ulHOBeMGbYTvA4BnASzZ7gWAy7Zm5XI3aJbJ3GlOCFjyWII3X8CjaV6lgQGd7GEdXmI9SOfO8bM8V0kb8A0Dx0leAcF0cHROgvpOr2+L9XIr/xg1/0RTlIPRhiOVfGAw0ASvX+MW+TWvxfMSmFZMpYsCecNIjJDyuIDlHyPiMCXjPcLKTmceeUC8jz7uQtn6lFHr1wBHS1+O9oT4YElgKug58Lx5P6oD8URFgtMD8H9RT1ORsHoP1YYzoq5YNorqiMXjsMgl41tjKXKlSvjvffeQ2ZmJjIyMrBs2TJER0f73Gfbtm3uasFXXosXL9a0qVOnDj7//HNcvnwZaWlpePnllxEiu4aQAHYobGzqgGyCLKMwLvQoU5Y1HrLlHT0zzPg8MWw5mgRv0dtBcJC2jFdBR5I6D6aG4Zj7WsMcYNfgMvdZZJsE71WrVqFmzZro3r07wsLCsGLFCixZsgQDBw70ud+SJUswdepU9+fs7Gz3e6fTiS+++AKpqano2LEjatasiXfeeQcFBQV49tlnDTsXWXBHPaR7RORjdf0A+UnoRmB1/QDyLOlGhwFS6i/6dfF+QK/HlrVAqtzSAd7RE+rkMlL8tvACRxiO2Zes/hae0WcMfDlLqvesUhoG6m0LY6lp06bo1asX2rZtiz179gAAxo4diw0bNuDpp5/GmTNnmPtmZ2cjLS3N69969OiBZs2a4bbbbsPZs2exf/9+TJkyBbNnz8b06dNRUFBgyPn4woicJdneAZFnFXdTyaOnUH0g7qKUchHRUVH40vml6yhQ3sAWlloZQ54nRgFrCNfceTpCxlz1faw4fV3TXDCBWiYcYThRQ9AqsNc7NEEZBtbwu/khMTERGRkZbkMJADZv3gyXy4X27dv73HfgwIE4d+4cDhw4gJkzZ6JChQoauQcOHMDZs2fd25KTk1GxYkU0b96cKTM8PByxsbGalykI3EhWH8YUOExT0inwjTQrVGjFB1xpeN34igIoFq8obzmcjEGaI4yi1xMjWmdJs680L1jgMgNBj+eLh6A86iR5xCzz7OGZEcq5mHcg2MKzlJCQoDFoAKCoqAjp6elISEhg7ve///0PJ06cwOnTp3Hddddh9uzZaNKkCfr16+eWW9rrdOWzL7lJSUmYPn16gGfjGyO+RLITvG2Rs2SAksUDvPUfnIaUIrC6tV2ekDZ4GXNRmYYGy8gzNS+OOa1M9VYslBiUMBxTsCS9DTKQeKSyqnlrtwffz2OqsTRr1ixMmjTJZ5umTZsGLH/p0qXu97/88gvOnDmDrVu3omHDhjh+/HjAcmfNmoW5c+e6P8fGxuLUqVMBywsGpk57525jzkPTBf7+kdqPQrFCXpHGeOj4rqE54czyDHOpC769Ge+1CNdzE/ViCBoacksHyJmRFZTEdLVY0dIB2kZChzWuVANjFp8aUc+kHnX8YKqxNGfOHKxcudJnm+PHjyM1NRU1atTQbA8JCUGVKlWQmprKfbzdu3cDABo1auSWe+ONN2raxMfHA4BPufn5+cjPz+c+rghC96XQCG+At4GnrUh9IHFV5MgyJAmLX5RsA8zq/Uhrw4mjZ0Fa9fZg97uw3RCMkI8BoUFRdF8HLpvIv6coGN4kNazSAVx6qO91RrjNyBl9phpL58+fx/nz5/2227lzJypXrozWrVtj7969AICuXbvC6XS6DSAeWrVqBQDuhPCdO3fi2WefRfXq1XHu3DkAQPfu3ZGZmYnffvtN8GxMgPPelj776ErSryLv+2VY8jSHYKfDAZeATCsjv14Vv1zuB5UdOtLC6Fq6gvkXdoI3pwCOfYM7MPOhLowIr++Z4UPW7DHmuemdxcfRhktX9Xv/SfcyjUVZtw8LReF5kgeGLRK8Dx06hI0bN2Lp0qVo164dOnbsiIULF+KDDz5wGz61atXCwYMH0a5dOwBAw4YN8dxzz6F169aoV68eevfujXfeeQdff/01Dhw4AADYtGkTfvvtN7z77ru47rrr0KNHD7z44otYtGiRYZ4jfxhR18bKOTFumbLLGxiSs2SM10a2TDvUq6KJc5Lg8CwFfyFd7/vyJRkLHSowNP3B0Im1nXFufDO4dJ6cqDeJKcYqhqp39HlRqSglBg4ciEOHDmHLli3YsGEDtm/fjhEjShbNCwsLQ9OmTREVFQWgOFR22223YdOmTTh06BDmzJmDTz75BL1793bv43K5cNddd6GoqAg7d+7Ee++9h3feeUdTl8nKmDXeCA/ypiQE8WPcbxHf2MFeECpvQDlLhqEnF4UdhuPLWdLAUzqAQxbTi2HBgdwyTjA1sr5EHEn3MnOWFMYndrV21ofgY4vZcACQkZHhswDliRMnNF/Av/76C7feeqtfuSdPnsSdd94pQ0UpGDKLyyC5spHrEeH/YjnBZzDJD2de0ZFXV47k14CV8SdY7i9WG9yO1kVHKCiQ4YZvIV2OPBNJSdByc4hUYTiWpwje34vXA5IYhmN2d+BGaFBKMjA+aY/N4YFk5Sypt0se9GzjWSJ0YIORyQYqSkckr0pIqNTOdLjFyqI8XmuZ8ISC1PB5BththL09eqajBzskxzR+BEOPLIOKdaxA4NmdVZKBI5eJKcdMj46F3HpkLFkMo+osmVnDyIzBUTRUyDuc2MFDJxM7rF9XHjAmFyOAq8AThhMNGVpmKjsHPEZEMAZ4HV3AVcfIoHNgheHUsBPQnV63M3eWjG3CcOUFsWn5ZWfQkZ48LSDMqJwlM1K1zLwfuHOWyspNaxLsUJDoYMeXsyRcZ0kt1b9zIzg1ilhKcQzY7Fww/22kwhWG8/5BT86bccapqMeSo4mB14Q8SzaH53aQXdfGmFlc5rlbeb8EiiLWj/7OyCgvohHyuGYtc15DhVcg4R0eAynIBghXmRyuvBnWB/Vmmecj1n+mLqTLYywwPUXw+j7YYS52yhtHvl0pL1PHAf1w26MPS9PNH+RZsho2GEHL3nRycw5shxCXmCyygAzD8EGNs84SDxzuJJ5cK8PQ8cUT9jhZEa7aSsFUyAc+FOn37NMAgF+3bQ+KKuRZshg2sJWE4P0VaJRHhA8HeAYKw4xEjja8Dy+jFqjlG1/4j22mJ9HuMOsScYRReHJGPI5nxEK6OpLA5YaF/Mtin0LgyegBnYHi/T3bIwav21kEw4Dly1ny79VTv69er64s9XxCxpKNEcrzkfh8cT+rbOKxMgt/52Och07ig86QUhZkKOmBnZfCaq/26Gj+EsDBeZTyrwdPm2DPwuIqw8CTWMzUW12mIAA4UsyCunZdAM8GXfcfV94VFaUsN4jef3w5S+YZIty/AhVAWhgAxpxvcT/y68jdkkNZs5Oi5daXKnuGsdHwjAE81bIDQTTBm8fTYep0dBaS4lDsczPK6yv4beLwPnEZVxJPh31vMPRwqmbGMWouyYaMJYth3K9u+XKtXB7oyvODc34Wp1D+piJHLSuz4ST3tqlMmjQJ33//PbKyspCWlobPPvsMjRs31rSJiIjAwoULcf78eVy8eBEff/yxx4LfVoAdhuNDE56RFDPWNrGg4aSCJ4leFN1hOBW6losx4Nx8wRfN92/MOUO8lxHQnAMVpSzjGFDDSP6aZgLeFYdAPpABxRR52/J8r0RtJb9tBYTx5yyZmffGn59mdYOpc+fOWLRoETp06IDu3bsjLCwMmzZtci+nBADz5s1D7969cd9996Fz586oVasWPv30U+OV0zEDTrtVdxzFf3NRwynopQPUmzkMB8GZiFokhuFYl84Iw06i0aH7/rsiJygzJbXQbDhCGLNDQjwoHm+sxxWj08IqGtePVj5pAL169dJ8fvjhh3Hu3Dm0adMG3377LeLi4jB06FA8+OCD2LZtGwDgkUcewaFDh9C+fXvs3r1bqj7Mgny6Bkde45YnCZplqInl/nAt2WLUgMjSW3Bfrr7Qi8aBwnQ5+dWJPRsuGN4+nhwk77o6nSEl2ykMVz4przlLdvA2iOoo8ysskvpldWPWDte6NBUrVgQApKenAwDatGmD8PBwbN682d3m8OHDOHHiBBITE73KCA8PR2xsrOZlFOIDH7uNcBiOZ20vHsPOsNoasjwaVgzDCV5r5nUwKv/Nv05cExUYYbhSO4gp5wcylsoLBuTa8OBwcBZytNvoKQGxfjRMDS6k5tLZ7Fo7HA7Mnz8f27dvx6+//goASEhIQF5eHjIzMzVt09LSkJCQ4FVOUlISsrKy3K9Tp04FqpBGt6ASuMPFRxsOT5QKoypK83lZ9HhiTAzDWTIvjHkSJe+4QqAchpMEyFiyGKKPAa6cpQDkBhtzE7z5ZUrNWTIAO1xru7Fo0SK0aNECAwYM0CVn1qxZiIuLc79q167NvS9PaEczrqi2s40LRuEej1aiYThmI+/vmU2CHQry72UxXg4nPGE4pmGnfu8/JGfmciese8DpDI6BpIZyliyGMWuayb2ZhAwGk2JChh3ViHpVktsagZVnPhrJggULcNddd6FTp04aT1BqaioiIiJQsWJFjXcpPj4eqampXmXl5+cjPz/fOGUFk70Dei6IzobT4QVjPTvMLDvAk4zOo56pYThBT55V0KinzlNyBsfnQ56lcoD0gdaAkc4OhQqN0lGu98sO/WgPFixYgL59+6Jr1674448/NH/bs2cP8vPz0a1bN/e2xo0bo169eti5c6fBmnF4cRjw5IzIRHgttaCHGHm8Zt4/6JmyrzsMx9FI1yzDIF8HrvX3VOcWok7wDpK9R54li2HUtG+zavk4HA7uWKFMo05IFL+KJvajMXJlyhLS0eIW06JFi/Dggw/innvuwcWLFxEfHw8AyMzMRG5uLrKysrB8+XLMnTsX6enpyMrKwoIFC/Ddd99JnwkHoNTgxdru/b3aQxPIWKJdBsO/fr4keX0vmGej21stmoMk6q3RYURxo+oCfbPh4LeNTLRS/evNfK/yLDnUniUDK3iTsURYAouPnbZBgTE+AqmGrA28X6NGjQIAfP3115rtDz/8MN5++20AwJNPPgmXy4VPPvkEERERSE5Odu9nCsKDdOmcJTnXhWdg5iPIYThJxgKXwReIYPVOTCPHvxi2IWiQccrWhKGH983a0gEcRpFkvclYsjMm5bwopf73fVz+AxuR4C31wJILPpbUMPL/hDPkfCQjlINl8bArz2CZl5eHMWPGYMyYMUHQSAVHaIs5k0y7B9fhNAneHNdYtBAlz8wzqSiljUTfiC7sahhczrtghzHF0PNo0t4nwU/wppwli2FUGM4seEsHmOpZ4vyuSddRQCDv86A4VMj/8JB5ThZ8NpcZ+AZpjkE9kGPzhOGYO3OEVJh1mbyLlOvpEMudEl+oVsww44YjDCeuN8e+OmGF4YSjniHBN1rJWLIaRoQopHtE7DMqytZVZghJxEMnLJQT3rMpr7PhrI5VvAd8s8QCz/0JBvpChhpB6g+M9wHAFYZjHIPDKGIbtoJ66obRZ5pzcHp9rxUjV3EyliyGcZ4liTeOEbPhFLmGjZgsvhOSP6lQ/lPIDoaI1ZO7rQ57hpn3D+yFdHnve54wHGswVr/nCWd5b685ktRBUPTXBcOgMjMMx2P86MGwiTc83kXGfaKus+TU7KBLP1+QsWQxDEq1MSTXxsolCcRyfHhzN8ofYvlpAQgmuODzAIiG4QIYWIR3CYbBoweO0CDT4yR6DvpmJXKI1cBlN0lLxg8CrARvjZfJuMOTsVResPjgZKpHRCAWZfFuFO5Hv22vGJJcib38x7R6P9oFqwxqXInZHCEiZg6RCrmlA7xvFp9h5l+O1DAcIyTnwyryqwd72RkOfQJCnbPkP79KjZNnbTjJkLFkMYwZRCTn7UiVZgxlLVFeCJHEcfkiCYNh2xzeBzs+44J9J3AtpCsYYtMzo08ugd/ZbEPIv94BHVXYHuUJbQWiiG8dAhEgHJZVe5Oognc5xaBRyepGmFHeBtmhQqvn24iuX8eP9a91Wcbh9D8w8wwygeQs6YLLiyMqUq+HhumWYR3R+3thPQwKwzHgmyXmP4xrHdRhuODrR8aSnTG9no4xU3hlcEUzud95Kz5AggMZN9ZEdFBj5yyxr7AmwZvncFyhIP/7Bnu8Fi8L4H1f0aKP3LByk0RdToITBBwsmQE8FMR7gKWr02sLTd9L/mVLxpLFMGpQMnOw400ONnMKPW8tKCGxJnS66Aw7M+4LReGrvUV4h2d6uExLgzlYchyaL39HzECSW2eJVaNIh0gOg093GE5HF/DMOOQTFPiuxTCMcK7UNpWXKSTEs7HHDvohY8li2GEQMcJro6gFy5InGeFntAmOKFGDzp+Kht2PdrjRLYSu+jkq2N3OebNylA7gQThExNhXPxwGJtPjxGgjdtTA4MlbE81M17FAMy+s0gEO1nvG+ajDcI4Qp9c2siFjyWoYlbNEg5MUpP6mLafXhHKWdMIxlZ1vId0A6iwJj0Wi3i7z8mbYfamnjRqddz1Hcj3beNbswBAj2N9BCcOp9tWcW4npoi4jYGT5AzKWLIYdStXYIVTo9n7xSuVoZtR5S/1OK2JGGBkt9oPP5hD13Oi7E3imyOvxxKiRWzqAFYbTNaz7fR/8MJzo+fB43ER1KI3/k2DOklOXDnCGqNoYZ9LYxliqXLky3nvvPWRmZiIjIwPLli1DdHQ0s329evWgKIrX17333utu5+3v999/fzBOiYExv6bk5gPJ19E2g7bFrVk79GOxjibEKO0McxAQ88RILI2j1UIwIZpn36BneDNhhap4DETGdpkqaY7nvxFPOQej1ltjR3HFwqHqcgHqmkua5pKfMaFSpRnIqlWrULNmTXTv3h1hYWFYsWIFlixZgoEDB3pt/+effyIhIUGzbcSIEXjmmWewceNGzfaHH34YX375pfvzhQsXpOvPi30GOwM8IlLFGWPQCcnlbeqQe9Utv3afDYp7Whv/xoW4M8DXXxw8zbzvyzXzynt79pip8/5meqb8Gwv6jAhjwnCiiymX2lvVhnFYifkCDsYntsHsXY4m9BakOku2MJaaNm2KXr16oW3bttizZw8AYOzYsdiwYQOefvppnDlzxmMfl8uFtLQ0zba+ffti9erVuHz5smb7hQsXPNoSwUX64PmPQNkGndWxgYrSk/nLG3yDNI+BI/EiMAweZiMLGvQ8gzTPvmwjRWIYTnRXy9dQ8o6DYcxxGVflcTZcYmIiMjIy3IYSAGzevBkulwvt27fnktG6dWvccMMNWL58ucffFi1ahHPnzmH37t145JFH/MoKDw9HbGys5iULoXwTodyUILhSdbRXUDylXBaG6WiAEjK/0kYlT8t+vJKtJIbx4xtnnSWeWj8cXiPmvqX+4lWfIM+M4BmYRT0jMtN9NAn8PEYR85oEOwwX+PRiVhjOaaCXyRaepYSEBJw9e1azraioCOnp6R6hNhZDhw7Fb7/9hp07d2q2T5kyBVu3bkV2djZ69OiBN954AzExMViwYAFTVlJSEqZPny58HqZi8Wn5hmHhH1GG9KMCqedsSAkGA2SWJ4SXhlDBmrrt83g6bijWvuyFgRltDEPMuNDahCaG4YS9LN5F6tlXP3J0VSd4l9nSAbNmzWImYV95NWnSRPdxIiMj8eCDD3r1Kr344ov47rvvsG/fPrz88st4+eWX8cwzz/jVOy4uzv2qXbu2bh2vYIeZZiLC+G9duTe5UK0hzkMLe20knhLvg9m4EBeHUIEHFRlMOmAOLAwDhNVc77GZTfwbSOJepiCgxxDiMqgMCsMJXhPhczMmWqvdLpjkr17+J0RVlNLBKCMgA1M9S3PmzMHKlSt9tjl+/DhSU1NRo0YNzfaQkBBUqVIFqampfo9z7733IioqCu+8847ftrt378bUqVMRHh6O/Px8r23y8/OZfyMCx/rhI4ctRnmrq1he60vpQXxWGY9UhqvCo5UkQ1lHHpBUOEoHaJLlWYaGYBvDYHmc+KyokreM8zETriVoQowzkNSYaiydP38e58+f99tu586dqFy5Mlq3bo29e/cCALp27Qqn04ndu3f73X/o0KFYt24d17FatWqF9PR004whsZnp/K2NqWEU3OOKYETul/CSLBJzlvivtYP/wALwjb3m3I/lGWa1Y8b2QPpdM3DyzMhiDXCMsAtPSM44BA0Eq8yG0yOK45owr4POa6InZ0mjkjpnyeF9Zpxsu8kWOUuHDh3Cxo0bsXTpUowcORJhYWFYuHAhPvjgA/dMuFq1amHLli0YNGgQfvjhB/e+V199NTp16oQ77rjDQ+5dd92F+Ph47Nq1C7m5uejevTsmT56MV199NWjn5kEZG0VE7lfyOLARCcNZvRsVm3jorIoez4WD+Ykz2Y3LnvAfUuEynDjkBwTrQaOn3hOHB0S3pcESxfImcenEcViJVgfz/uPqb/U5qIyiEOMMJDW2MJYAYODAgVi4cCG2bNkCl8uFTz75BI8//rj772FhYWjatCmioqI0+w0ZMgR//fUXNm3a5CGzoKAAo0ePxrx58+BwOHDs2DGMHz8eS5cuNfx8WBiWsyQzwfsfWbJ1NcL7xYPZOUtSz9ugGkZcMjk70g4GndXQVCYWnuUUBAw4XHBCQczpff5hhbCC7h1TIVoTihVKZBZdYrzXDdP686qTOmdJ293GhUBtYyxlZGQwC1ACwIkTJ7xe4GeffRbPPvus132Sk5ORnJwsTUc5GPPtMssQMVsur0zudjaYVSjb+DICyxfOtAmsPBOWZ4QdBtFn2fPMpOLy1rBCQWoVpN6U/g0EeUUpvR1VAGlhONVbnhAoz7XiRDQMx1UctDzMhiM8MSInRliuX/hvSKEcLAOWUeE7Lmc7CA7yUg0rPmHCOspEoCMp5Bo4uoonBnA8PQvpitYlMnXxXKYR4b2NVhBHG70PBA5dxY1WxnbWgSVGErWGqqAcJ89CunLvJTKW7IzIuG1SwUeRo1p+xrtBIS4eREISxhgignkbPqAwXADwGEjMNjwjPPuKGJ74bGIODXvlEx1eI46cJbkRLP+6cvWZaBjXoDCctssYhh1juRN1eE42ZCyZzJbT0TiaGe7+LOP+2/93pMc2PXK/TY3C4Qvh/hsKsO/vSOQVaW9sPTr+eK4Cfs2I0KdUKX76OxKZ+SVfEQX6DJED6RFer40e9p6PRFpOSTRdryFyLCtcuo4/nKuAU5e1EX8yluTA9NAY5V1kXjjBAZvD4AtG6QAHh4HAlbDOkROk2cyhpgesvle8e/648pRE+ziAyC1rdzbeDUxWmNnI2kpqyFgymd8yIrHzrCopXcIosvVMDM7lhGi26Rnkj2ZG4Nu0aJ1aadl2Jgans0sNoDp0PH4xHF+f8dRRT3f+35kYnLwUJk3eycvh2CpZx69TY5ByUaWjTu/X6cuh2HomxmO7Hpnb06JxJLPEkNVrdJZ3hGdqMZFYZ0kNh35cs8QYm6XmLDF1ZeXycMXbGEgMw2kunX9jjp13xGMICurJTeD9ofYgOZ3eDSfZipOxZAEMmWBQ6j7RK1ejo0UHOqPVskP4SHH/Y13s0I9WQxNeEEyO1jtmMGvxeD9caUVYjfzuy+PpCQj1A4zxMBM+BJdBJTEMxxVmZbXhuYgc7QM4CdGcJVZITuNl0qwHR54lQid6vpylB2Cl1P+ysP4A6tBnKCrFMtwf3R0p9wuuW0VJsphyrH+hbQQjNME12vPlLMlD0HAKckiOL7eLNcDztPF/JJ/wXCJdni9BZIrnMO6ZoTdGIcoytdwJUYzixRCRfxATd+edJGWmjtzffIMfQDop7gPSsWzD8TNc9Vbq84UjZ4kvShj4oC63dIAYbAOJB2PCcKI6cXkBDYKrdAAzHOq9ibywtG/Is2QyRn3tS98yMqeTC+vMeWj9Osr/opT+7hnxnJZd1sGKYVILqmQrGA4Xvl/hzCia7jgKRyPBUAsrbBWEm5odDhTbl+t8BHULBB6deFKcmM4qo24fdXvWPaMuHaBaSNdpYEiOjCWLYVwRQL0YYIiU+qw7r8qLANk1h6w+6BtVwVsu5FWSh2gYiUeOFp4Eb74f9GKGE8t7IHX5DYYlIB5iC3IYjsuw0+M14rHIBUX6ECC8zA0jJEeepTJOMIoISjXClOJferINOz3yjMq18XccK2JEONIOlcvLD2L5Pmq0fc/33OFZSJc9HZ/rEBxKSHxGGjig+kZiGE69OZhhuCCkSvCVPAjO4rlqyFiyGAochricpc6Gc3+puONrMptxY0g/SjcQ5Qo0Ylq+FB39T0AifKAZHIRzgvxtBbi/fVxOKoYHgDVI88R8VDeNUSE5dnK5nDZSw3AcAvTobVg+veaT4EkwPGhOlhEl+RzIWLIAhpQO8HEMvQKEZ8Px2lQyf7UYtHSKHcZ5yU5E6TIJiQSh7g9fGE4ssYcnxMbjKQsI1oNGsF6RcBv1ofg01cIKw/H0mWj/Mc9TTIyfg3g/hkYNxj3DmA1HYbgyjMfX1qicJZ0hLk89ref98iZQupdF9r6G6Bf4AyN4OhIBwzHtnvWe3ffse4YrDBdEdOcsmRaG0wkzOiXHKApGv8hKEWAtcWKYgQ0ylqyBAQ+g0reJFROdPWaaSddRflq77MV+FQlaajQyZLaeBKE2HZ+sgnZA4EmMZXg6WG0kwqWf6BSzICC83Ikwipd3xsGzWLHwgsaGTd8W62Oe9fdkQ8aS2ShePlp8enqxjrwufP6DS08i5tXRJShXEgoc3DoWufiUNMI7x61jURG3SMIAmPlBPLCviqwwnKjR4WAYebpzljj213M+PAas7jAcM5Jo7V8lXDlLXJ5T714mp4HrxJGxZAE8Z3L5/zL/mXYJ+YUCx/Aj8mKBE888vZy9v4c8/1qezczHn+dy+XOW/P1dAV54/gPu/Xkeqn9fduG7X875V45xDG+8/to6fnkcswov5AKrvzzMLZOHlSs2c7fludYX8hx4ZfFWToF8zT75eAdfQwIAOxzDHjSsYbbqMaJkHtsIpMoPjgPF87DByFniOrbaQApGTpUWMpZMxuuUdz+jZ6ELuOdhtmHDc5zSrDhSGXPmrOGX5/L/oB387Jfc8gD/Ov73SGVMm7bK+75eEqsUl/9B/okFe+ES+KXqr+mHxyti3Lil/PI4+nHKh38hN6+ATx5Hmy9OxmLIkNe45AF8Or68ORsZF3L45HG0+fpMFO677yUueeUCSYNuIDlLXOgJ7TDkGIaOY+irFm1MGE7UIBMOw0m8JnrOm1kTS+NNIs9SmUbjXVUMmvIuc38FUDhiV+7z4D24zNlw4NNR7zF0yxPpRy7kDzZ8/WgNL0V5gMcA4ZuFxXevcC2kqz243/c8gzGrjXGlA8Q8c9pcYp5z0/ndFAzDGWL86Ox6ZhiOlVfH0NXJXBuOcpYIneh+vpT22kiK+/s4hKc8IWl8HhGz4dFR+gNAUBxfP/ILlSutHCI6qHPdP+Z9V4J+rRXvgzTXgM2TsM5MqIff7T5hx6rE3gvuy9Q1GMnezDbq5hSGKzeU/sFgzCAv9y5SXAr/l4Xn1yj0z4bz8CxxJkX7wlMj2f3o0j8bzuDRRnG5dBvbgXg0iBJkXWPFxyf2Por6Q8DweAy42kgsHRDcO1Hic90A+4DpA2MaWuLH0PaAjvAhMwxnTPgQIGPJkphRedrXn73lVRkS4tKho7e2LgnGkkw8w4Qm6SjQkQoc0nXkub2t7xM0D55BjRlS4pJa+i/eR2aeYzD1Y2wPdrkAjRqaD4GfD9vQUIUSA1FQcCeWThIDg8IIH49lMAfJQFJDxpIV8EhMDnxwOpcb4rGNZzaTLwpdDo/9XUUCHpFSDS8XeL+h9eiYW+Qp01VYGLBMI5x72YWeXzdXocCUxiCQlW99Hcs9gqGjQAwkYT1Y2/UkUzO2Sy0doCdUJdpG3dxvCz87qbtA1AjVE7ZTo/sZWSJAuAK8ajYcq1yAbLspVK44QoQv/4pBUakZWwUuB1yuwAanH89XwE9/R8JVVITwkEAc7p5sPhWDnEIHIlTyihQHXJw1dUpz6EIEvjsbhYK8fIQ5S+kYoJLbTkcjI197Kxe6gKLCQgCexqM//rwUhq1nopFz8ZKHjoHybWoUTmeHabYVKVd0DPO+kw/S80Kw4c9YZJ3/G2E1I6To+F1aFH6/GK7ZVqgE3o95RQ58+kccLmdcQFi1ErlF5DYSxyHnd62vakqsIZwZhtNjtFhlZlxQMSYMp91ucJ/pdEsxw3CCCfVgznojz1KZI6/IgYMXIpH+1ylseX2he/ulAieUosA8S9+mRuFSQQiev+0exIRqZQT6XDuQEYnszCx8PP0/Gh2FvDaq+/eb1Chk5ofghe73oGp4vlbHwFTEvvQKKMjLx/IxT7u3XS4MQVFBYUBCv02LQnpeKF7s0Rc1Qi8HqJWWH89HQVEUvDXiCfe2S4VOFBUE5v3anhqFc7mhmN17AGoU/S1Fx93nogA48MaQ0e5tlwuu6Cj+ENqRFoXUnDAsG/00Kl066d4uu1I78Q/CXia+O485G060LABLfrDrLEk6hh49ghGGk4XUulYaucKKeN2XtfSJbMOJjCWTURTg3MFf3Z8vFToD9tpcuTkunv/b40b0+z3z0+Dwtzvd7y8VOrmrNbO4nHEBoc5AHt1sfvu6pIjhpQInigr5ahOxyL10SeNRk8GRnd+7318qCNGtY352NiJD9F2L0vz+w173exn9WJCXhwrQJ4MoQdpyIrr18P5BV50l5rGMOR+e6fV62jBrAwWkLGMzRyK8IcudBMF44zo3VoFKyZCxZAG2bz+Ii7lFSLkYhgKXfkMEAGa/9DFyC4vDIID++zo1NQMZlwrw1+VQZOY74SoU0JFx8GeffQc5hQ6sPxn7zxb9N3paejbSckJwJjsUhQF6bdQ8OW4pcgodSP4rRrduVzh5OhN/54bgWFY4CvMLdF0cl8uFMaPfRE6hA1tOR0vT8dDRVGTmO3EgI7LYQ6eTsWOKdfw2NUqCduUPPZ4OrvXjAiizL+ytFjTyWG2CsdyJNIzKoeGosySM6L46w3Cs1DGuWZBa15LXNlSUsgxSWFiIe59chzUnKgKAmCHCICnpbSw+VAUnLhXnishYALb3sHfxUUpFAI5/8lj0Mfulj/HmoSo4liUn5wYAegxYjP/9XgkuOIoNEZ289daXePNQFfx2IVKCdsV06f0K3jlWCUWKA4UF+nX88MNvsfi3Svg5vYIE7Yq5pdt0/PdIZeS7nFKudXLyXry+Lwo/nidjKRgwDQ2px/D+Xo8gtl0ncRA0afad2jjQHYbTFc/igGmYGHMIjddN0HCi2XBlnEsF2q5Xx11dRfyDU6FPI+ifvwnOhrsyE6z0DLPCgkK3TJGcJe2vidL6BnZzl+6/KxSpdQzQEClySdKx0HtSdFF+gVtmYV6+1zb+8Lzugel42csMPeBKUvc//VhUFNCP8fxS/eiQlKRc7hGdwcSVs+Qr9VvtAtAI9v6eGapi6MRlIDHV0wWXToLnw8yt0Wtz8ERcdcx6E54YF8AzQfS8uUK96jCcuErc0Gy4ILP6eEXcWD0b/3dGGzJRT390hvJflsz8EOz/O9Lr1PkriN7TH/xeETclZOObVK2OLlU4JiSMfwZXvsuJH89XQAgUZBfJGTA//SMOnWtexndpWk+F2isXEh5eejef7DpbAdGhLpzPE5/55Y0v/oxF15qX8MN5rcenUOWpEa1X9W1qFKpFFuHEpdL9H9hjYsupGDhrX8JPf2t1VIfeRD2dW09Ho050AQ5fKO0xDN6v+LIGa0o0c1CTaGg4BK8be6Dl0cl/G6PCcDy66mkj9f5nhuECf8+lH8u7FQS0enN4liRb2GQsBZlT2WH47J9wmxpnSIkRERoeDoDfu7T1jP98Gr/PF9V9lZYbhk//8NRRTWiEmCHybar+fBr1rf93XqhXHdWht7DICCFDcedZeTk/QLEh6+1aqxOmwyLFQmfMMJbIc0HV9lKhdx0L8ks8Xs4wscfE/vQK2O8lJCjy7CKzSh88+bkBDeQK8wPhF8XLu4B2ty2sU+AzMFkeseA8LcgvbhHUYbhQAa8NFwIrk/jCEVJKRwt+eTWGiKBnKVioQ2/hFSItOZXepTI6wyvIyoWy3nnaE47BhNE+kCvAE4bjGezktdHrKvPff0afj+4wnKhxwfGey2BRb9YdhvOvB/s9KyTn9NpeBrYxliZPnowdO3bg8uXLyMjI4N5vxowZOH36NLKzs/HVV1+hUaNGmr9XrlwZ7733HjIzM5GRkYFly5YhOlquh4EHp7Mk9JOXnSNZOkfOEseNr74Rcy/JqT8kAs93U12jKvdy8HXkQZ0wXZCbF3wFODpSHSqUVsFb4OFlQTucyahRo5CSkoKcnBzs2rUL7dq1k34M4TAcV8iLL2eJFYYzOmwVjLxd43U1/iT0hN509b3e0xHuD/8nYaSTyTbGUnh4OD766CMsXryYe58JEybg8ccfx8iRI9G+fXtcvnwZycnJiIgoyaVYtWoVmjdvju7du+Ouu+5Cp06dsGTJEiNOwSdqr83KJyZKl7/vyy26ZYSElIRj3n4yCU6JN6aiKPj+s8/1C1Ld0R+/MBthDrnrmn3z7ge6ZajzgTYvWYlwh9zlRL56a4VuGWoDac/nXyJcCSwRXY160P183iLd8qxA//79MXfuXMyYMQOtW7fG/v37kZycjOrVq5uqF18YLgAsYMXaqnQA47i6w3BmXQe9Xa/5ELgw9Y8HdQqLkdW8bWMsTZ8+HfPnz8eBAwe49xk3bhxefPFFrFu3DgcOHMCgQYNQq1Yt9OnTBwDQtGlT9OrVC8OGDcP333+PHTt2YOzYsRgwYABq1qxp0Jl4JySkxLN08pfffLY9mxuKcyf/5JatKArefWaKzzY808PVBt2Zo78j3MFO/M3Md+LUoSPcOgLAh1P/4/PvhRx2T0hoSQjz/Im/EFHE9tIVuICTvxzk1g8A1r78ms+/5/lItL9CkWqWXnZmFkIvnffZ/uQB3/dDab5c6NvYz+HQUU1Bbh4KTh/32ebPXzn6UXXYbf99z2dT1iw9qzF+/HgsXboUK1euxMGDBzFy5EhkZ2djyJAh0o5RtU5tVK1T2/05TPVjT/R9qCo07VQ9c0pbV6zZRiGq/DXtMcIZ2+W3CQ0v+Y6rvd2+ULcLUe1vtK6aNpEl20NUk3h8nYPGKAgtuV6hXMcWfc/R9xHe7x9foVFN36vOW90fon0Zrt43MtJr+4o1qiGuejWmXqLY44kUAA0aNEDNmjWxefNm97asrCzs3r0biYmJAIDExERkZGRgz5497jabN2+Gy+VC+/btmbLDw8MRGxureYlw4udfSo639G0A8ChEyfr1dPhkFl564xuc+u0wLp4vWebi6O4fAQD5OZ7GgcvH8imXLudhyy9ZmDdwuGZ72vE/3O+3/vfdYp1KySliyD18IhMvrfgRv2z5GlnnSgyB/Zu2AoD32kI+fmTk5xfi20MXMfuBxzTbM9POut9/u+rDYjGqfivML0BBgXeD7tAfGZi16iC2r1qNrHMl/bjjw0+L5QguZuxyubD72CX8Z9CTmu3ZWRfdOl3xnKmvR1FhAfLzvRuqh1LS8erHv2P9nAW4+He6e/sVz5HmHuH4laYoCn76IxvTH5ms2V6Ql+euGn9gy9ce+xUVFiA/z3sZhoPHzmHh+pN4/9kXcPlCpnv7mpfnu9+fO1m81Imv+1DNgZPZmDZyJldbMwkLC0ObNm00zxhFUbB582b3M0ZNoM+NIQtewTXt27o/V4yvEfD7mMqV3O/VhpOvwU49KEaqUhT06KHnfQVVv2mMDh8GnzoPNLpiyYSGoJ5DjRJvY0RUSR6gk9NYUhsCsVWrmHIO6uOq9fF5/6jOT33e6v7Qo1MlxvYqtWuh35RnmHqJUmZnwyUkJAAA0tLSNNvT0tLcf0tISMDZs2c1fy8qKkJ6erq7jTeSkpIwffp0YZ3+7+33ce0tiXhj6Gi48gtRtU5tnDtR7CH6cuFSdOh3t/vzyEcXYcHCkThy5BSaN68LAFjw+nqMG7fULW/lk0kY++4S7P0iGZsWL0fVOrWRmXbO/fdv3v0AHQf0w6qkaQCAI0dOoXr1isjJyUetWlVw6VIuatX8Ny5dynXvs+nN/+KGXt2xcNCjyM7MQvX69XDujxMAgN2frced4x5zD9z//vccvPvuUzh69BSuvbYOnE4nVvz3Kwwd+rpb3odT/oNaTa7Bb1/vwPo5C1C5dk1c/PtvzfG6Dv03PnnxFQDAvp+O4+pGNZGefhH16tVATk4eGtQfhrNnL7j3WT93IRLv7YM3RzyOjFNnEN+wvtu4O/7jT7iUnoGCvDzkXrqEBwa8jLXrnsPvx1JxTeNaCA0NwScf78B9973klvfF/DfQpOONSPnpZ3z64ivYuvwdZGdedP993Suv445xj2HD/OIQ8Hc7DqLVDQ1x+nQ6GjWqiby8ArRoPhq//37Gvc8nL76MWx8eiOVjn0HasRSNjrmXLiHjTCpCw8ORsnc/+t83G998+xKOH09Fw4YJiIgIQ/KXe9Cr13S3vO8++ATt+96F1N9T8OXCJdjxwSeaGWurZ7yEfs89gy3L3inu1+S96NS5BU6cOIsmTa5Cfn4BbrppAvb8eMy9z/+SZuD20cPx3oSpOHngV42OAHD2j5OIrVIZuz5Zj3/v+x4/7XsdJ0+eQ5061VChQgR27PgNt9xcEjI+vGM3Un7aj0sZmfj23Q+x9/NkOBwOFObmu483cPZ0fPfBJwCATz/9Dnfe2Q7Hj6fi2mvroKCgEHf0mo4tW/bDDlSrVg2hoaFenzFNmzb1aB/oc8NVWAhFUdwDktHvSxPMY8s8ByvoUV773irnUCShwLPmXMx6zZo1S/FHkyZNNPsMHjxYycjI8Cs7MTFRURRFSUhI0Gz/8MMPlQ8++EABoCQlJSmHDh3y2DctLU0ZOXIkU3Z4eLgSGxvrftWqVUtRFEWJjY01rS/pRa/y/IqNjQ36d7BmzZqKoihKhw4dNNtnz56t7Nq1y6M9PTfoRS/rvXifHaZ6lubMmYOVK1f6bHP8uO9cCRapqakAgPj4ePf7K5/37dvnblOjRg3NfiEhIahSpYpmn9Lk5+cjP19/witBEPbl/PnzKCwsRHx8vGZ76WfOFei5QRD2xVRj6fz58zh/3ndya6CkpKTgzJkz6NatG/bvL3brx8bGon379u4ZdTt37kTlypXRunVr7N1bvNJ6165d4XQ6sXv3bkP0IgiibFBQUIA9e/agW7duWLt2LYDi3I1u3bph4cKFJmtHEIRsTHeD8bzq1KmjXH/99cqUKVOUrKws5frrr1euv/56JTo62t3m4MGDSp8+fdyfJ0yYoKSnpyu9e/dWWrRooXz22WfK77//rkRERLjbbNiwQdmzZ4/Srl07pWPHjsrhw4eVVatWGeLGoxe96GXMy6zvYP/+/ZWcnBxl0KBBStOmTZU333xTSU9PV2rUqGFZnelFL3qVvAS+h+Yry/NasWKF15ymzp07u9soiqIMHjxYs9+MGTOUM2fOKDk5OcpXX32lXHPNNZq/V65cWVm1apWSlZWlXLhwQVm+fLnGAJPc2fSiF70MeJn5HRw9erTyxx9/KLm5ucquXbuUG2+80fI604te9Cp+8X4PHf+8IXQQGxuLrKwsxMXF4eLFi/53IAhCKnb8DtpRZ4Ioa/B+D8tsnSWCIAiCIAgZkLFEEARBEAThAzKWCIIgCIIgfEDGEkEQBEEQhA/IWCIIgiAIgvABGUsEQRAEQRA+IGOJIAiCIAjCB2QsEQRBEARB+ICMJYIgCIIgCB+YupBuWSM2NtZsFQiiXGLn756ddScIu8P7/SNjSQJXOvvUqVMma0IQ5ZvY2FjbLB1Czw2CsA7+nh20NpwkatWq5fchHRsbi1OnTqF27dq2eaBfgXQ3B9Jd7HinT582/Dgy4XluWA0735Oyob4owc59wfPsIM+SJEQe0hcvXrTdzXQF0t0cSHe+49gNuxl3aux8T8qG+qIEO/YFj76U4E0QBEEQBOEDMpYIgiAIgiB8QMZSEMnLy8P06dORl5dntirCkO7mQLoTVoOuawnUFyWU9b6gBG+CIAiCIAgfkGeJIAiCIAjCB2QsEQRBEARB+ICMJYIgCIIgCB+QsUQQBEEQBOEDMpYkM2rUKKSkpCAnJwe7du1Cu3btfLa/9957cfDgQeTk5ODnn39Gr169gqSpJyK6Dx48GIqiaF45OTlB1LaEW265BevWrcOpU6egKAruuecev/t07twZe/bsQW5uLo4ePYrBgwcHQVNPRHXv3LmzR78rioL4+PggaVzMpEmT8P333yMrKwtpaWn47LPP0LhxY7/7Wel+J/QzefJk7NixA5cvX0ZGRobZ6gQd0ed9WSSQ568dIWNJIv3798fcuXMxY8YMtG7dGvv370dycjKqV6/utX1iYiLef/99LF++HDfccAPWrFmDNWvWoHnz5kHWXFx3AMjMzERCQoL7Va9evSBqXEJ0dDT279+P0aNHc7WvX78+vvjiC2zbtg2tWrXC/PnzsWzZMvTo0cNgTT0R1f0KjRs31vT92bNnDdLQO507d8aiRYvQoUMHdO/eHWFhYdi0aROioqKY+1jpfifkEB4ejo8++giLFy82W5WgE8gzsywS6DPMjij0kvPatWuXsmDBAvdnh8Oh/PXXX8rEiRO9tv/ggw+U9evXa7bt3LlTWbx4seV1Hzx4sJKRkWF6n5d+KYqi3HPPPT7bvPTSS8qBAwc0295//31l48aNlte9c+fOiqIoSsWKFU3va/WrWrVqiqIoyi233MJsY6X7nV5yX1Z9Hhj5En1mlocXzzPMri/yLEkiLCwMbdq0webNm93bFEXB5s2bkZiY6HWfxMRETXsASE5OZrY3ikB0B4CYmBj88ccfOHnyJNasWYNmzZoFQ13dWKXf9bBv3z6cPn0amzZtQseOHc1WBxUrVgQApKenM9uUhX4nCCDwZyZhX8hYkkS1atUQGhqKtLQ0zfa0tDQkJCR43SchIUGovVEEovvhw4cxZMgQ3HPPPXjooYfgdDrx3XffoXbt2sFQWResfq9YsSIiIyNN0oqPM2fO4NFHH0W/fv3Qr18//Pnnn/i///s/3HDDDabp5HA4MH/+fGzfvh2//vors51V7neC0Esgz0zC3oSarQBhT3bt2oVdu3a5P3/33Xc4ePAgHn30UUydOtVEzco2R44cwZEjR9yfd+7ciauvvhpPPvkkBg0aZIpOixYtQosWLXDzzTebcnxCLrNmzcKkSZN8tmnatCkOHz4cJI0IwnzIWJLE+fPnUVhY6DErKT4+HqmpqV73SU1NFWpvFIHoXprCwkL89NNPaNSokREqSoXV75mZmcjNzTVJq8D5/vvvTTNUFvx/e+cfFlWd/fH38EsEtFVjUBHZngFZUhpyIU0U/IGKtemSIvb0A6a01vKRkNy2Z9dANy0VY1fQdFvF0dCMtlpF/JWMaAZGCIqGOpGAIIjAAMPAyCDn+4ffucsIDAw/HLTzep7zPNzP/XzOOffO/Rw+99zP5974ePzhD3+Av78/SktLjdbtL9c7Y5xNmzZh165dRuv88ssv98eZfkpvxEzmwYIfw/USOp0O2dnZmDFjhlAmEokwY8YMZGRktNsmIyPDoD4AzJw5s8P6fUV3fL8XCwsLeHl5oaysrK/c7DX6y3nvLby9vc1y3uPj4xEcHIzp06ejsLCw0/oP23l/WKmsrMSVK1eMik6nM7ebZqU3Yibz4GH2WeYPiyxcuJAaGxvplVdeod/97ne0bds2qq6uJrFYTABILpfTunXrhPpPP/00NTU10YoVK8jDw4Oio6Pp9u3bNHbs2H7v+6pVq2jmzJn02GOP0ZNPPkl79+6lhoYG8vT0vO++29vbk1QqJalUSkREb7/9NkmlUnJxcSEAtG7dOpLL5UL93/72t1RfX0/r168nDw8PWrp0Kel0Opo1a1a/9z0iIoLmzp1LEomExo4dS3FxcdTc3EzTp0+/r35v2bKFVCoV+fv7k5OTkyC2trZCnf58vbP0jri4uJBUKqVVq1ZRXV2dcC3b29ub3be+ls5i5q9FOothD5GY3YGHSt566y0qLCwkrVZLmZmZ9NRTTwn7FAoFJSYmGtRfsGABXb58mbRaLeXl5dGcOXMeCN8//vhjoW5ZWRmlpKSQt7e3WfzWL6e/F72/iYmJpFAo2rQ5d+4cabVa+vnnnyksLOyB8H3lypWkVCqpoaGBKisrKS0tjaZOnXrf/e6I1uexv1/vLD2XxMTEdq+DgIAAs/t2P8RYzPy1SGcx7GER0f//wTAMwzAMw7QDz1liGIZhGIYxAg+WGIZhGIZhjMCDJYZhGIZhGCPwYIlhGIZhGMYIPFhiGIZhGIYxAg+WGIZhGIZhjMCDJYZhGIZhGCPwYIlhmG4xZcoUHDhwAKWlpSAizJs3r0/tXbt2DUTURhISEvrULsMw5qM34kxISAhycnKg0WhQWFiId955x2QdPFhieoXExER8/fXX5naj3xIdHY2cnJwe69APECIiIrrURqFQCG2kUmmP7N+Lvb09zp8/j7feeqtX9XaEr68vhg8fLkhgYCAAIDk5+b7YZ5gHhd64edHHDZVK1Ute/Y/ExERBf2d+9jTOBAUFISkpCdu2bcO4cePw5ptvIjIyslv6zP4acZb+LZ0RHR1NgwcPpkceecQs/ikUCsEXrVZLJSUldODAAQoODjb7udOLvb09DR06tEc6oqOjKS8vj5ycnGjgwIFdajNkyBDy8fEhIiKpVNqn18i8efMMymxsbGjjxo1UUlJC9fX1lJmZ2aufwYiLiyOlUmn23/ZBlo4+VyKRSMzuW3+U1p/2uHPnDtXU1NC5c+do/fr1NHz4cLP7pxcnJyeysbHpkQ6iu58vcnR0FMrCwsJIpVJ1WP/eGNCRDB48mJycnExq05GNzuJMUlISffHFFwZtli1bRsXFxSadD84sMZ3S+m4+IiICtbW1BmWxsbGoq6tDbW2t2Xz817/+heHDh0MikWD+/Pn46aef8Pnnn2P79u1m86k1Go0G1dXVPdbT3NyMmzdvorGxsUv1VSoVbt261WO73SEhIQFPP/00Fi1ahCeeeALJyck4cuQI3Nzceqzb2toaL730Enbu3NkLnv66OXz4sEF/Hj58OK5du9amnrW1tRm865+MGTMGI0eOhK+vL9avX4/AwEBcvHgR48aNM7drAICbN2+iqampx3pqamr6JH7U1dXh5s2bvaKrszgzYMAAaLVagzaNjY1wcXGBq6urSbbMPgpmeXCkozuLxMRE+vrrr4VthUJBmzdvpri4OKqurqby8nJavHgx2dnZ0c6dO6muro6USiUFBQUZ6Bk7diylpqaSWq2m8vJy2r17Nw0bNsyoTwqFguLi4tqUh4eHExHRjBkzhLJx48bRiRMnhA/Rbt++3eAL6frjeO+996i8vJxUKhWtWrWKLC0tacOGDVRVVUXXr1+n8PBwA1sfffQRXblyhTQaDRUUFNCaNWvIyspK2B8dHU05OTlt7ERFRdGNGzeosrKSEhISDNrcK/fqaF1eVFREWq2WSktL6Z///KfBfldX1/ueWXJxcSGdTkcjRowwqHf8+HFau3Ztj+2FhIS0q5/FNLm337YWhUJB8fHxFBcXR7du3aK0tDQCOu+jdnZ2JJfLSa1W040bN2jFihVt+mh7GQKVSmXwIeZRo0bR/v37SaVSUVVVFX3zzTfk6uraxndjfcjGxoY++ugjKi4uJq1WS0qlkl599VUCQEqlkqKiogx8kEqlRjNr+szSvVl0W1tbys/Pp9OnTwtlIpGIVq1aRdevXyetVks5OTk0e/ZsYb++X4aEhNCpU6eooaGBfvjhB3J3dycfHx/KysoitVpNqamp9OijjwrtfHx86NixY3Tr1i2qqamhkydP0pNPPmngT+vzq7cTHBxMaWlppNFoKDc3lyZOnGj02mjvN+pqZik6OrrdjOW9HyzvaWapK3FmyZIlVF9fT9OnTyeRSETu7u70008/ERF1eg5aC2eWmD4jLCwMlZWVeOqppxAfH49PPvkEycnJ+P777zF+/HgcO3YMe/bswcCBAwEAjzzyCNLS0pCTkwMfHx8EBQXByckJX3zxRbfsy+VyVFdX4/nnnwcA2NnZ4ejRo1CpVPD19UVISAgCAwPbTBCePn06Ro4cCX9/f6xYsQJr1qxBSkoKVCoVJkyYgG3btmH79u1wdnYW2qjVaoSHh+Pxxx9HREQElixZgsjISKP+TZs2DRKJBNOmTUNYWBjCw8MRHh5u0jHOnz8fkZGReOONN+Du7o4//vGPyMvLM0lHX+Dl5QUrKytcvXoVarVakICAAEgkEgCAh4dHuxO2W8uHH37Yrv7XXnsNhw8fRllZ2f08rF8dYWFhaGpqgp+fH/70pz91qY9u3LgRAQEBmDdvHmbNmoWpU6di/PjxJtm1srLC0aNHoVarMWXKFPj5+aG+vh5HjhwxyHB11od2796NF154AcuXL4enpyfeeOMN1NfXAwB27twJmUxmYFcmkyE9PR0FBQUm+avVarFt2zZMnjwZjo6OAICIiAhERUXhnXfewRNPPIGjR4/iwIEDbTKrq1evxgcffIDx48ejubkZe/fuxYYNGxAREYEpU6bAzc0Na9asEeoPGjQIcrkckydPxsSJE6FUKpGamgoHBwejPq5duxaxsbHw9vbG1atXsW/fPlhaWpp0nF0lNjbWIFMZFRUFjUaDH3/8sVftdCXOfPrpp0hISEBKSgqampqQmZmJzz//HADQ0tJikj2z392wPDhiSmbp1KlTwraFhQWp1WqSy+VCmf6Z9YQJEwgA/fWvf6UjR44Y6HV2diYiInd39w596iizBIAyMjLo0KFDBIAWL15MVVVVZGdnJ+yfM2cONTc3k1gsFo7j2rVrJBKJhDr5+fmUnp7e5lhCQ0M79CkqKoqysrKE7fYyS9euXSMLCwuhbP/+/bRv374OdbaXWYqMjKTLly8bzUiZI7O0cOFC0ul0NGbMGJJIJAbi5OREAMja2po8PDyMSus7ar2MHj2ampubae7cuWbvDw+6JCYmkk6nI7VaLYh+fodCoaDs7GyD+p31UXt7e9JqtbRgwQJh/5AhQ0ij0ZiUWXrxxRcpPz/fYL+1tTVpNBqaOXOm4LuxPuTu7t4ms9xaRowYQTqdjnx9fQkAWVlZUUVFBb3yyisdnq+OMksAaPbs2UREgr6SkhJ67733DOqcPXuWEhISCPhfv9RnugBQaGgoERFNmzZNKHv33XfbnIvWIhKJqLa2lp599tl2z297djw9PYmIyMPDo0O9HWWWiMjgetFLR1miCRMmUENDA4WEhHTJhjHpTpzRi4WFBY0cOZKsra0pKCiIiKjd+NKRWIFh+ogLFy4If7e0tKCqqsog66F/Zi0WiwEAUqkU06ZNg1qtbqNLIpHA19fXYA7SnDlz8N133xn1QSQSgYgAAJ6enjh//jwaGhqE/WfOnIGlpSU8PDxQUVEBALh06ZLQRu/nxYsX2xyL3m8AWLhwIZYvXw6JRAIHBwdYWVmhrq7OqG+XLl0yuLMpKyuDl5eX0Tb3kpycjLfffhu//PILjhw5gtTUVBw8eBB37twxSU9vk5OTAysrK4jF4g5/I51OhytXrpisWyaToaKiAocOHeqpmwzurphcunSpsK3RaIS/s7OzDep21kcHDhyIAQMG4OzZs0K5SqUy+XeWSqVwc3NrY8fW1hYSiQTHjx8HYLwPeXt7o7m5Genp6e3aKCsrw6FDh/Dqq68iKysLzz33HAYMGCCsrrx48aIwp+X06dN45plnjPosEokAAESEQYMGwdnZGWfOnDGoc+bMmTarUlvHSX1MvDdOto41YrEYH3zwAaZOnQqxWAxLS0vY2dlh9OjRRv1rbUefkRWLxSb/NnV1de1mCn/++ec2ZS4uLvjmm28QGxvbJ6tWuxJn9LS0tODGjRsAgBdeeAHff/89Kisru2yLB0tMn6HT6Qy2iahNGQBYWNx9Guzg4ICDBw/i3XffbVOnrKwMFhYWBkG4tLTUqH0LCwu4u7sjKyur1/0mIsHviRMnIikpCdHR0Th69Chqa2uxaNEiREVFmWxHr7OrlJSUwMPDA4GBgZg5cya2bt2KlStXIiAgAM3NzSbpMhV7e3uDRwqPPfYYpFIpqquroVQq8dlnn2H37t2IiopCTk4OHB0dMWPGDFy4cAGpqandsikSiSCTySCXy80+IHxY0Gg0HT52aj1wAjrvo12dvN/S0iIMLvS0frzm4OCA7OxsvPjii23atp5wbKwPdWURxL///W/s2bMHkZGRkMlk2L9/v9DumWeeEXzqii5PT08AQGFhYad1W9P6GPQ3afeWtY4Lcrkcw4YNQ0REBIqKinD79m1kZGTAxsbGZDumxhvg7m/XlceUdnZ2OHDgADIyMvD++++bbEdPT+PMsGHDsGDBApw8eRK2traQyWQICQlBQECASX7wYInpN5w7dw7z589HYWFhh/8I9fMNukJYWBiGDh2K//znPwCA/Px8hIeHw87OTsgu+fn54c6dO93KcOiZNGkSioqKsG7dOqHM1FUWPUGr1SIlJQUpKSnYsmULrly5Ai8vrx6/16kzfHx8cPLkSWE7Li4OALBr1y7IZDLIZDL87W9/w6ZNm+Ds7IzKykpkZmYiJSWl2zYDAwPh6urKq+DMRGd9tKCgAE1NTZgwYQKuX78OAPjNb36DMWPGGGR4bt26hREjRgjbbm5usLe3N7ATGhqKioqKdrNYXSEvLw8WFhYICAjAiRMn2q2TmpoKjUaDpUuXIigoCP7+/sK+4uLiLtuytbXF66+/jvT0dCFbUVpaCj8/P5w6dUqo5+fnhx9++KFbx9Nax5tvvonDhw8DAEaNGiXMk+pPfPbZZ7CwsMDLL7/cIz29EWfCwsIQGxsLkUiEjIwMTJ061eSbaB4sMf2GLVu2YMmSJdi3bx82bNiA6upquLm5YdGiRVi8eLHRyXh2dnZwcnKClZUVRo0aheDgYERGRmLr1q1CR0tKSsLq1ashl8sRExMDR0dHxMfHY8+ePcIjuO6gVCoxevRohIaGIisrC88++yyCg4O7rc8UwsLCYGlpibNnz6KhoQEvvfQSGhoaUFRU1Oe209PT22QHWtPc3IyYmBjExMT0ms3jx48btcn0LZ31UY1Ggx07dmDjxo2oqqpCRUUF1q5d26bvpqWlYdmyZcjIyIClpSXWr19vsNQ9KSkJK1euxH//+1+8//77KCkpgaurK55//nls2LCh06wyABQVFUEul2Pnzp1Yvnw5zp8/D1dXV4jFYuGRUEtLC3bt2oUPP/wQSqUSmZmZXToPYrEYtra2GDRoEH7/+9/jz3/+Mx599FFhMQlwd6L76tWrUVBQgNzcXMhkMnh7e7ebLTMFpVKJl19+GT/++CMGDx6MjRs3Gkwt6A/ExMQgMDAQs2bNgoODgzD5vLa2ts0y/s7oaZypqqrCpEmTTLLZHrwajuk3lJWVwc/PD5aWljh27Bjy8vLwj3/8AzU1NZ2uWnj99ddRXl6OgoICfPXVV3j88ccRGhpq8JbWxsZGzJ49G0OHDkVWVha+/PJLnDhxAsuWLeuR3wcPHkRcXBwSEhKQm5uLSZMm4e9//3uPdHaVmpoaLFmyBGfOnMGFCxcQGBiI5557rlfe6cQw99KVPrpy5UqcPn0aBw8exLfffovvvvuuzdynqKgoXL9+HadPn8bevXsRGxtr8A+/sbER/v7+KC4uxldffYX8/Hzs2LEDtra2nc4FbM3SpUvx5ZdfYuvWrbh8+TI+/fRTgwwWAOzYsQMDBgxAYmJil/VevXoVN27cQHZ2Nv7yl7/g22+/xbhx45Cfny/U2bx5Mz7++GNs2rQJeXl5CAoKwty5c9ud22MKr732GoYMGYJz585hz5492Lx5c49u9vqCgIAADBo0CBkZGSgvLxckNDTU3K71iB6vqGBhYel76eg9S53J/VgNx8JiTIytWDW3TJ48mW7fvi2siGW5K6auVOuvNnpLOLPEMA8QXl5eUKvVBquXjJGamopLly71sVcM8+BhY2MDZ2dnxMTEIDk5ud9lZ/oD+/btE+ae9SaffPJJt+eimQsR7o6aGIbp5wwZMgRDhw4FcHeCbFceR4wcOVJ46WdxcXG7qxEZpq9RKBTIzc3t9EWt95OwsDDs2LEDubm5mDt3rrCsnLmL/qWOd+7cMXmFX2c4Ojpi8ODBAO4+2u1vc67agwdLDMMwDMMwRuDHcAzDMAzDMEbgwRLDMAzDMIwReLDEMAzDMAxjBB4sMQzDMAzDGIEHSwzDMAzDMEbgwRLDMAzDMIwReLDEMAzDMAxjBB4sMQzDMAzDGOH/AF3k8W4Dkt6KAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAIYCAYAAAB9p6hbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADPxklEQVR4nOydeXwURdPHf7s5ycVNAsgpAnIocghBBQFBUFF4UETxAeUSORRRgaBc6gOiciggyvGAB4+KF4eCQY5XBQEVBFE5JYICCWBCAuTOzvtHZDOT3d7t3unZmUnq+/ks7E56amp6Zqdrq6qrHQAUEARBEARBEF5xmq0AQRAEQRCElSFjiSAIgiAIwgdkLBEEQRAEQfiAjCWCIAiCIAgfkLFEEARBEAThAzKWCIIgCIIgfEDGEkEQBEEQhA/IWCIIgiAIgvABGUsEQRAEQRA+IGOJIAiCIAjCB2QsEQRBEARB+ICMJYIgCIIgCB+QsUQQBEEQBOEDMpYIgiAIgiB8QMYSQRAEQRCED8hYImzJihUr8Nlnn5mtBkEQBFEOIGOJkM6KFSugKAoURUF+fj6OHz+O2bNnIyIiwmzVyg1kTBIEQcgj1GwFiLLJxo0b8cgjjyAsLAxt2rTB22+/DUVRMGnSJLNVIwiCIAghyLNkM8IrRJryEiUvLw9paWn466+/sHbtWmzevBndu3cHADgcDkyaNAnHjx9HdnY29u3bh379+rn3dTqdWLZsmfvvhw4dwuOPPy6tD/USFRVhyitQtm3bhtdffx3z5s1Deno6UlNTMWzYMERFReG///0vsrKycPToUfTs2dO9D881CAkJwWuvvYaMjAycP38eL730ElauXEkeLYIgyhzkWbIR4RUiMev7baYcO+nGLsjPyQ1o3+bNm6Njx444ceJEsaykJDz00EMYOXIkjh49ik6dOuG9997DuXPn8M0338DpdOKvv/7Cfffdh7///hsdO3bEkiVLcObMGXz00UcyT0uYqKgIXLr8sSnHjom+F9nZeQHtO3jwYLz88su48cYbcf/992Px4sXo27cvPvvsM8ycORNPPvkk3n33XdStWxc5OTlc12DixIkYOHAgHnnkERw8eBBPPPEE+vTpg23bzLlHCYIgjMIBQDFbCYIPuxhLK1aswEMPPYTc3FyEhoYiMjISRUVF6N+/Pz7//HOkp6fjtttuw65du9z7LF26FFFRURg4cKBXmQsWLEBCQgLuu+8+9zEqVaqEvn376j85AexiLKn7Z9u2bQgJCUGnTp0AFHuNMjMz8emnn2Lw4MEAgPj4eKSmpqJDhw7YvXu3V5mlr8GZM2fw6quvYs6cOW65x48fx08//RT060IQBGEk5FmyEfk5uUi6sYtpxxZh27ZteOyxxxAdHY0nn3wShYWF+PTTT9GsWTNER0fjq6++0rQPDw/HTz/95P48atQoDBkyBHXr1kWFChUQHh6Offv2yTgVXWRn5yEm+l7Tjh0oP//8s/u9y+XC33//jQMHDri3paWlAQBq1Kjh3ubrGsTFxSEhIQHff/+9Ru6ePXvgdFJ0nyCIsgUZSzYj0FBYsLl8+TJ+//13AMCQIUOwf/9+DBkyBL/88gsA4M4778SpU6c0++TlFRsD999/P1599VU89dRT2LlzJy5evIhnnnkG7du3D+5JMNBjtJhFQUGB5rOiKB7bALgNHatfA4IgiGBCxhJhOIqiYObMmZg7dy4aN26M3Nxc1K1bF998843X9jfddBO+++47LF682L3t6quvDpa6BPxfg6ysLKSmpqJdu3b49ttvARQbWq1bt7aEB5AgCEIm5C8ngsJHH32EoqIiPProo3j11Vcxb948DBo0CA0bNsQNN9yAMWPGYNCgQQCAo0ePom3btujRoweuueYaPP/882jXrp3JZ1C+4LkGCxYsQFJSEu6++240btwYr732GipXrgxFoTRIgiDKFuRZIoJCUVERFi5ciAkTJqBBgwY4d+4ckpKS0LBhQ1y4cAF79+7FzJkzAQBvvfUWbrjhBnz44YdQFAXvv/8+3njjDfTq1cvksyg/8FyD2bNnIyEhAe+88w6KioqwZMkSJCcno6ioyETNCYIg5EOz4QiCkILD4cDBgwexevVqTJ061Wx1CIIgpEGeJYIgAqJu3bro0aMHvv76a0RERGDMmDFo0KAB/ve//5mtGkEQhFQoZ4kgiIBwuVx4+OGH8cMPP2DHjh1o2bIlbrvtNhw6dMhs1QiCIKRCYTiCIAiCIAgfkGeJIAiCIAjCB2QsEQRBEARB+ICMJYIgCIIgCB+QsUQQBEEQBOEDMpYIgiAIgiB8QMYSQRAEQRCED8hYIgiCIAiC8AEZSwRBEARBED4gY4kgCIIgCMIHZCwRBEEQBEH4gIwlgiAIgiAIH5CxRBAEQRAE4QMylgiCIAiCIHxAxhJBEARBEIQPyFgiCIIgCILwARlLBEEQBEEQPiBjiSAIgiAIwgdkLBEEQRAEQfiAjCWCIAiCIAgfkLFEEARBEAThAzKWCIIgCIIgfEDGEkEQBEEQhA/IWCIIgiAIgvABGUsEQRAEQRA+IGOJIAiCIAjCB2QsEQRBEARB+ICMJYIgCIIgCB+QsUQQBEEQBOEDMpYIgiAIgiB8QMYSQRAEQRCED8hYIgiCIAiC8AEZSwRBEARBED4gY4kgCIIgCMIHZCwRBEEQBEH4gIwlgiAIgiAIH5CxRBBEwHTu3BmKoqBz587ubStWrEBKSoqJWnkybdo0KIpithoEQdgUMpYIopwxePBgKIri9TVr1qyg6bFt2zbNsbOzs7F//3488cQTcDgcQdNDNitWrGD27+233262egRBBECo2QoQBGEOU6ZM8fAA/fLLL0HV4c8//0RSUhIAoFq1anjwwQcxf/58VK9eHc8991xQdZFJbm4uhg0b5rF9//79JmhDEIReyFgiiHLKxo0bsWfPHlN1yMzMxKpVq9yf33zzTRw6dAhjx47F1KlT4XK5TNSOTWRkJHJzc5l/Lyws1JyXP6KiopCdnS1DNYIgDIDCcARBeKAoCqZNm+axPSUlBStWrDDsuHl5efjhhx8QFxeHGjVquLe3bNkSK1aswO+//46cnBycOXMGy5cvR5UqVTxk3HTTTfj++++Rk5ODY8eOYcSIEV6P9fDDD2PLli1IS0tDbm4ufv31V4wcOdKjXUpKCtavX48ePXrghx9+QE5ODh599NGAz/FK/tS1116LVatWIT09Hdu3bxc6zysyrrnmGrz77ru4cOECzp49i+effx4AcNVVV2HNmjXIzMzEmTNnMH78eA89wsPDMX36dBw9ehS5ubk4efIkZs+ejfDw8IDPjSDKKuRZIohySsWKFVG1alXNtr///tskbUqoX78+XC4XLly44N7WvXt3NGzYECtWrEBqaiqaN2+OESNGoHnz5ujQoYO7XYsWLbBp0yacO3cO06dPR2hoKGbMmIG0tDSP4zz22GP49ddfsW7dOhQWFqJ3795YvHgxnE4n3njjDU3bJk2a4P3338dbb72FpUuX4vDhw37Po3TfFhQUICsry/35o48+wtGjRzF58mR3jhbveV7hww8/xMGDBzFp0iTceeedmDJlCtLT0/Hoo49i69atmDhxIgYOHIg5c+bghx9+wLfffgsAcDgcWLduHW6++WYsWbIEBw8eRMuWLfHkk0+icePG6Nu3r9/zI4jyhkIvetGr/LwGDx6ssLjSRlEUZdq0aR77pqSkKCtWrHB/7ty5s6IoitK5c2f3thUrVigpKSl+9di2bZvy22+/KVWrVlWqVq2qNG7cWJk9e7aiKIqyfv16TdvIyEiP/e+//35FURTl5ptvdm/79NNPlezsbKVOnTrubU2bNlUKCgo058eSuXHjRuXYsWMe56woitKjRw+u/l2xYoXXvt22bZsCQJk2bZqiKIqyatUqj315z/OKjDfffNO9zel0KidPnlSKioqUCRMmuLdXrFhRuXz5sua6DRw4UCksLFRuuukmzbFGjBihKIqiJCYmmn6f0oteVnqRZ4kgyimjRo3CkSNHTNXh2muvxfnz5zXb1q5di6FDh2q2qfODIiIiEBMTg127dgEAWrduje3bt8PpdOL222/HmjVr8Oeff7rbHzp0CMnJybjzzjuZMuPi4hAWFoavv/4aPXv2RFxcnMYLdPz4cWzatIn7vHJyctC7d2/NtoyMDM3nN99802M/nvNUs2zZMvd7l8uFH3/8EXXq1MHy5cvd2zMzM3H48GE0bNjQve2+++7DwYMHcejQIY0HbOvWrQCALl26YOfOndznSxBlHTKWCKKc8v3335ue4J2SkoLhw4fD6XTi6quvxrPPPovq1at7JE9XrlwZ06ZNw4ABAxAfH6/5W8WKFQEA1atXR1RUFI4ePepxnMOHD3sYSx07dsSMGTOQmJiI6OhoD5lqY0m0blRRURG2bNnis403mTznqebkyZOaz5mZmcjJyfEIp2ZmZmqMomuuuQbNmjXzMFSvoM4XIwiCjCWCIAQICQmRKu/y5ctuo+Krr77Cjh07sHfvXsycORNPPPGEu93q1avRsWNHvPLKK9i3bx8uXboEp9OJ5ORkOJ3i81QaNmyILVu24NChQxg/fjz+/PNP5Ofn44477sD48eM9ZObk5Og7US94kyl6nkVFRVzbAGhqVzmdTvz8889eE78BaDxzBEGQsUQQhBfS09NRqVIlzbawsDDUrFnT0OMeOHAA7733Hh599FG8+uqr+PPPP1GpUiXcdtttmDp1Kl544QV320aNGmn2PXfuHLKzs3HNNdd4yG3SpInmc+/evREZGYm7775bYxh06dJF8hnxw3ueMvj9999x/fXX+/V+EQRRDJUOIAjCg99//x2dOnXSbBsxYgRCQ43/ffXyyy8jLCzM7fW44ikpXdV73Lhxms8ulwvJycno06cP6tSp497etGlTj8rZ3mTGxcXhkUcekXYeovCepwxWr16Nq666CsOHD/f4W2RkJKKioqQfkyDsDHmWCILwYNmyZXjrrbfw8ccf46uvvsL111+P22+/HefOnTP82AcPHsSGDRswbNgwvPDCC0hPT8fXX3+NCRMmICwsDKdOnUKPHj3QoEEDj32nTZuGnj174ttvv8Ubb7yB0NBQjB07Fr/++iuuv/56d7tNmzYhLy8P69evx1tvvYWYmBgMHz4cZ8+eRa1atQw/R29cvHiR+zz18u6776J///5488030aVLF+zYsQMhISFo2rQp+vfvj9tvv930fDaCsBLkWSIIwoOlS5fipZdeQqdOnTBnzhw0aNAA3bt3x+XLl4Ny/FdeeQUxMTEYO3YsAODBBx9EcnIyRo8ejVmzZqGgoAC9evXy2O/AgQNuo+7555/HkCFDMG3aNHz22WeadkeOHMG9994LRVHw6quvYuTIkViyZAlee+21oJwfC97z1IuiKOjTpw8mTZqEli1b4tVXX8W0adPQrl07vPbaa6bPkiQIq+FAcQ0BgiAIgiAIwgvkWSIIgiAIgvABGUsEQRAEQRA+IGOJIAiCIAjCB2QsEQRBEARB+ICMJYIgCIIgCB+QsUQQBEEQBOEDMpYIgiAIgiB8QMYSQRAEQRCED8hYIgiCIAiC8AEZSwRBEARBED4gY4kgCIIgCMIHZCwRBEEQBEH4gIwlgiAIgiAIH5CxRBAEQRAE4QMylgiCIAiCIHxAxhJBEARBEIQPyFgiCIIgCILwARlLBEEQBEEQPiBjiSAIgiAIwgdkLBEEQRAEQfiAjCWCIAiCIAgfkLFEEARBEAThAzKWCIIgCIIgfEDGEkEQBEEQhA/IWCIIgiAIgvABGUsEQRAEQRA+IGOJIAiCIAjCB2QsEQRBEARB+ICMJYIgCIIgCB+QsUQQBEEQBOEDMpYIgiAIgiB8EGq2AmWFWrVq4eLFi2arQRDlltjYWJw+fdpsNYSg5wZBmA/Ps4OMJQnUqlULp06dMlsNgij31K5d2zYGEz03CMI6+Ht2kLEkgSu/DGvXrk2/EgnCBGJjY3Hq1Clbff/ouUEQ5sP77CBjSSIXL16khx5BEELQc4MgrA8leBMEQRAEQfiAjCWCIAiCIAgfkLFEEARBEAThAzKWCIIgCIIgfEDGEkEQBEEQhA/IWCIIgiAIgvABGUsEQRAEQRA+IGOJIAiCIAjCB2QsEQRBEARB+ICMJYIgCIIgCB/Yyli65ZZbsG7dOpw6dQqKouCee+7xu0/nzp2xZ88e5Obm4ujRoxg8eLBHm1GjRiElJQU5OTnYtWsX2rVrZ4T6BEEQBEHYEFsZS9HR0di/fz9Gjx7N1b5+/fr44osvsG3bNrRq1Qrz58/HsmXL0KNHD3eb/v37Y+7cuZgxYwZat26N/fv3Izk5GdWrVzfqNAiCIAiCsBmKHV+Koij33HOPzzYvvfSScuDAAc22999/X9m4caP7865du5QFCxa4PzscDuWvv/5SJk6cyK1LbGysoiiKEhsby2wTGhmu1L++pVK3ZXOp/RBVMU6qvPDISCU0PNzSOoZGhiuhkdbW0RkaqoRHRVlbR6dTiYyJsbSOvC+e76DVXlbR2axrRi96WeHF+z20lWdJlMTERGzevFmzLTk5GYmJiQCAsLAwtGnTRtNGURRs3rzZ3cYb4eHhiI2N1bz8Uf+66zD2vSV4fNVSj7+dO78KmVmr4XSyL0dc9Wp4+adv8cxnq9zbhi58FS9sT8YdT4zUtH38id4oLFqLefOG+dTp36+8gFf370DL7rcWn1dUFGZ+vxUzd2/xaPvnXytxOfsTREaGM+VFxsRg9p5vMHnjJ+5tA1+agRe2J6PflAmatoMHd0Nh0Vr8979P+NTx3qkT8er+HWjf724AgNPpxKxd2zBr9zY4Q0M1bY8cfQu5eZ+hShX29QgND8esH7Zh2rbP3dv6Tn4KL2xPxr9feUHTtnfv9igsWouPP0nyqeNd40fj1f3f4dZHBrq3zfp+K2bu2ozImBhN2337Xkd+wRrUqevbc/mfnZvxwo5N7s+3jx6OF7YnY/ib8zTtbr65OQoK1yJ50/M+5XUb/jBe3f8dej3+qHvbizs348XvNiGuejVN2+3bX0ZB4Vq0aFHPp8wZX2/AzN1b3fftLQP744XtyRjzzluads2a10VB4Vrs2PGyT3kdB/TDq/t3oO/kp3y2I+QxbFHxM0R9XxAE4Umo/yb2JSEhAWlpaZptaWlpqFixIiIjI1G5cmWEhoZ6bdO0aVOm3KSkJEyfPl2KjjExkahaNQ4A0PnWFti29Wf33+58chSa3pyI0PBwRFSIREhoKBIaNXT/vVnnmwAAXYcOwobX3nRvnzdvOBwOB54Ydw+efHKZe3tstaoYvngeigoKEF4h0i3rgRen4sBX/4emN3WAw+FASKjnbVG7dlUAwNBhPbBoYYmh0X3kEFzXvQtCw8OhFBUhNDwMVa+q5f576zuLQ54d+/fFJy+UDJZLlo6B0+nEw4/chiFDXnNvj4yJwWP/XQhXQSEiYqIR37A+AODeKROx+5N1qFy7JpwhxYNz9fp1kHYsxb1vo0bFx502/QE88fgS9/bOgx5A27t7ITQiAjmZWQiPjER4ZKT77zc/cC8AoFXP2/DuM1Pc299590k4nU78618dNX0RGh6O0SsXA4qCyLhY1KhfFwDQe/wY/N+KYmM2NCwMANCsc0fs/aLE6Lnu+gYAgDcWjUTv3iXGWYd778FNA/ohNCIC50/8iciYaABApZrxuHAmDd1HPAwAaHpTB40u7743HiEhTnTvfgNKM+adNxESEooKFeNQvV4dAMBtwx/GxteLjZmIqAoAgJse6OfeBgAdb7oWALDy7SfRts049/bWd/ZAl0ceQkhYGE4e+BUxVSoXn+OtN+OXrd/gjnGPAQAa3HCdRo+VK8YhJMSJxI7Xeug4ctkCRFSogKhKcahWt1jHmx+4F5/NnOPRlpDPtZ2KnyHdhg7S3AMEQWgp08aSUcyaNQtz5851f46NjcWpU6d0y1VciuZz1yH/BgCEOIq3FykeuwgxfPFc1G56DQAg3OlCvisQHbU79Rw9HADgdChwCOno8Lp18Nz/4Kprm+jSsTR3P/P4P0dUEOIACjl1dDi863jftImo27KZVB3vmzbJrWPthnVQ8I/M0vcEr449x4xAgxuuV+mogNXnvAx8acY/7xTUaVTXfd4ul58OYBy2fb+7cU37tlJ1JAiCMIIyHYZLTU1FfHy8Zlt8fDwyMzORm5uL8+fPo7Cw0Gub1NRUptz8/HxcvHhR8+LF4XCgbotm/O2hYNS1f+Oxa/+GA94HTtaAWZpKCcXn2bJyLkY3S8cNVXO0cpwlcq5u15pbRwAY3iQdjzf/223YBUqV2jUBAI0r5mF0s3R0qHFZ83d1qPKa9mKzFh++JgNjm/+NcKc+66bKVbUBAPVj8jG6WTo6J1xithXV8YGrL2BMs78RFcLW0Ve49gpV/9GxdlQBRjdLR/fabB0btvH0SvmiX/0sjG6WjriwImabUB/h2itUrpkAAKgeWYjRzdJxVx3+7xFBEEQwKdPG0s6dO9GtWzfNtu7du2Pnzp0AgIKCAuzZs0fTxuFwoFu3bu42RjD67cXcbaNCFYQ6gTAnEO5kGyK1mzXhlnnbPwPnrTUvM9s8tmyB1+0OxkAdFVqsW6Vw9gDaoltnDu2KDbbbahXrmFgjh9my76QnvW53MozHShHFBkjNqEKmzM6DHvCv4T/iOyUU91/rarnMtjf2vcuvPDXxFYr7r0FcPrPN3c/4zvMC4HbQtK+RDQBoUTmP2bRh6+u9i2DY4HVjCgAA11Ziy3zwP9P8q/iPcX7FaL+mIvucCYIgzMRWxlJ0dDSuv/56XH998cO9QYMGuP7661GnTnGuw8yZM/H222+727/55pto2LAhZs+ejSZNmuCxxx5D//79MW9eSZLs3LlzMXz4cAwaNAhNmzbF4sWLER0djRUrVkjVXVFKPAWh4WFe26g9O94bsP8UV7WKfyUEIhx+dQngENX+8Xb4FiByXJ1xSS/UaFCS1KwwxevX0Z830Ndfa/yTxwUUT0gIRL4WY/uRhZiOBEEQ5mErY6lt27bYt28f9u3bBwCYN28e9u3bh+efL54JVLNmTdStW9fd/o8//sCdd96J7t27Y//+/XjqqacwbNgwbNpUknC7evVqPP3003j++eexb98+tGrVCj179sTZs2cNOYeYsCKMaJKO//t6FgC+kIo/Emtcxv5tSWjXrrHPdg7OQT4yxIXhTTLww4/z/DcGwDPYtqmWjU3LB+D226+E91iDPN8Rw5wKhjTOwMFD/F46f1xXOQerpt6EBx7w7QHjHeRDHAoGNbqAP078V4Z6AIBrK+ViwbCGGPnYHT7bsTyAHu2g4MGrLyA17T0Z6gEAro7Nw4t3V0RS0n3FG1i3h8NWjx+CIMoxtnpaff3113A4HB6vRx55BADwyCOPoEuXLh77tG7dGpGRkWjUqJHG83SFRYsWoX79+oiMjESHDh3w/fffG3YOHapnIzpMQadOLQAEZiwtWzYWGRc+RIV/8lo61MhBaIgD777rPSzlj7AQBX+n/w+vTL0HANCqag5iwlxo06aRR1tWiKs08+YNw4XMDxHzT15Lp4RshIY48M674/3s6V2+06Eg7ex7WL2qOATVpGIeKoa70KTJVVz6eGPGjIHIzFrtDh12q30ZoU5g+X8f960hsw8U/HXqbeza9SoAoG50AapGFqGunzIBvhg98nZkXVyN6hWKQ4c9r7qEMCewcGGgU70V/H58KX4+sBAAUDWyCPEVilCjRkWPlrzG9b/ubIWsi6tRN7b4fry73kWEhwD/mTnI536+bqVfflmEI0eXsBsQBEEEEVsZS2WB0gOEM4Bw15ChPVCxYhQ6xmfrO/g/3JhQhMqVY3Fbx+Jp7b404nUGPDHuHsTFRaGrj7woARXRuFIBqleviM43+c/N4vX8TJk6ALGxFdDrKsHEYob4WlGFqFWrCm5sz58/5o8Xp/dHTEwF9K3PTtD2BqsPKoa70KBBAlq0qAenH48gr5fv+advR0xMBdzfWOx+ZOkY4lDQrHldNGpUE23aehrsMuBZOmnGjBk4ffo0srOz8dVXX6FRI60ulStXxnvvvYfMzExkZGRg2bJliI6ONkRfgiDMhYylIMHKLVHD67W5QpiPhG9vsKSHhcjPWblChI9ZXV5h9IHouYrA1pERKvTh/eJFNF8nUlI/+jOQ9CBq9zsYlrdaTHiYMdVN/C2dNGHCBDz++OMYOXIk2rdvj8uXLyM5ORkRERHuNqtWrULz5s3RvXt33HXXXejUqROWLCFvGEGURajOkskE4lm6gseeJiXM2j1N1576S9A6SCfO80OBRaATDfzx5Zdf4ssvv2T+fdy4cXjxxRexbt06AMCgQYOQlpaGPn364MMPP0TTpk3Rq1cvtG3bFnv27AEAjB07Fhs2bMDTTz+NM2fOeMgMDw/XGFs8lf8JgrAG5FkyGRkJ3twwxp1CC9nMrKGxSLGQSWODWVwsz5ViJdPQov3YoEED1KxZU7MMUlZWFnbv3u1eBikxMREZGRluQwkANm/eDJfLhfbt23uVm5SUhKysLPdLRiFbgiCCAxlLJqP2LLXqfafH34V+k3v5Ba9e1kOGK6HxrV38NxIkunIl1adiHfUEi2q3bqtHHa9UqV1S9uCKt0OPjnGN2Mvp8OF59JqNS3JqeGfD+SI8PvDkeRYNVDWdZPSjESQkFBfL9LYM0pW/JSQkeMyYLSoqQnp6urtNaWbNmoW4uDj3q3ZtjlIaBEFYAjKWgkTpZUK80ayX7+ngfvHyS/2up0ar/qzfWKp+fRvdMkpz//PPlnyQ4GwIv+pq/UJKMWjOC/4bCaDE1dAp4R9DQ2UgD3l9dslfJfRjbnicfiGlGPJ6yfqA1vQrGYeeyv8EQZgLGUtBprTzR0/OEs9v8rDICgZI1eJz9hzrGKqDXFnQtXgHE4ZQxiHVOoZXKNGR1+iU6THhOWKYxovIKTMIbh21QRemytlhJXircZpQi+nKUke+lkFKTU1FjRpagzckJARVqlTxuVQSQRD2hIylICNaOkDvLLCiggLNZ29rt5XeUlojf3lVunUsLFl+xAEHnFAQqnONudLo1dFVpFrGxeGAAwpC/cgUNfv06qj2XhbP2OPoR0EldeuoqmRfHIZTDJ3pGAgpKSk4c+aMZhmk2NhYtG/f3r0M0s6dO1G5cmW0bl2yhmLXrl3hdDqxe/fuoOtMEISxkLFkMqVzSyZP7o+/099Hl67X4YaqORjSOINfmLdZR0UFOPb7Uny7fTacDgUjmqYL66g2lhwAxo7tjfSM99G3byKaV8rFqGbiMtUU5hfg19/ewJ698wEHMKRJBkJ13JkOB/DvQV2RnvE+/j2oK66Jy8OYZn/r0rGosAg/7pn/T8VwB/7d6AIqhetbkLdv30SkZ7yP0WPuQr2YfP06FhXhm29fwvGUZXA6Hbi/YSZqR7PXwfOHA0CXrtchPeN9TJ7cHzUrFOjW0eVyYePG6fjzr5UIDXWiT70sNDFhTTh/SyfNnz8fzz33HHr37o0WLVrgnXfewenTp7FmzRoAwKFDh7Bx40YsXboU7dq1Q8eOHbFw4UJ88MEHXmfCWYlGN7bFkAWvlMoVJAjCF9aZBlVO8DWL2gEFL/7n3wCAd94Zj9qCBR29hbC6tauNhg0T0LBhAn7eB0RKqKn02usjAAArVo5DXJxYsURvNK0djWuvLR6kNv6fgtgwfUYIAKxcOQ4OhwNLl46FEqJfx8oVgNati3OhqqVkomqk54LBSqkZe/56evVHkxAS4sTrr49Aep7gtfZCuMOFm29uDgBoUrcItXwsGMzL+vVTERUVgRf/82+cuCRYBNUbriLc3rM4761Lu6vQILbAo0kw/Ext27bF//3f/7k/X1kvcuXKlXjkkUfw8ssvIzo6GkuWLEGlSpWwfft29OzZE3l5JYsHDxw4EAsXLsSWLVvgcrnwySef4PHHfVd/twKPLS9eJPvRJa+ZrAlB2AcyloKEOvyghlWIMjzc/6XhiaBcXbskSZd3glTpwYq1H4+OPNSPL8m1qRAuJ2fpSl5RaGgI8v3YXuwjlvREg+olix9HhstxyIaEFMtxOBz+DQSOvKo6lUoahYVy9qOfA0dFleQYBVouSb1fjaiSDy4OeUZV1riydJIvpk2bhmnTpjH/npGRgYEDB8pWLWhUr1fXfyOCIABQGC7oqJ/P//pXR81gpCYnVzw0ERtbAR1vulazLSyk5H14CN8Aqm7Vt28iYmK8J4nn54t7LiIjw3HrrS0122IqlNyGFcJY9YHY9O7dHnFxUV7/5nK5UNpW8tcLoaEh6N69lWZbbETJXtERIeBBfZyePdugShXvRQgVReEyHDSyHcUy1USHq95HejdkPQ6jUvL221ujRo1KzGOW1pHnbrrrrnaaz9GhJUJiKoSVbk4QBGFJyLNkIh9/koRz5zK9/i0slG9AVlOzZhVs3/6yZpv6l3lYAKbxJ59Oxt9/e5/ifMUzIkJsbAVs3TZTsy1MleQeGcD4uXbdc7h4Mcfr3xwOBxhOPSahoSFI3vSCZhaXOocqMoCO3LBxOvLyPENObh0F5TkcDmzYOB1FRSUnF6ZK5o6KFL9/Nn45QyOvNIEUtFy3fqrGqA5xlMiPYhh0BEGUP5rdejNOHz6KC2fS/Dc2AXpaBZnSoYzq1UtWe1fbHiEhnoNdIAEqtTcpgvNqlx64q1b17hHxOpMvACXVdmFkqMOLBv6JjfXu/XI4ABcCk6kO06hnbFXgDMOVPmJEhMoSLNVPrgArlKsN1lCNjoFdbF8GsKj36wrqcK3WoCPPEkEQQJu7euLBWdOgKAqevq6j2ep4hcJwwYLDu6Ge5u3k8dpwjK+hKpdIhITkbvUhHQ6H3wGUqz6Q2liSPH7y6MiD2rPEayyJICOpWaNjhH8dRc0zGTqGONXGkn+DLqjLAREEYQo39r0LgJzCyUZBTyILoU4pCiTE5Y1wlSUSLh6Z8UCtltMpxxBRh+EieBOTBZAxyIcF4KETQcdas27UxnYgoUJ/SLnWah0ZN6R1H5cEQZRXyFiyEOowir7K3iWEqdwNnPndPlEPyIoiyRBRGUgydCx9Uwca4lKj9tqESLo2amToGKbRUf9Xu7RGMhbhVXuWQmVcbIIgiCBAxpKFUFfX9hZ+CGRoUSeKOxnVnEUMntIVwKUM8ip3Fduhxn8c9YCsKHK8NupQoQxD1tMQ0Y/W2JYgsBRSwpmqE5f1g4AgCMJoyFgKEi6OhXTV3gue2C3PUBOqsj5YNZ1ECCmlo19DRDCvSsYAqnVYKDzpYn4JdRrt/fLdnutaayYIcNw/JtgqaoOOx0PnIIOKIAgLQMaShdAkeBsQhpPhbVDrWDzTTD9GhgoBSZ4llUtERj+GlFoPTUo/hqgNOmsaGWoPHY9BRxBE+eOaDm1RpXZts9XQQKUDLITGWPIy2AUytIRoBlD9VoN6fPPmWQpMR7X3ywAdS2kVUDgzRLKx5GHQ6ddRnQPEl1flu69LX4vSEh0BXCu1h867p9Nai+oSBBFcGra9ASOXFi/J81TLRJO1KYE8SxZCE+Jyehoiw5umo0KImA9CnejrbfzsWOOy0PgUovEsOf6pYVTCQ40uIDbMc900X/gb5G9NuCSWV1Xaa1Nq5z71s1AlQqz6uLofQxyeX5vutS8K5n75/vtttS+hRqSYjhpDxMs3+846WYLX2vffO9TIQe0o74U2mTLV4UwvB+hbL0tIHkEQZYsbenU3WwWvkLFkIZwehkjpvwOtq3mvVM2Uqc5j8TL4ta8hKE/jtfEe4kqsIbbgqlqmNx1vqJYrJq/UZ2863qpapJjHB6PpRy/fmhaV8zw3+pLHcdCeV3mvnM5C7ajxZnQ2rqhdQsefCqVFeHME3SNo3KhlevMs1S+1sK6MPDuCB+pngvAFGUvBgiNxRn0xnIzkadH8G3WiuIw0KG1oxtOgCwSHw7f3S1ye/Hwgp9PIfgTEFzzxJMRgHWWgNjqdDNcV2UcEQVgNMpYshGaAc8iZqi3bWNJW8PZuvImqrfU2BKJVKXmq94Gsu+YN8X70fVT9GUVeZPrxLIlihI7qa0P53VaCcsUIwhdkLFkIzzCc52iizxDRX2ep9K9+GXWWtIM8o5GAkqV19JpGLNiRmn6U8K0xYka81qDzfgA911qGyjw60sBNEITVIGPJQpRyLPkd0HkGr4A8Sz4MII98IH/H5zhcIDr6Oq4xhohavgFeGz8iufKqAjDofPajx1/1GzFaHf2fFRWuJAjCCpCxFCRciv/MmdJhODnho5L33GEPH7kqjlLeLxk1jAIJw/lqVjrwJmO4dRqa+yXLa6OWz9Hez3GN8SyVvGfpSOYRQRBWg4wlC6EJw0FOMUXN4KRfnKcMLyOb+UnopeTrFylsdPprYkg+kGTvF89sOFElNfcjeY0IgrAJZCxZCO3YIWcgcajksEMz/McqPWDKuIEC8n75kudD/hXEDRFjDTqv5y2cV8Vzrfnx6EcvbUT7MUSyQUcQBBEMyFiyENpZXPA6OnUQrIuk9Sx5H9rqxGjr7/jMWSptLHkJ2bWsEnjNIVYSeoNYrY4iOUveZDZQ1fPhGbO1HhHvba6J4z9vj1ChFx2rVyhS/Z1DJkeI69pKWh1996P2r94qwFcIFTOXePrxuiq5qjb0iCIIwnxs9yQaNWoUUlJSkJOTg127dqFdu3bMttu2bYOiKB6vzz//3N1mxYoVHn/fuHGjdL0VnjpLpQYjOV4b/x6RhrH8VZhLD/Jy6iL5nyHVrFTRR9+5Nubo2FqgeKaHZykgrbTwJKF3jFcVDHX47sfS958MR1Dp0hPeuCVBrKgpQRCE0djKWOrfvz/mzp2LGTNmoHXr1ti/fz+Sk5NRvXp1r+3/9a9/ISEhwf1q3rw5CgsL8dFHH2nabdy4UdPugQceCMbpeOAR4pIyyMuV5+m10S/TweFZEqH0TS07VMibPM0rz9vnQJBdr6q0TjJCpBodKZWbICxLzcaNcMvA/marYRlstZDu+PHjsXTpUqxcuRIAMHLkSNx5550YMmQIZs+e7dE+IyND83nAgAHIzs72MJby8vKQlpZmmN68eAzyEgwH9XAkWx7ADu0FKlNG6QBPo1OuASa7uGexTAn9qDpxrrAdxMKZgSyc63FMh/f3BEFYi6c/eRcAEBoRjm3/fc9kbczHNp6lsLAwtGnTBps3b3ZvUxQFmzdvRmIi38rEQ4cOxQcffIDsbK2b/9Zbb0VaWhoOHTqEN954A1WqVPEpJzw8HLGxsZqXDIyYxaUWImcKfSnxEuoDiQ7y/ihtwEkJH4kO8n7aGF06QE7IzHwdHWRREYSptOjSCbc9+jCSNnyMuOrVzFbHNGxjLFWrVg2hoaEeHqC0tDQkJCT43b9du3Zo2bIlli1bptn+5ZdfYtCgQejWrRsmTpyIzp07Y+PGjT4TS5OSkpCVleV+nTp1KrCTKoURa3Hx5IiIYPggL1meLJlqoVKMztLiJcs0xDCWIFM9O5PMIOIKMVUqo2bjRmarQTDoNeZRVKtTG4+85hnBKS/YKgynh6FDh+Lnn3/GDz/8oNn+4Ycfut//8ssv+Pnnn3H8+HHceuut2Lp1q1dZs2bNwty5c92fY2Nj/RpMCsdCb6JeGx5kGyKiAyiP+SffoGPLlyFT9nUxSqZueQbIF+1HnokRhDycoaFwFRYG/bjT/+8LOBwOzLlvME4fOhL04xN8xFatbLYKpmEbz9L58+dRWFiI+Ph4zfb4+Hikpqb63DcqKgoDBgzA8uXL/R4nJSUF586dQ6NG7F85+fn5uHjxoubFS/PK7OnlpcNHPBcnMsR3ZXDNL3nOwa5JJX4decJw4U4/OgZg0DWKZesYyCDvbVo8SyZvFK5e6ZIMKgIx6PwtCSxqdDoAXBXNngkZmBfRj46aa+1fIoXhgsfdE57Ay3u/Qa/HHw36sa9c59Z3dA/6sQmCB9sYSwUFBdizZw+6devm3uZwONCtWzfs3LnT57733XcfIiIi8N57/pPUateujapVq+LMmTO6dfaGr+TgQLwNXWpe5j82Z7sqEUXMvwUS4upQw/dU8EASvBvGyR3kb6jqu35VIPlAvkoJeNZZ8i+vdI2k0qgrYvOaGF1rse+fQAy6ejG+y1CUXtKHsA6d/z0ADocDtw1/2GxVCMtSfr+0tjGWAGDu3LkYPnw4Bg0ahKZNm2Lx4sWIjo7GihUrAABvv/02Zs6c6bHf0KFDsWbNGqSnp2u2R0dH4+WXX0b79u1Rr149dO3aFWvXrsWxY8eQnJwclHNSE8gsq4rhbMMGkJ/0G8gMqbgwP+viGZ4P5F/HmFB/Hjrv7wPF0xDxr2OUiI4GLPbLc60r+PV0suUTBEFYFVvlLK1evRrVq1fH888/j4SEBOzbtw89e/bE2bNnAQB169aFy6V9WDdu3Bi33HILunf3dO8WFRXhuuuuw+DBg1GpUiWcPn0amzZtwpQpU5Cfzw6hBILi4lhINwC5IgMOz4DsDyMSkx3MDwHKCyQfyF84UfKMPQ9DJIB9PP6uCXHJnebPc/xAZBIEYSf4nisV42vgrvGjsfmtFUg7/oexKgUJWxlLALBo0SIsWrTI69+6dOnise3IkSPMX9m5ubno2bOnVP30IDobjjcvRaS9PwyZsafSS0oBST+f/bX32sZoQ8QAA0xve4/8NEH5Xo8p6OmkxXYJwpPwqCg88tpL+HHtBuz5/Euz1fHgif8tQ8Ua1dGiSyck3eg5Ll+her06+PtPObPJjcZ2xlJZJpBxwd+wbfhsOMmDvBTvVyCJyX4O6xni0qdnIDoKXWuLztiTXd6AIMojD8+bicYd2qFxh3aWNJYq1iheVSO8QiSzTZu7euLBWdNwKeMCUo/+HizVAsZWOUtlnUCMJaEwnEWn5UPyIO/Rj1LCcCr5HIaSf68NW36gMrVGp36BhtRZknytCaI8UqNBPbNV0E33kUMAADGVK5mrCCdkLAULjnoxMrwqvpAT4jJgkVrGexnyAANuciO8NvpFljJE5C9tY8VaUET5oUXXThi+eC4iY2LMVqVcQeU7iiFjyUIYn54hI8Ql1t6MvCrP8JHkNc10S/OWDxR8Hf16vzxChXInCPDoSDlLxBUeeW02mt6ciCELyn4V6Wa33uxzFQki+FDOkoUwelyQId9oHY0xRPQTSC0oboEwJ8FbVJ50Q5bsICIAajSob7YKhjJ65WI0bNMKpw4dxdz7BpmtDlXR/wcyXS2E0WE4OWO8sbPhDPEs6RcpLE90gWHpOkrIajdCR7KVCF84HDQkNWzTCgBQu+k15ipCaKA700IYPXiY5b0QOa4RfSB9zTQj6izJ1tEAIVKMRMnhTIIgiGBAxlKQcCn+i1KKDpiy6+pwyRAWIlo7Sr7nyl/YjMdbJu4RMdlrYwODjmvCHnkayhUKx3OSIMyAnkTlCDtMajBiNpxszPLaiMqULU52GNcGtyNBEAQAMpYshfGDvPzp5LIxx/slX76w10+yR82IfpQzY49MJIIg7AcZSxaCZsNZc1ZYaaFGeL/M8KiJG3SCO3g9JnmWCAIAKtWMx+2jhyM0MtxsVQgOqHRAsHCZX5TSqrPhtPJ58JcPZMCMPfV7KQUf5Zc30MgzwBKRLpJDIJWaIcoqE9e+j/AKFdCoXWssevgxs9XhpPz+xKFHkZWwQQ0jw3W0Q9KSBIxYd00jT1ojVXPJZR1scJkIwjDCK1QAANS7voXJmhA8kLFkIcpq6QAReNZd80dA5Q0ktzVlpqL6vR08SwRhAnVbNMNLP/4fHpg51WxVbEj5LVBJxpKFoARvexh0dpiWb4xBJ/f+IePL/twysD+q17fXoq6D5vwHYRERaNu7l9mqEDaCcpaChIsnZ0m4zpJoDSMx+TJkGFJk0t/fA3Dr+OtJWwzyNgiRinq/aH0s63LHEyPRbdhgKIqCp6/raLY63ISE0bBHiENPIgthh+rYtigdYPA+pnm//BbXVL23ahjOspYmIUqLrp0ByC0HQUVICatCd6aFMHymmeSp30ZgVR2FE5MFlv2QhdHeLzsY2wRB+Gfi+g8xZfPaoByrVtPGmLzxY7Trc2dQjmcUZCxZiEAGUJEFoW1R8FGGDDvoGMhOIrFCA3SwQz4ZYT7hkZF48buv8MT/lgvvS8udGE9oeDhq1K+LSvE1cHW71oYfb+SS11D1qtoY8MJzhh/LSMhYChY8a8MFIFZkAJNRUNLw2XASqmNboTij9LwqDqHqPxtRPFSKTOFyBWRe2Y3bRw9HhdgY1G3ZzGxVCG+oRn1niPEmQGRsjOHHCAZkLFkIOwwLpCOhB7o2ZZ/Q8LCA97VDztLDr83GsEWvmq0GEWRoWoCFsMOPaEvoaEI+kB0oi6ftNHp9HcI0wiMjERoRjuzMLLNV4SaqYhxadu0EAKhevx7O/XHCZI2IYGF9M74cYYdxgXS0LlYo6+CP8nptCE/+s2sLXtiejMi4WPc2q+cshUVGut9XiIk2UROz8P0FjqlSOUh6BB8yluyMDQYeq87KMho76GgEss/bYZJ15XQ68fzzz+P48ePIzs7GsWPH8NxzngmqM2bMwOnTp5GdnY2vvvoKjRo1MkFbGQS/n6/kyzS7JdEQ+aHh4eg4oB8iYwLLmaEaX2IMmvMfzPh6A/rPmGy2KoZAd0OQcLmM+sVk/fLz5dVwkI30fqQLw2TixIl47LHHMGbMGFx77bWYOHEiJkyYgLFjx7rbTJgwAY8//jhGjhyJ9u3b4/Lly0hOTkZERITh+jW79Wa0vrOH4cexM48ufR39nn0aE9e9L7xvZFwsXtrzNaZuWWeAZsFj4roPMOyNOZptTtWwL54jxh5vru/RFQDQ/l+9BWXaA8pZIgjCsjhNSkDr2LEj1q5diw0bNgAATpw4gQceeAA33niju824cePw4osvYt264gF10KBBSEtLQ58+ffDhhx96yAwPD9cYUrGxsR5teBm64BUAQMq+A8g4dYZrn8i4WORmXWT8VYER1rPT6cSMb7/E5YwLeOmu/tLl+6LBDdcBAOKqV+PeJzImBrmXLqHLww8iJDQUFWtUN0o9w+l4f1/UaFAPNRrYazkaq0KeJYIgiFJ899136NatG6655hoAwHXXXYebb74ZGzduBAA0aNAANWvWxObNm937ZGVlYffu3UhM9B5WSkpKQlZWlvt16tQp3XomNKzP1e6Zz1bhPzs2oVXP23QdLzQ8HHc+OQo1r7maq33r3r0QFReL6vXq6DpuMKh5zdX4z86vMOObjWarIoUKsXFet7tQEuUQzxErv+5oMpZsjC1uWxsoWV7zquyAWXkjL730Ej744AMcOnQI+fn5+OmnnzB//nz873//AwAkJCQAANLS0jT7paWluf9WmlmzZiEuLs79ql27trEnoSKhUUMAwN1Pj/XT0jcDZ89A1yH/xlMfv8PVPiQ0REi+maUDbh8zAgAQU7lSQPtXrVMbTW5qL1GjskdUxTgMXzwXzTrfZLYqwlAYLkhYfJJHuac8Gjfl8Zx56d+/PwYOHIgHH3wQv/76K1q1aoX58+fj9OnTeOcdPkOhNPn5+cjPz9etm5mJx1e3vQEA4LBY8nOD1tcjZe9+U3WYvOFjAMDioWNx7PsfTdXFG8MWvYq87Bx8OOU/OqToy5EdtmgO6l3fAk1vTsS5E3/qkhVsrHXHEwQHthjkbaGk9TGrZtYrr7yCl156CR9++CF++eUXvPfee5g3bx6SkpIAAKmpqQCA+Ph4zX7x8fHuv5U3al5zNcJVU+sDIZDSAeM/egdj3n4Tg+fNQtObE/Fs8qemei6uv72r5nP3kUMw6fMPER2gx0oGtZo2xrWdbkKrnrchNCLcND2qc+RPWbVqPxlLBAE7zCkkgklUVJTHDNaioiK3VyclJQVnzpxBt27d3H+PjY1F+/btsXPnzqDqagWa3NQeT3/6Hl74blPQj127aXFeWctunTF04SuoUqsmhrz+ctD1UFO5dk206NYZANBz9HBUr1cXD8+bZZo+0ZVK8pes5hX0x7W3JKJuC/OXzrFXrwEYNWoUUlJSkJOTg127dqFdu3bMtoMHD4aiKJpXTk6OR7uyUyvFeljzN4In0usDSZZXXjEr5LR+/Xo8++yzuOOOO1CvXj306dMH48ePx2effeZuM3/+fDz33HPo3bs3WrRogXfeeQenT5/GmjVrTNHZTDr9ewAAIDQs8KVOAP05S86Q4hwpsw2CZzd+gkfmv4S2vXu5t8VWq2qiRiVY1XNzBUW1Onx8owYY9sZcPPG++KLMsrFVzlL//v0xd+5cjBw5Ert378a4ceOQnJyMJk2a4Ny5c173yczMRJMmTdyf1RcCKKmVMnjwYKSkpOCFF15AcnIymjVrhry8PGm6K6CkJcJaOMifxmTs2LF44YUX8MYbb6BGjRo4ffo03nrrLTz//PPuNi+//DKio6OxZMkSVKpUCdu3b0fPnj2lPje8YjPPQHnkikHS5u5efloSvri6bWuzVXBjq2/d+PHjsXTpUqxcuRIHDx7EyJEjkZ2djSFDhjD3URQFaWlp7tfZs2c1f1fXSjlw4AAGDRqEWrVqoU+fPgafDREoFv9h9A9kiMjArArely5dwpNPPon69esjKioKjRo1wpQpU1BQUKBpN23aNNSsWRMVKlRA9+7dcfToUVP0LStYfbkTwnis6vmyjbEUFhaGNm3aaOqaKIqCzZs3M+uaAEBMTAz++OMPnDx5EmvWrEGzZiWxz0BqpQDFxeViY2M1L4IgCKJsIGvAliGn2a03IzTcvKRsohjbGEvVqlVDaGioUF2Tw4cPY8iQIbjnnnvw0EMPwel04rvvvnPXNwmkVgpgTHG5QLCm/R0M5Hptym8/Wh+zKnhbGVqzrPzw8PyXMHTBK5i0/gNpMs3O5/JH6VQZq2DtXtPJrl278O6772L//v345ptv8K9//Qvnzp3Do48+qkuumcXlCEIWZIcQJVjzZqhapzZuNGGtMd4Bu32/u9Fj1DDdclg073ILAKByrZrc+7S+swdqNW2s67hqrBoWCza2SfA+f/48CgsLddU1KSwsxE8//eSe7aaulaKWER8fj3379jHlBFJcTjFsIV2CIIiySdIXH8HhcCC2qrkzyeKqV0Ohl2d+/+nFdbeO7voh2Cp5pUW3zhj40gwAwIbX3jTgCMYbTlY1zmzjWSooKMCePXs0dU0cDge6devGXdfE6XSiZcuWOHOmeOFJqpXiDWu6QNVY86ukxQ462gGnSQnelkb11JYXUrHm9/7KwHlDL31r2ukhqmIcpm1dj+e//ZLZpmZj/nIzMVUqy1DLK9fddqvfNqLGiFXDYsHGNp4lAJg7dy7efvtt/Pjjj/j+++8xbtw4REdHY8WKFQCAt99+G6dOncLkyZMBAFOmTMGuXbtw7NgxVKpUCc888wzq1auHZcuWuWVeqZVy9OhRd+mA8lorhSAI+1G5dk1UrFYNf+w/YLYqZZJGN7YFIMfj8dQn76JW40b45D+v6pYVKPoMbOMNJ6saZ7YyllavXo3q1avj+eefR0JCAvbt24eePXu6ywHUrVtXU3W3cuXKWLp0KRISEpCRkYE9e/agY8eOOHjwoLuNabVSCOtAK+laFqu65K2C4nLhuS8/BQC82u/fOHPkmMka2Y9rOrTFqYNHgnKsWv94oHqN1Zc3SwQfWxlLALBo0SIsWrTI69+6dOmi+Tx+/HiMHz/er8xp06Zh2rRpUvRjobiMsZbtMJRQ8UM5UJVxwhctu3UmY4kHlQHe4d57cN+0SSgqKMRv335nolJ2ofw+NWyTs0QEBzsMyHb4utpBRztAOUueOMvwY1vvcieidLz/XwCAkDDb+Q0CxqxCr3an7H7rbIxIzJanpRExYNkySUeOtgbINEOeUTIJ+2Bqrahyfu9ZPWfJqpCxZGMcDvJglCfK47WmnKXyhVWWO6H7zhjs3KtkLAUJqrNEEIQULF6BmQg+90x4Ak1uas/V1kHDfkBQrxEabGH5G6Ck7B+StuhHA5B93pSzZA+EPTEMg48nZykQr0/1enXw9KfvoW3vXlzt7RQmvuOJkej07wEY8eZ8rvZBTgvTYJ9e9YSMJYIop5AZYi9qNm6E+Ib1zVbDljy65HXUvOZqPDBzalCPG4xw3tVtWxt+DIKMJaI0NhhB7TBjj5CD1Rf9DBaRcbF4+pN3MWHt+whVzdyySv/I8sTw5CwpioIuQx7CjK83oG7L5lxyY6qqqmbrMGBoJln5Pf/yM1+SIAgt5fe5ZztqNmrofh8RE22iJhxwGCN6Z8Pd9eRoAMDwxXN1yRFF1DiVGc67pkNbDFs0Bz+s3aBLjqkzEW0M9VqQEJoiLjmwKyKPd/w0U0dzZfIJNasfjcDMa1Puf8j7obxPHAmvECm+kx2+dF4YNGcmQsPDkXhfH32CdCUt2bPvZEDGUlDhrpRj0nHNlGkHHY1Afk0k3rGA3w4pr9eGCAibGiM8mDmTLCQ0xBC5DVpfjxvu6G6I7LIEheFsTHn90W2m94s73aG8XhzJWCUnx0rQ1G/zMHMmmSxKzzAd8/abAIC//zyNTv++H/Wvb4GXeg9g7F1+H2xkLFmQ8hjissePUQWyHxbGnLdcPYV05DysPa53eSLIgyDD6Aj2ciflEkZs+5r2bXFDr2IPU++nxgRTI1tAd2aQKK+5BVQIl9CDk24gwgRYU/7LS3J0hbhYxl/K76+c8nHlbUZ5XNvLDjoagZk68oczBXTkbGqHa2NVjHG+GH89eAyNoCx3oscALwOeL6fqHIwqAloWsf+VtxFG3HK2qDlk8erYdrguRsmUjuxrTU8oWyA6oDotPvSUaWNel/Fji6eQIVj7ji2nyPfaSBVniEwzp/nzy5MqzjYy7XBtiLJBUHKWdNx7ZW35Hd4ioAQZS0HDqDpLfE3tMPVbfjEoe3zHBe4LA7UI9pH56yzRI8oOcD3fykK+j02NJbURqm+GqS0eqoZQBu7e8g3PV7e8ei/sgBEFQ/nlcZra5fTaWBUrJhnrWUhXPZArigsP/GcKntv0GcIjAyg4aVNCw8PRqudtuq8tVw6SLoPPnsaiDKh0gAUxM3ma95lnqo7SZcq3BvgNEetbImYm39NaXOWPtnffAQDoN+UZkzXRD68R+dQn76JG/bo4/sC9hugRlMT5Mo71fqKUYYyYfcTTkmaaWVOeqExu009yCW87XGvCXPTcI+qBXO0ZiapYUZdORiArLFz6q1ejfl0AQMPW1+uSGwyjqFnnmzBy2QLEVKnsv3EZgowlC2JmaEa2l4XXwwLI9wSVtTG+rPhYipdk4bs45Fjygk3zuCwTPtRVOkBsXyv+0NBXCkDB0IWv4pr2bfHoktek6WQHKAwXJBSXS2C0K1seETPk/SOVu6WIUScTKz5MS2NEiJQQQ52Ua+cZWTf+qzcUlwsHNn/t9e9lLVzEMkzM/Nbr846VnE/VOrX1K2MjyFiyILIXQjXCU2Wu94sP7n4UUJB3fTj+3C/+Y5shzyiZvNDacGWH6MqVcP+MyQCAYz/s9drGKqUDWEYOz/0Y7CKOVDQyONCTyILYwWtT1jwiZlFedbTBaVsKzXJJNvUsVaxR3f0+qmKciZoEjuiEA0t+v3WG4corZCwFESO8NnZAdhK6Wf1YrKPVL44i3TNpDLw5S/Y0DGRjvIdNYj9zXDNmeMoiYTiu5xHzHIL7jBA9nmVyx2wG9VqQcAkVpZQb43K55H95RWSaF4azumEjeG0c5pRCMOL+IQInGIU646pXw8DZMxDfsL7hx7IizDBcuTfezTt/s408ylmyIGWrhhGvPIHGptWC4m9rVj8Wy5Qtzzwdqc5SMZownDFHgPqufeJ/y1EpoQZadO2EpHZdBEV5v7g8g11QcpZ0UCYqypeBUzAD6jYLQjlLciiPhgit41Y20YThguDdqBhfnF/EW0XbVh4Xja6Bh9LM9nQEij6DtPw+C+x5tcs43GMTZ1jGzBlSRnhYzPTayMbUmWac7cw0wChnyZOyMEOQ5aGxSs4Sk3J4P1rGEDb5vrf/t84uCOR9kGdJDvJ1tEs/Wv/+IcQwPgynD1vdIxpdvettGQPBcpTffiFjyYLITqiVnTAuLJNLnlRxAADZ44tdQlxWDxUWy+RrR4NWMWpvkhXzuLiuE8doY/mcJbV3w9qqalD3q6hn0laGsIHY6HIXM2rUKKSkpCAnJwe7du1Cu3btmG2HDRuGb775Bunp6UhPT8dXX33l0X7FihXu5ReuvDZu3GiI7uYlT5s7G44Pu3ht5GKqYcyJMbPhrH9trIovw2Tsu0sw6/ttxtUx4nmICVZttaKBxPweaVLHrFegkge9y52Yhdk5Yta7S33Qv39/zJ07FzNmzEDr1q2xf/9+JCcno3r16l7b33rrrXj//ffRpUsXJCYm4s8//8SmTZtQq1YtTbuNGzciISHB/XrggQeCcTpMuFdkB9+zy9RZXAZUspato4g8I2TyIvuxy19l3DzPkp2X9pAJbxiufquWCK8QiT6TnjRYIy2y7hGr5CzpMSisaCDJoyyfm29sZSyNHz8eS5cuxcqVK3Hw4EGMHDkS2dnZGDJkiNf2Dz30EBYvXoz9+/fj8OHDGDZsGJxOJ7p166Zpl5eXh7S0NPfrwoULQTgbNnbIMbKB08YWniU7hPbssCRLWUezNhyHRyMkVF5VmOtv74ZX9m3HfdMm8VaY9bqZzxNjbW+NaDgr2M8gVv+pQ7dW9OTZAdv0WlhYGNq0aYPNmze7tymKgs2bNyMxMZFLRlRUFMLCwpCenq7ZfuuttyItLQ2HDh3CG2+8gSpVqviUEx4ejtjYWM3LHy6BBBqRsIfs6tjcxzUgVChbTVOLKRrgtTHrbMy8f8r2r/QAEeiT6MqVdB/uwZlT4QwJQYd779Et6wrqkErQrzHH8dT3p8bQ4NBbs68F71/b2kom622bbqtWrRpCQ0ORlpam2Z6WloaEhAQuGbNnz8bp06c1BteXX36JQYMGoVu3bpg4cSI6d+6MjRs3+oyPJiUlISsry/06depUYCfFwA6rvJfHWVxme4HMXeZFqkTJ8so+gcyGm7plPZ7/ZiMa3dhW38GNHvAtmHBsRSOHB+PDmPr63p69WoxtjCW9TJw4EQMGDEDfvn2Rl5fn3v7hhx9i/fr1+OWXX7B27VrcdddduPHGG3HrrbcyZc2aNQtxcXHuV+3atbl0MG8levkDMq/XxszcHSOS0GXXlzImwVvutTFiaRuq4C1GILWVKtaoBgC4c9xjstUJCOY5qAzBoOQsCT5gFZd3TxFPOMsqqQCa8KEu15L2+9j2njvxXPKnqNuyuQ6Z9sA2y52cP38ehYWFiI+P12yPj49Hamqqz32feuopTJo0CbfddhsOHDjgs21KSgrOnTuHRo0aYevWrV7b5OfnIz8/X+wEBLCDR0QkrGgWxvSjXJl26EdjdLTGIGJHjJkVpM8oleWJsUo+Dc+zg0dVK3qoZOYvPfDicwCAR5e8xtVez7feabJvxxp3JgcFBQXYs2ePJjnb4XCgW7du2LlzJ3O/Z555BlOmTEHPnj2xZ88ev8epXbs2qlatijNnzkjR241QzpLcwcnMnBPeI5sd4jILIww6Mz2TvPm/Nrg0lkIThrPNU9sH6nOwUUVyWcac9UwoXrx/ccOjKgRZj+Bjn7sUwNy5czF8+HAMGjQITZs2xeLFixEdHY0VK1YAAN5++23MnDnT3X7ChAl44YUXMGTIEPzxxx+Ij49HfHw8oqOjAQDR0dF4+eWX0b59e9SrVw9du3bF2rVrcezYMSQnJxtwBnwjhB1WeZcdhhMJcfEKNSLEVaaS0DkxIgzH+12g5U6KMX6JE333IZcnhiux2hqeVlkeIav8YFOfjtrgs0p/s7CSZ842YTgAWL16NapXr47nn38eCQkJ2LdvH3r27ImzZ88CAOrWravxyjz22GOIiIjAJ598opEzffp0zJgxA0VFRbjuuuswePBgVKpUCadPn8amTZswZcoUQ8Ns/rBDoULZOUbGhAqt8aDyhdnXxgx5xTKliyw3WCVUpcZKg5qRqLtez3Ww7+1fPq6zN2xlLAHAokWLsGjRIq9/69Kli+ZzgwYNfMrKzc1Fz549penmDyOKKUaEyP3aGZGQHe7kCs5wy+NFRMcwLh35MaIfQ7mEmtuPIZyLO3MnoZeTQdgf6jCcqQvpSroczHpAwTAEBUsHaHcVW3bGivcvy8tkRTT3OlXwLh+44EKHGtl8bQU8IrFh/t2oIvJuqJbD1U5EZq3oQg553OLQrFIuVzsRHZtW8u9JFJlpdnVcnv9GENOxbXX/10bEY1MnuoCrnYiOXWpd5mpHniUxTDWQONDjfbSgPUEVvJmU3y+utb+BZYw21fgGedlLaohwI8eADBg1LZ9PZocafDqamTzduqp8g44X3vNuUcUcHUVyv2i5E09MHYwZ141HJ76p9tYrHaBGdCaZZXKWNAsxiw372mtbfr+PARlLFStWxNChQzFz5kxUrlwZAHDDDTd4rLlGBAZ3AToT1/aSP2NPqjgA5k7Ld3CGo4yY+Si/FhSVDjAbTRjO4qETHliDt1WWO+EKwzHUsHoFb80ixjb6MWL2QrrCOUstW7bE5s2bkZmZifr162Pp0qXIyMjAv/71L9StWxeDBw82Qs9yRZH0go+B68LCDsnTriL5hTNlG55m9qPDxNmZ3AadFQcbEyjLYTgrQvddCTKvrZ17VfgbOHfuXKxcuRKNGzdGbm6JG3/Dhg3o1KmTVOXKK4qZ0/J5Jdpgxp7LxGmx3AaYiWE4bnk2MIyNoFatWnj33Xdx/vx5ZGdn4+eff0abNm00bWbMmIHTp08jOzsbX331FRo1amS4XlZ0LHGF4STpHfTFaRneFysupMtEdX30eWgscj4mINxr7dq1w1tvveWx/dSpU9xrtJVLBMZtF/cio5yFIY3wLFnlIeAD+bk2UsUBkN+PIuJ4fzwboSN3Xp5JYYJKlSphx44dKCgoQK9evdCsWTM89dRTyMjIcLeZMGECHn/8cYwcORLt27fH5cuXkZycjIiICOn6lLUwHAur1P1hh+FYH7xTFjxUMnOWRJ8kmqOZHDIUDsPl5eUhLi7OY3vjxo1x7tw5KUqVd1xFfA8MsenpisAe/rFDwUf5HhGBfCCTCmfaYf06Izydspk4cSL+/PNPDBkyxL3tjz/+0LQZN24cXnzxRaxbtw4AMGjQIKSlpaFPnz748MMPpepjqzCcrplk1igdwNzV4teBC8H17YhihHtq3bp1mDp1KkJDi+0sRVFQp04dzJ4926P4IxEY3NWxzUzwlm7QAfLXXZNrNYjoyG2IcPYjL3bQsRhrV/C+++678eOPP2L16tVIS0vD3r17MWzYMPffGzRogJo1a2Lz5s3ubVlZWdi9ezcSExO9ygwPD0dsbKzmFQiaGVk2Gry1ydEOr++DDyPExqEfTzgr6CFDhvHj1CTUi/W3ZUKJJiP8TXvqqacQExODs2fPokKFCvj6669x7NgxXLx4Ec8++6wROpY7uMNwnPLsET4yImdJvkeEF25DxMwHkalhOKkipdOwYUM89thjOHr0KG6//XYsXrwYr7/+OgYNGgQA7pSDtLQ0zX5paWnMdISkpCRkZWW5X6dOneLWx/gwnMSFdLmWPjHRyNNz82krOnI0t0gYTpoexn9xNX2mMuzMXvpIOAyXlZWFHj164KabbsJ1112HmJgY7N27F1u2bDFCvzKDyPRr2V4bI25w3vMRub+lr7tmgNdGfhiufJYO4M5ZMukB6XQ68eOPP7p/AO7btw8tWrTAyJEj8c477wQkc9asWZg7d677c2xsLLfBZIwHKYAvnKwK3ozT4clZkntPeO8D1v1p9vR1f3D1H/yXP/C1d3kl4OVOduzYgR07dsjUhfgH2YaIISvRSy9vYP1aUCKFM7kllsvZcBZ3KwE4c+YMfvvtN822gwcPol+/fgCA1NRUAEB8fLz7/ZXP+/bt8yozPz9fypqToknGPiSp3uvLaZR1zwXf4+Q/DMfckyOcZZUwHLO9BY0/q4b9uIylsWPHcgtcsGBBwMoQxXDnLHEOOkbcfEXc3i+RY8vVk19HPoz4DvPqKIZcQ1a2jnaYDbdjxw40adJEs61x48Y4ceIEACAlJQVnzpxBt27dsH//fgDFnqL27dtj8eLF0vVhrQ0XdE+HngrejOrXop4iU0sHqHOZbLQAhjbPTc93ypqGTDDgMpaefPJJzefq1asjKioKFy5cAFA8zTY7Oxtnz54lY0kC/MYSH8Z4beQmobtc8mdI2SKvysRZhfxVxsvfA3LevHn47rvvkJSUhNWrV+PGG2/EiBEjMGLECHeb+fPn47nnnsPRo0eRkpKCF154AadPn8aaNWuk62O8B8Aa4ZXglw7wH4bTJHsLGhrBDiOz+k+eYWf8+aj7zKlZuNgGFbwbNmzofv/AAw9g1KhRGDp0KI4cOQKg+BfX0qVLvdZfIv5BJGeJ84EhEoaTTRFvqFD+obkxos6S7L7k7UdehPKqOGXK1hHg19Gs0io//vgj+vbti1mzZmHq1KlISUnBuHHj8L///c/d5uWXX0Z0dDSWLFmCSpUqYfv27ejZsyfy8vgWUQ4YwSRjNvJuZtHSAcxCjxYpHaAesEV/JFkmqZuBQ9r9E8CxRdtbqC+Fc5ZeeOEF3HvvvW5DCQCOHDmCJ598Eh9//LHmYUIEhjHeBtnT8o2oBSUXO6xpVh51NOJ+NIIvvvgCX3zxhc8206ZNw7Rp0wzXhXu9SCHk5SyJLqRrp/o+rHOzYs4SC1YYzooJ6+o+s0r/AQGUDqhZs6a7xpKakJAQxMfHS1GqvMObI8L9q9vM8JFQErrVc5YMCBWaGYbjlGnM2nDWng1nZfTUzAkKwp6YYOdd+dePWcEb/nOteBbSDfZVk/c90vcs0LO32c8C4bt0y5YteOutt3DDDTe4t7Vu3RqLFy/WFGgjAkd6Qq1UacXIzqsypryB3LwqIzB1IV2Tqozboc6S1dDka1gwyVg8VMWSY43lTvR4k6yOvjBccHOWzDaQ1Ah/04YMGYLU1FT8+OOPyM3NRW5uLr7//nukpaVpKtwSgWNMdWy58IZmnGauX2fiLC5e5Ie4rK9jsWHMOxvOGsaAnWEPOPLuE6ZxoRn4VNsZ19WK4TmWTnrCcDK/obpmIpYB4y9YCOcsnT9/HnfeeSeuueYaNG3aFABw6NAhHD16VLpyZQmhopSySwcY4L0wYv06O4S4ZCN/KRF+HXmfk0Ysd0KepcCRNw2cb1+HJG9CWTB8Rb0eZS8MZzzMEKgdZsN54+jRo2QgGYT8opTyE2rl197h9zbwYofEZDNrGPFipo70w7cYByP0xjMISr0fZF0PzXR8STIlwh6wrXdD6pmtJx7GLb+/coSNpeXLl/v8+9ChQwNWhihGep0lA25w7uRpE6uMG1PwUS7ydZTvobNDPxLGwfP8YBoXDu+5VppZWKo2QVnuRNKabjwhQ8uE4dS6Ck4Q0MoPbs6SlX4tCRtLlStX1nwOCwtDixYtUKlSJWzdulWaYuUZ7hpGZhoiNkjw5tWRFyNChfJ1NMCzZGIpCzuFD4KFqdWYdVTwZk5TVxlI1sxZCjzh2Cr3r1X00IPZ5yBsLP3rX//y2OZwOLB48WL8/vvvUpQq7xgx5V02/AnefPIMGeQLi6TKK8baoUJjZhVSzpLZsJYH0TeAWGQAFTSQdD8n9JQO0LFMi1Ho6Y+gh3E5sFJtJTVSzHhFUTB37lyPZVGIwLDFbDhDcpbkYsxMM6ki7TFjzwAd+WfDWWNAInzDdc+ZWDlaFC5DiDmjL/Dq34Eg7u1SvRf+flnTkAkG0nyeV199tddilYQ4/AnenDeuLZKnpYoDYEz4qDz2oxHer/K43lxZRnj6OmOQtkqdJQ3OwL1JVvE+afOUxIZ9M3OWtOvy2Ww23Jw5czSfHQ4HatasiTvvvBNvv/22NMXKM4WFcj1LRixSa4d8ICO8X+WxH43Jq+Jr61Q9LG+//XZcunQJO3bsAACMGjUKw4cPx2+//YZJkyZJ1dFqaPKkGTVzmPtyDdjGDIIavdWz+Bi/062Ss8T0CGkMJ8F9DYLneCxdLWPMMQhEv/b97kajG9tg1US5yxAJG0vqyt1A8a/Oc+fO4amnnsJ///tfaYqVZ6TXBzIieZrToOPFGK+N9StPy+5HwIjcL2usX/fKK69g4sSJAIAWLVpgzpw5mDt3Lrp06YKZM2fKVtCyWLHCsfD0daf1zkENn6fMGoad9n4QM57FZ/Tpe7bwXGm9z6/+05MAAGdTTuCrN+XZJMLGUteuXaUdnPAO72w4keRp2Uhfid4Qj4h5lad5ka2jEb9qjdCRe/061YO9QYMG+O233wAA/fr1w+eff45nn30WN9xwAzZu3ChVx7IE3z2hQI93STQMp90uVjpAN3pyfAS7yCrJyg4docRSkvQrI4Ce/qt9bROJmgS4NlzFihU9tsfGxmLLli1SlCrv8M7iEquObfGkX1h/NpwdErwB+R41qySh5+fnIyoqCgBw2223YdOmTQCA9PR0xMbGStXRamhnYXmvmWNJBGfxWSUMp8bByPfRU8FbJurvEsvY5FmOJhjwfOvZOUs2Kx1w6623Ijw83GN7ZGQkbrnlFilKlXeKinhr0PDJM+LXDW9eFS9G/AArlG4syTc6jelHa+sI8Fud6gfk9u3bMXfuXOzYsQM33ngj7r//fgBA48aNcfr0aTRq1EiyntaEtd5acA7ufbOuMJwefQJBoysr0VxlgDA8q1YMHxLGwW0stWzZ0v2+WbNmSE9Pd38OCQlBz549cerUKbnalVPkh7iMKEpZ/pKnjcCIUKHVrzUQmDk3ZswYvPHGG7j33nvx2GOP4fTp0wCAXr16YfPmzeXGWLIirJXsuTwDFiwPwZqFJeqhsUwYjpWnJOyZNP58rNJnpeHuqX379uGnn36CoijYunUr9u3b537t2bMHzz33HJ5//nkjdQVQPAMmJSUFOTk52LVrF9q1a+ez/b333ouDBw8iJycHP//8M3r16uXRZsaMGTh9+jSys7Px1Vdfmf7QlR32KJ76bfHQjMuABG/p/Wj9GXvFOlq7H0XCmeqH/J9//onevXujVatWmskk48ePx4QJE6TqaDU0hoaOaeC60XFr8YThgrLcifaIhh7PKt4nTRjX+wo0vJKk6BMIZifUc3uWGjRoAIfDgePHj+PGG2/EuXPn3H/Lz8/H2bNnDan0q6Z///6YO3cuRo4cid27d2PcuHFITk5GkyZNNPpcITExEe+//z6SkpLw+eef48EHH8SaNWvQunVr/PrrrwCACRMm4PHHH8fgwYORkpKCF154AcnJyWjWrBny8vIMPR8W8r02UsUBMCDEZeL6dfzIN+hk96MRyNcxcIPO6XSib9++uPbaawEABw8exJo1ayTqZn20ThxrDMYadFWUDvaAKOYREp1JRohj1T7m1uTkyZM4ceIEQkJCsGfPHpw8edL9Sk1NNdxQAop/QS5duhQrV67EwYMHMXLkSGRnZ2PIkCFe2z/xxBP48ssv8eqrr+LQoUOYOnUq9u7dizFjxrjbjBs3Di+++CLWrVuHAwcOYNCgQahVqxb69OkjVffwcP70MPl5LNYPcZm5fh0v9tBRvmfJEB05ZdZvXB+97rsNQHH4/+jRo3j77bfRt29f9O3bFytXrsTRo0fdxhPhiRUNKvUg6Az2cicc8M3u87+vJUNKDhM9kzaGawTv3bs3Nm7ciMLCQvTu3dtn2/Xr10tRrDRhYWFo06YNZs2a5d6mKAo2b96MxMREr/skJiZi7ty5mm3JycluQ6hBgwaoWbMmNm/e7P57VlYWdu/ejcTERHz44Yde5YaHhyMiIsL9mWcmzm23tfLb5gquIvmJybIxRkdre22MmVUo37MkP1RowKxCzmvds+u1uKVTM8R+tBnLli3DL7/8gjZt2uDChQsAgEqVKmHlypV4/fXXpepoNRxlYIAzZn27gBRRfRALw7E8Haxrwsxx8ntUuWhDb3r63rycJVYh02DBZSytWbMGCQkJOHfunE+Xt6Iohi15Uq1aNYSGhiItLU2zPS0tDU2bNvW6T0JCgtf2CQkJ7r9f2cZq442kpCRMnz5dSP+MjEvcbWXnJRuySC3njD1e7DAt35B6VQb0o/RaUCZe60IX4HIVP9BbtWqFtm3bug0lALhw4QKeffZZ/PDDD1J1tDKig52Z3g3RqfZWXO6Ele/Dci1Z3ZskvGuQlzspdXDNx1Er3kBRYSHeGv54cPUAZxguJCTEnRMUEhLCfJWXteFmzZqFuLg496t27dp+97lw4TKXbEUBd4iC16gyJB+IM+yaWyhSOVP2IM+nY1Y+74PEiBAXn47nc0O42hkTcuXT8W9OHUX6ccC0b1Ax4k4AwJEjRxAfH+/RpkaNGjh+/DjnscsWVsnpEP5eqD0xgsu36EbSF0SPR8yC5lRQ0GNq1WhQF1e3vQGNO7RDTJXK0nTixRrfNA7Onz+PwsJCj4dlfHw8UlNTve6Tmprqs/2V/0VkAsUJ7RcvXtS8/CHiWeJ98PCmNhkxi6uwgC80U6jwfT1cLgWy0954jSURHc3qR17njqLIX6SW/1rzyRPxLEWGhSE2NhaxsbFISkrC66+/jn79+qF27dqoXbs2+vXrh/nz52PatGl8Am2KmUndDo4hjlk6QN2Isa6aFXOq1PB4k0TPIOhhOMFSCGqs4imLiI5yvw8JCwv68blcQWPHjuUWuGDBgoCV8UVBQQH27NmDbt26Ye3atQCKL3S3bt2wcOFCr/vs3LkT3bp1w2uvvebe1r17d+zcuRMAkJKSgjNnzqBbt27Yv38/gOL8o/bt22Px4sVS9U9P929QXcHFeXMWKQ7w/EYxMx+Ie5A3caYZd5TJkKKUnDq6+B6vxhSl5O1HgSGAsx/ffe4FKM+WlCRxOBxYvXq1+zpcediz8gvLIsywkD6psgRp0XiN5IgMfo6TbXwKTDQGknp7kM9N9Mlkpa7nMpaefPJJLmGKohhmLAHA3Llz8fbbb+PHH3/E999/j3HjxiE6OhorVqwAALz99ts4deoUJk+eDAB47bXX8PXXX2P8+PH44osvMGDAALRt2xYjRoxwy5w/fz6ee+45HD161F064PTp09KnI+fnF3K35Q3DiRhL0kMzvF4bgUHeLB25DRE9yrCOLdn7ZUhRStn9KGB0TlmyCNvf/9hvu3bt2uHVV1/lklmmCMJoognj81TwtognQg9cpQN0JNrbqYes7vkLFlzGUsOGDY3Wg4vVq1ejevXqeP7555GQkIB9+/ahZ8+eOHv2LACgbt26mhIGO3fuxIMPPogXX3wRM2fOxNGjR9GnTx93jSUAePnllxEdHY0lS5agUqVK2L59O3r27GlajSWA3+3JH5rRoQzr2JwxM5HwkWzk62hAojynjtz5aSbqaEQY7sDvx/DNN994/VtMTAweeOABDBs2DG3atOETaFO065MZcQQFerxLfFPtA19jTU2wSwcwQ1jqHRhVyK0SwmLpaq7nxhp9w4vtMrIXLVqERYsWef1bly5dPLZ9/PHH+Phj379Mp02bZqGcB/6cE36vjQGJybzeBk6PiCHrrhXwefPEdNSjkZdjG9CPspWUrWOxryJwS/+WW27B0KFD0a9fP5w+fRqffvopJkyYgP/7v//jPL7NYUzBZzaX6RkQzePmKBcQ9CR1wf7Q40GyjFdGZSBp6lpx9L1xBp/gdTC5LwO6C4YMGYIDBw4gNzcXubm5OHDgAIYOHSpbt3KJAiM8S+ZVx+bPBwpcF+axOQ/OXQPUkGn5cr02gPyu5NVRzPvF19blKs6Xio+Px8SJE3HkyBF89NFHyMrKQkREBPr06YOkpCTs3buXT2AZQ17NJc6BSHC8EvcaBXu5E5YerFo/Kiy5pp2FknzKGMI9O2PGDLz22mtYv3497rvvPtx3331Yv3495s2bhxkzZhihY7mDd3A6nc03I8Dlkl88oIizUGFqDq+OLtO8Nufz+BysLsUIHfn6MSOPb1q+ETP2eHW8WMD3OCmescd3bRQFWLduHQ4fPozrrrsO48aNQ61atfD448Gvs2IqOgoJWiYUxDqHYHuZOPrDwZzR591Dw/KgWaXv1ZhaENTGCN+Zjz32GIYPH47Jkydj/fr1WL9+PSZPnowRI0Zg1KhRRuhYZjh5ic9w4P2C/ZweyS+PN0ckPcJ/I/BPJz+SGc7VTmQW1/a0KP+NwD/I818X/muz6a8Yrna8/Xg+lzdizh/OXHfCf+V5gF/HiwW8dZbAfT8qriL06tULy5cvx7Rp07Bhw4agLK1kF+QNddzTVsVg1FDSYxQF3QDR4UEKtjHC8sxpQm+anCVre6K0Mz9tFoYLCwvDjz/+6LF9z5495aYoZaCk5XB6MGQXpRRYif4c56Ase5FakfpAvF4WI3Tk7ccL+WbpyD+bkte4MbMfXUUu3HzzzYiNjcWePXuwa9cujB49GlWrVpWqk51wMAo6GnY8SYnfrFQZO0WOWB4kNaZWTGfVgZJmtFnPUxYshG/Td999F4899pjH9hEjRmDVqlVSlCqrcN1mBsxmUhQjwnDyB1D+tnztCjg9IiLHlf0clK8jf/I076kY04+cOioKdu/ejREjRqBmzZp46623MGDAAJw+fRpOpxPdu3dHTAyfF8/OOFmzsOwKw8tkxeVOmAaS03s4y+phODXi95K+u8/O925ArqChQ4eiR48e2LVrFwCgffv2qFu3Lt555x3MmTPH3e6pp56So2U5g7coJS8G1KTkrxJt4pT3AskL6Zq5JAsvZtar4kVkVqGiCrllZ2djxYoVWLFiBRo3boyhQ4di0qRJeOmll7Bt2zapOtoFZ7DrLPHAzE3yr2tZS1A2LAzHuCRMY5Nh2FkxSZ2F2flVwsZSixYt3DNPrr76agDFS5GcP38eLVq0cLezukVtVRTwh1G4ZQp4G/jkGeD9MmL9OsnGkpmlA/gxr0yECCJhOG8cOXIEEydORFJSEnr37q0pNFvmYQ18FsTBVTrA3MVZ/Te3YEK9jlmJZt4zwhW8LXR/CxtLXbt2NUIPQgWvZ0nh/MYYkRAre/0xY2Zxcc644pTnEsi14ZUp2xAR6UezdBSqqeWnncvlwtq1a7F161ZkZWVJ0M6iqAYNUW9S0KfaG2wsBH0AdfoPvdkVcc9kkJ0gFurjsuXzLCMoko0bI0Iz8kOF1veIGJOzxL8MDhciSnLnfsnVMZA6S4S10VPBO+gDoo4vMdNDY/FwFqsIqHhRU/PO0+wQrbBnKSIiAmPHjkWXLl1Qo0YNTeIhgDK/7IAeuAcIyQOySFVn7hqSnEryer+EErw52xmThG5xgw4CydOcMg0JFfImoVM43wPRQZqvDw0aBBn1ivQcTe49EeQK6CahMTQscz5i9a7MRthYWr58OXr06IGPP/4Y33//PT3MJKOAvz4QLy4DZsPJDu0ZkQdVyF2amw+hxGTOdvJ1lO/9kq2jy8VfJkIxIF/KjjisEgriWUhX3ZzDGWClAfEKXAvpCnpogg6PTtKM7UCwl6EqbCzddddduOOOO/Ddd98ZoQ+hALJnz8q+1xUjZBqQPC0/xCX/wSHbMJadzA/I1xEQSfCmMFxwUMAavHjqLHENalYx+DTwGEWMCuM6kqaDfsaMeld2QluzK/j3jHC3nTp1ChcvXjRCF+If7JAPVGjEIG8HQ8TieVVQ5Cffm5ngTX5r3wTd0OCK6Hk3LljLg5gLjyFoFV29w5cvpm5v4kLMNkb4Lnjqqacwe/Zs1K1b1wh9CMhP8HYVyV/TTHZ5A5dAlXFeZBdTNGKmWb5k71fx+nVy+1G2jkIJ3uRZAgA4wJqCb/xCuno8lZYcaCXpxDJAeAjGjwC7hkDVsDxIZizTIhyG+/HHHxEZGYnjx48jOzsbBQUFmr+X52UIZKDAmARv+TlL8r1fsjEmZ0myQZcvvzq27GW+ZOsoVAvKghWdzcbqA5zwQrWmziTjuA95Fv0VrOAt84yNzhuWKZ/nvK1SE6o0wsbS+++/j9q1a2Py5MlIS0ujBG8B+Geaya0PJDIbjk+eAUUpDfAs8YbhFEVgxp70WlB2CBWat9wJqygl8Q/SwijsnCVZ8CwVEpTlTjT3nmCukaBDIxiDPV8ozWjPZBDQLPljA89Sx44dkZiYiJ9//tkIfco9igE5J0KeJe76N/INOum1oKT3o/xp+cbMhuOdls8n04jZcPx1lshYArTeF+1K7HqkBuGHrmCZAysO3iyVWIsE83z/dPc8QwDXQrqs9wxkGnzC522h+0FYk0OHDqFChQpG6EL8g2zPgEt+eSDIHsPkz64zwFgSqA/Ei/SZZoYsyWJeGE52/l6ZQNryG9bwepgLT8jQ+6K/PNfBsDCcSgC7zIF1DI0ryLobzDg14UNOmjQJc+bMQefOnVGlShXExsZqXoR+zPQs8XuCrJ8P5DJER97GfM0KDVm/Tna9KvPCcIRvrDggsmDmolhw+RaWTqxjc3l0DIIrjKkjD0j7XTX+e6u9T+D1vRkIh+G+/PJLAMCWLVs02x0OBxRFQWiosEiiFNKNhiK5uTYK+IsK8uJy8c/Y464KboMZe4Wy14YTmpbP14+ydVQUhb8CPOUsAWCHfIIyGIuv2qp6y/M+cN2CAdtA0mGA6NKIjejCxRobj+sc9F0s0fNm9WvplUOCgbBl06VLF+bfWrZsqUsZovhmMmRwkvz1NCQfyPI6ipQO4HuoFOSbNy2fW6b86Zn8FbzJA+WBPG9SAH0rXMGbVfE68HPQfU+IWmfM2XDWsPKY/SGY+B187PXdFjaWvvnmG83nmJgYPPDAAxg2bBjatGmDRYsWSVOuXCLwq5sXl1AeC98DwJhZXBLlwaDwkeQcGiPCcLLDj1e8frLGBgVkBElD10Xh9NCKruHFM3hb0OhQw1KJqauJ58AThrNOqQY1ojMR1S7V4Bt5AR/xlltuwcqVK3HmzBk8/fTT2Lp1Kzp06CBTt3KL/HXXJIePDEieFjLoeGdSGVIJXapI6UuyiHm/+DB1ViHVWQIQjAGOLV8ThjPAxg26d0PwS8wMw1lmyRbvsAwkrpCciWhtaosoBUHPUnx8PB5++GEMHToUcXFxWL16NSIiItCnTx8cPHjQKB3LFcW/ugUa8zSTPivMCEMEwg8xvzINSZS3dukAI9avk24sCeR+kQfKE9FcGTMHcmaulZljoOg6bhb3gvEs+svEguejgZmzZOG14datW4fDhw/juuuuw7hx41CrVi08/vjjRupWbjHGs8TZllcmb84JrzxDqowbUcNIqkhbzIZzuVxSr43I/UhFKb0gbfDmm+Wk65tpIc+ACKLeJDMNKisacCx0BY1NPk9uz1KvXr3w+uuvY/HixTh27JiROpVZuB45ikHhI6kSzQ0V8rRSYFSCt7U9S0aUNzCkXhV3nSXyLAH6Bgoz6yxpjqajXpFWjk69y6G3klWqwbbVvE2Au3duvvlmxMbGYs+ePdi1axdGjx5N68AZgAL5A0RRkVyXSLEhIk0cgH8W+5Up0Ii8qiL5i9QWFkpeSFckxMUp04jlTmT/IChP6EnWZfe6RMOJWSeHlStjEc8I14w+htGhahPs0DHPTEStgaTaHGRvDVfPMPqVtVxOsOA2lnbv3o0RI0agZs2aeOuttzBgwACcPn0aTqcT3bt3R0xMjJF6liu4p1VzylMUyYYIjCn4KL/KuBFr7PE25mtmh8V+zS3BYI0w3MSJE6EoCubNm+feFhERgYULF+L8+fO4ePEiPv74Y9SoUcNwXfSEfII9xAgPxjqqYus+Bkc9JZbREXRUXcBTB0oPMg0qrSSOWZYaPcz1fAkfPTs7GytWrMAtt9yCli1bYs6cOZg0aRLOnj2LtWvXGqFjucKIadXSlztRBLxfvM1sMcgbkTxt/bwqU2fDWSAM17ZtWzz66KPYv3+/Zvu8efPQu3dv3HfffejcuTNq1aqFTz/91BAdjBko+HKWxMUKlg6Qd2RpiPZ30PNpdJWK8j9LLjiIlg4oee+0U+kAADhy5AgmTpyIq666Cg888IAsncouPKvbKwZ5Gyxe8NEl2bFkzIw9uQZd8fp10sQVyxTJB+KU6XLJvXtcisKduO2Svi6dGNHR0Vi1ahWGDx+OjIwM9/a4uDgMHToU48ePx7Zt27B371488sgjuOmmm9C+fXtDdWKFVwKQpFsX72JZhShZCdFBNkxEv8Nci9Oa5/VgF6X0n5vE05dSn3kcbayaRyVFE5fLhbVr1+Kee+6RIa5cU+xZkmwsCazyziUPQKERRSll52oZUfBRso6yc5YUAUOEF5fLJd3xwP0ANjm3adGiRfjiiy88lndq06YNwsPDsXnzZve2w4cP48SJE0hMTPQqKzw8XMpamkGfbaU2qkQPLRomDEYuinBCOet94MNnMK6gjSbJMWH+MDDh5KxjtvmhcuXKeO+995CZmYmMjAwsW7YM0dHRPtu//vrrOHToELKzs3HixAm89tpriIuL07S74i1Qv+6//36jT8cndpjFJb2GkWTvBWCPfpSNMaFCyWdjQMjVCO6//360bt0aSUlJHn9LSEhAXl4eMjMzNdvT0tKQkJDgVV5SUhKysrLcr1OnTnHrws5LCXxfw+Co+6MrSV3qvaMjf8l/81KYd88zZx9yGCBmT9m/gtl62MZYWrVqFZo3b47u3bvjrrvuQqdOnbBkyRJm+1q1aqFWrVp4+umn0aJFCzz88MPo2bMnli9f7tH24YcfRkJCgvu1Zs0aQ85BJOwhk6IiF/daZTyITMsXCvXITYMyYLFf+R462YgtSMxHYWGR9BApf86SOQneV111FV577TUMHDgQeXl5UmTOmjULcXFx7lft2rUDExTkteE0P2N03Aia/Bgnw10TDCRV8Bavd6WaMSekAT/MEBszT8kgRWSh0dvp9X2wEF4bzgyaNm2KXr16oW3bttizZw8AYOzYsdiwYQOefvppnDlzxmOfX3/9Fffee6/78/Hjx/Hss8/ivffeQ0hIiGY69IULF5CWlmb8iXBgRKKzIjvrV5GfmOySrKNikI7y/V+Qu+6aUIiLr5kRSejc8wNM+jHepk0bxMfHY+/eve5toaGh6NSpE8aMGYPbb78dERERqFixosa7FB8fj9TUVK8y8/PzkZ+fr1s30anfZtZZskxZACY85QLkLACskS9Fip9jSMoFC7oXmFF6wmxs4VlKTExERkaG21ACgM2bN8PlcgklU1asWBFZWVkedWMWLVqEc+fOYffu3XjkkUf8ypGVe8BC/iAvMOhwD6AGhLikSrTHbDjZGDOrUKo4oTCcWQneW7ZsQYsWLdCqVSv364cffsCqVavQqlUr/Pjjj8jPz0e3bt3c+zRu3Bj16tXDzp075SvE+CWtp7hjMNBO/favX1DOQKMHI/TEsS/boArCWTC+PsyFdNW6qrcHufI46wg8zwON3iYY4bbwLCUkJODs2bOabUVFRUhPT2fmB5SmatWqmDJlikfobsqUKdi6dSuys7PRo0cPvPHGG4iJicGCBQuYspKSkjB9+nTh8+DBiBCX4nJJ9YgYMtNMoJgilzwI9KNQeYPAdQoGRuRVGeKh47425oThLl26hF9//VWz7fLly/j777/d25cvX465c+ciPT0dWVlZWLBgAb777jvs3r3bUN3Mzt3wCzNsxZqdZbRCxqBRW/AkdD9GmJFB+cZzUIwonmOY7KU01ViaNWsWJk2a5LNN06ZNdR8nNjYWX3zxBX777TcPI+fFF190v9+3bx+io6PxzDPP+DSWZs2ahblz52rkiyRr+kQxZsq7wOH52tnCs8Q30PI+C6SXDlD9L+sxYEydJflFTa1udPLw5JNPwuVy4ZNPPkFERASSk5MxatQow4+rZ0BUfHySBdeMMR2r6sotHaAwtmsOWPKWY8AW9ZIYBdub5D2sGAxvjfAdp9LPGWzvXSlMNZbmzJmDlStX+mxz/PhxpKamelTGDQkJQZUqVZj5AVeIiYnBl19+iYsXL6Jv375+p2rv3r0bU6dORXh4ODO/QFbugTcUyDdEhMJwvDJNXBuOF+k6SvZ+GTFWifUj3wPH5YJppQOstJBuly5dNJ/z8vIwZswYjBkzxvBjs501YmEUh49PRsBKJjbVm8QKw7FqEfEYHaYWdyxB2BPLEYaT+czjSoNnFdC0y0K6RnD+/HmcP3/eb7udO3eicuXKaN26tTvhsmvXrnA6nT5d3rGxsUhOTkZeXh7uvvturlktrVq1Qnp6umHGEA+yi1LKXnetOHla9ow9ha9opwDS169zuaBI1pEX3qO6ilzSPZNG1IIq4l2Kpiy4oGQT5CneDklGFbsopVgRwmDcEzxeFpYRxYPuM2A6wVQGHGu7ZZLuS06C65qq9DajgrctcpYOHTqEjRs3YunSpRg5ciTCwsKwcOFCfPDBB+6ZcLVq1cKWLVswaNAg/PDDD4iNjcWmTZsQFRWFhx56yD1dFwDOnTsHl8uFu+66C/Hx8di1axdyc3PRvXt3TJ48Ga+++qoh58GdIyI5T0MkR4SXQukFH/kHeZ5WimLMIC8zh0Yp9b8UmQKFM0WOK710AK+OJpUOsDKig7TotHapWDEhiRWGY8AyOtjig2Dgc9XXYhhIrLBiEAwQbc/wGM/WuX9sYSwBwMCBA7Fw4UJs2bLFnSfw+OOPu/8eFhaGpk2bIioqCgDQunVrdOjQAQDw+++/a2TVr18fJ06cQEFBAUaPHo158+bB4XDg2LFjGD9+PJYuXRq8EyuFEWE42QUfRZKneSlev87as7iMCGfywp1LZkDpANkIJaGblOBtNVh1ZfR5DAKosyR4CFb+UtBnjzHhqaFki0njAMS/L1pDUK4usmHVjQoWtjGWMjIyMHDgQObfT5w4oenMr7/+2u+XMDk5GcnJydJ0lIIBIS5D6iwZse6aVIlG5VVxthUSDGk/7GUvG2OEcShi0OVdypavgM1h3SriOSfq9jKnGbAOx8oPEkuglqqHYBOmh8bqBpWdZh9a1Mtk8Stc/hDx2mSnp3O1k70QKsAfHrmcdppTnsC0fI52xf3Ip+Olv/7gO6xLblFKEUn5p1P4ZBq0JAuXyL//4pPlUriLUp45+rv/RoRPpA4yPNdNj+EQ9AGRIwzHNJC8tzF7UL+CaKVu9lIuQZglx1wix/BDc0PGksUorm7MN8gXFfAlocuuDyRi0OVn5/DJNKg6Ng/5ly5xtTOqKCWPxLyLWXyyTFx3reDSRa52ikN+qLmsw1w1XlrOCeeoJDrosmaMmZlkzPP9sHixTy646l35fx8MeDxIap2cJix3QsZSEOHOEDBgbTiZKJCfRFxUxL+mGddxDRiLi1wuuGTOhhPQkfd8XALlDbgS5fkOK9RadqJ8eYPH06GGfT8EYVaZWj9mG+/vDYMrDMcasNUfvBtUbE+MiT8QWAVBJdWNCgoUhiNKw52zxNtMduVpxWGL5U6K5XK04ZYlN/dLRBLvc8Kl8Ie4RJA7Y89hiI7lHfFwSemcJQ4kXTeNpjoKVAYDloEkXoU8uD+0xG8Ha3jQHIz7QXNrmHCbWO/OLOeILADLXYpAINeGX6b89eusXtZZpCilabPmDAoVysTMUKFdYa4gz5htxiKQXtdTZ4kZPjTTKGLde8wK3hYcJrmqQbAMO44yAmoxpuYsWcOAA8hYsiTGzIaTKE8gDMct0yU5DFfqf1/wfh0N835JlsVdw0hSG1EUA0LN5QlmKIjZPvDiiYEgOoNJT3upcOXNsIwOtWEiXzWj0JyC5g8GHY+pB0sRdRtzjW0yliyGAvnT8l0GLABrSBhOttUgGSMS5aUjuxaUovlPCi6X9b1ftkR4lA6gzhKXGgxDg5XgbUHrwggjLxiw6lfp0dUq31Wz+5iMpWDCkz+jGFWUUnKdJQPCcDJDhULT4jnbuYwKcXHlH/A9KIRCXLI7SaD0g+wfBGUdZh4HRxiFr86Sj2PrCsMxPuiYph7swdsIo0i3FMFnBlPvIHtrFB+fSvRg3Ceae508SwREcpb4HhpFRUXSQz2ysdKCqSxcRUVyE7wN8NoUyTa0hRrzed4oDKcPU8NWXKUD1B/EhhizvQdXYC3mahmYMx/9P0eZC9UyakXJPH8H4xNPnSWzrwMZSxaEN8TF+4uvOHlah0KlKK6zJH/9uuBkVHjCe9Ri75c5OvL/mlakrrFnCDZIQrcjRt2Zwl5phoHE4TAIDlwVGlnnwEquFwxtCbXmhx2GUzey3rDPV2fJ3LCn9XqtnFNsiBgQhuMuM8DXjtdW4h7iBWaaiRxX7pR3kRpGZhlVDtMKZ3LLUkClAwTRM77x1VnivF/1XDeeUKIVnTgcRgcr2ZspU4Zi3o6t2a7+4N/4Y3W+Ec9lXsz2JqkhY8lqGDCI8FYE58aAnCXpCd4GYIfQkewQlxG5X9bvRWvDTtwVfZwHMBBxheF0eACC4fVQ/BuJVjfgWPCF4Vj3jyEqicNR2oBmw5VxuHJkReos8Xo5XPKnp0sPwwmsX8fbj7yNuY+rKFI9RuZ7v+TDI7PIpXCvLUh4wgwF6VpChH3l9CR4s6bj6/EYBMXbwJUQLRqSU7y804/6+84zEcA6VlEJPM8ss71MZCxZDKEwHOfNI3vmUbGOnG1520muji0Cf86S9YspipXU4jjzK0noUnPerN+PlkPHL+ngL6QrWqPIzFwUnmllHEYH1/VxeHmnH32Gp/oD4zyDAFeZA1Y17yBBxpLl4E/Q5aV43TVrlw6QvjZcqf99wmt0Su5HEe8XLy6XeWE47scr5SzpgpmLoqvOEntfPWVHuHKpBb0ecg1t//k+Zns03CiM9+rNql+nPFXfzTSQRB98Zl8GMpYshgJID1EoLpfcEBcMylmyeDaLS8BrY0SuD68s/rCixAO7j853XDvkf1kWweToYNdZYk5Nt2ARRxZ8JRkY7Y0Kwzm8v+cLYanfm9f3rNIB2s3ec5P05efph4wlC8IbhuMdcFwio7xJuFwKFCXI4YIrTblzv4zxfslEccldSFfE+cW/bh6F4UQxPsdH3vXgmZ2lfS+2VIjuwV6zP08YjiNkyJUoHeQwnGANLjONKObzwEI2NRlLVkORn7Nk1JpmXMfmbSfZsyQyyPN+H+0wyCswLfVLCKrgHTh68mYC6XVd30su6ydw8frRuGi8t7BKbrTgZRD1JgUjCZzp47SI0eYLMpaCCM+97oL8Oksu2TWMDClvIFILiiOvQeTJwp0oL9kbpGj+kyNSARTwVoAXkMvRxuFw8N3jFIbTh+AsLM1sKe1fAjg2Txv/CbpcdX8Y6H6WMb0YgRsLooaJ7jCcSoBwf5ho/em5/zQeSF0zPwODjCWrYUDytJhnyRyrXv7g+c95yAxJueTO2DMkDKcogMRwpiFL4dnAQ2c1jFkLy5jvOk8FZh87S9bGHyxvEs/sLBO9IRzGGY+uPHaTcecW+KxJMyBjyWIIlQ7gHHAKDZppJpOioiLpM/ZU//luynlcEe+XWbgUg9Zd4xDJe1yhe5zwgCeB2jAkXTbrhF0EDTgevY06H9G+F+3jIMyMY50Ce2041TlQUUqiNPwDCWfOkmyPiCFhONm1fPjhfTDIrjLuzquSKVMB+Oc+csgr9b8veF3j5FnSh6h3I9gL6WqPzShtYBljyTtmDMZ+EZ7tyBAjaBQF47vK40Ey+y4JNfn45QuOe64gJBJTv94AIFPaYXtMnoyQqgqAPL9teb4Whc4wvLJvO4AMvaq56TB8JKIrhgDIlSKvEE68sm87XMoFyPo53LzfAMRGhYFLR45DFinFOhYpmQBnnpE/rrqlG5QQTh05cCkOvLJvOwqULABF/ndQ4PepVrl5G1zfpAOAHAkalg8EU4U4MWYQ1BpI6u08+1ojDMcKczGnr5to/LF0Yuuq2dlreysiOmtSNhY0n8s3BUoInCFybVhHWCQKJV7qfJcTzpAQafIAABEVUAh5MguUYh1lZn8pEVEodMi7NoWKg1tH3geZK6wCihxh+hRTUfSPjkUSx9XC0Ai4nPJ0LHfwJFCr4KuzxL6/NHWWJE0vdTAHbI5FaKWWDhBN5GYZgkEIEcmc2ut1X2t4/lj3Bg9OQ3L7/pFtmGQiIISKCvIWAQSkJv0agaLwzaQy6OB8zQxyBHMdnfPQpga3uKczGqtGWUd0YDa1CCFHorQVPRpmF0D0Ck8YTvWW6U2yIMI5SwYaRSwscheUDzLy/XtOFPc/cuEVmZUvt1aLEfHuy4UcOgpOy88t4niaCJQOyHMJTB/mykIH0nJ4vFr8RidPapxIzhIAnLjk32OkCOhI/ANHPpg+o4N9RUTrLOmazcTzNZRaOsD/IM2CK8ylPbB/3XjRGEXqPobX93xGK+NQEp/hrNIBGj04KnszIc9S2eD4xXD/jYRq+TjwxclYHpHcpOZIDo8owMcpcVJFXuAwOtXH94vDgY+OV+QTxdmZuUUcXy3BGXtrT8i91tI9ZQ4HvjwlV0fCE578EzXswY7vSogvd2LADDMz4TBAeKbyqxsFdJbqy6Vjmj9PjlNwELtPfIXnqtapjYZtb5Ckl3cowTuoCHgbOEnP4/BWCRlg/hH9oZHJ6VEzs7zBRR5vlaDc7EIHokJ9/WLnx+FwIJtDRzFjGzibE4IaFdiJ26rfflzy8niMRJDBpAuugdk77H43aKA0IPRm2KDOEwoy05jj8PxoCpBasL/5Ug7EcvIAYPKGjwEACx4aEaBm/iHPkuXgD1FYfeFZEYyanWpUnpEMSkJcQX4YBSBQuiFbdm7doODkyk3yL8fh4xMLzXNGcFqeuKfDTGNEeOqe6i3POShe3ulHOBeMGbYTvA4BnASzZ7gWAy7Zm5XI3aJbJ3GlOCFjyWII3X8CjaV6lgQGd7GEdXmI9SOfO8bM8V0kb8A0Dx0leAcF0cHROgvpOr2+L9XIr/xg1/0RTlIPRhiOVfGAw0ASvX+MW+TWvxfMSmFZMpYsCecNIjJDyuIDlHyPiMCXjPcLKTmceeUC8jz7uQtn6lFHr1wBHS1+O9oT4YElgKug58Lx5P6oD8URFgtMD8H9RT1ORsHoP1YYzoq5YNorqiMXjsMgl41tjKXKlSvjvffeQ2ZmJjIyMrBs2TJER0f73Gfbtm3uasFXXosXL9a0qVOnDj7//HNcvnwZaWlpePnllxEiu4aQAHYobGzqgGyCLKMwLvQoU5Y1HrLlHT0zzPg8MWw5mgRv0dtBcJC2jFdBR5I6D6aG4Zj7WsMcYNfgMvdZZJsE71WrVqFmzZro3r07wsLCsGLFCixZsgQDBw70ud+SJUswdepU9+fs7Gz3e6fTiS+++AKpqano2LEjatasiXfeeQcFBQV49tlnDTsXWXBHPaR7RORjdf0A+UnoRmB1/QDyLOlGhwFS6i/6dfF+QK/HlrVAqtzSAd7RE+rkMlL8tvACRxiO2Zes/hae0WcMfDlLqvesUhoG6m0LY6lp06bo1asX2rZtiz179gAAxo4diw0bNuDpp5/GmTNnmPtmZ2cjLS3N69969OiBZs2a4bbbbsPZs2exf/9+TJkyBbNnz8b06dNRUFBgyPn4woicJdneAZFnFXdTyaOnUH0g7qKUchHRUVH40vml6yhQ3sAWlloZQ54nRgFrCNfceTpCxlz1faw4fV3TXDCBWiYcYThRQ9AqsNc7NEEZBtbwu/khMTERGRkZbkMJADZv3gyXy4X27dv73HfgwIE4d+4cDhw4gJkzZ6JChQoauQcOHMDZs2fd25KTk1GxYkU0b96cKTM8PByxsbGalykI3EhWH8YUOExT0inwjTQrVGjFB1xpeN34igIoFq8obzmcjEGaI4yi1xMjWmdJs680L1jgMgNBj+eLh6A86iR5xCzz7OGZEcq5mHcg2MKzlJCQoDFoAKCoqAjp6elISEhg7ve///0PJ06cwOnTp3Hddddh9uzZaNKkCfr16+eWW9rrdOWzL7lJSUmYPn16gGfjGyO+RLITvG2Rs2SAksUDvPUfnIaUIrC6tV2ekDZ4GXNRmYYGy8gzNS+OOa1M9VYslBiUMBxTsCS9DTKQeKSyqnlrtwffz2OqsTRr1ixMmjTJZ5umTZsGLH/p0qXu97/88gvOnDmDrVu3omHDhjh+/HjAcmfNmoW5c+e6P8fGxuLUqVMBywsGpk57525jzkPTBf7+kdqPQrFCXpHGeOj4rqE54czyDHOpC769Ge+1CNdzE/ViCBoacksHyJmRFZTEdLVY0dIB2kZChzWuVANjFp8aUc+kHnX8YKqxNGfOHKxcudJnm+PHjyM1NRU1atTQbA8JCUGVKlWQmprKfbzdu3cDABo1auSWe+ONN2raxMfHA4BPufn5+cjPz+c+rghC96XQCG+At4GnrUh9IHFV5MgyJAmLX5RsA8zq/Uhrw4mjZ0Fa9fZg97uw3RCMkI8BoUFRdF8HLpvIv6coGN4kNazSAVx6qO91RrjNyBl9phpL58+fx/nz5/2227lzJypXrozWrVtj7969AICuXbvC6XS6DSAeWrVqBQDuhPCdO3fi2WefRfXq1XHu3DkAQPfu3ZGZmYnffvtN8GxMgPPelj776ErSryLv+2VY8jSHYKfDAZeATCsjv14Vv1zuB5UdOtLC6Fq6gvkXdoI3pwCOfYM7MPOhLowIr++Z4UPW7DHmuemdxcfRhktX9Xv/SfcyjUVZtw8LReF5kgeGLRK8Dx06hI0bN2Lp0qVo164dOnbsiIULF+KDDz5wGz61atXCwYMH0a5dOwBAw4YN8dxzz6F169aoV68eevfujXfeeQdff/01Dhw4AADYtGkTfvvtN7z77ru47rrr0KNHD7z44otYtGiRYZ4jfxhR18bKOTFumbLLGxiSs2SM10a2TDvUq6KJc5Lg8CwFfyFd7/vyJRkLHSowNP3B0Im1nXFufDO4dJ6cqDeJKcYqhqp39HlRqSglBg4ciEOHDmHLli3YsGEDtm/fjhEjShbNCwsLQ9OmTREVFQWgOFR22223YdOmTTh06BDmzJmDTz75BL1793bv43K5cNddd6GoqAg7d+7Ee++9h3feeUdTl8nKmDXeCA/ypiQE8WPcbxHf2MFeECpvQDlLhqEnF4UdhuPLWdLAUzqAQxbTi2HBgdwyTjA1sr5EHEn3MnOWFMYndrV21ofgY4vZcACQkZHhswDliRMnNF/Av/76C7feeqtfuSdPnsSdd94pQ0UpGDKLyyC5spHrEeH/YjnBZzDJD2de0ZFXV47k14CV8SdY7i9WG9yO1kVHKCiQ4YZvIV2OPBNJSdByc4hUYTiWpwje34vXA5IYhmN2d+BGaFBKMjA+aY/N4YFk5Sypt0se9GzjWSJ0YIORyQYqSkckr0pIqNTOdLjFyqI8XmuZ8ISC1PB5BththL09eqajBzskxzR+BEOPLIOKdaxA4NmdVZKBI5eJKcdMj46F3HpkLFkMo+osmVnDyIzBUTRUyDuc2MFDJxM7rF9XHjAmFyOAq8AThhMNGVpmKjsHPEZEMAZ4HV3AVcfIoHNgheHUsBPQnV63M3eWjG3CcOUFsWn5ZWfQkZ48LSDMqJwlM1K1zLwfuHOWyspNaxLsUJDoYMeXsyRcZ0kt1b9zIzg1ilhKcQzY7Fww/22kwhWG8/5BT86bccapqMeSo4mB14Q8SzaH53aQXdfGmFlc5rlbeb8EiiLWj/7OyCgvohHyuGYtc15DhVcg4R0eAynIBghXmRyuvBnWB/Vmmecj1n+mLqTLYywwPUXw+j7YYS52yhtHvl0pL1PHAf1w26MPS9PNH+RZsho2GEHL3nRycw5shxCXmCyygAzD8EGNs84SDxzuJJ5cK8PQ8cUT9jhZEa7aSsFUyAc+FOn37NMAgF+3bQ+KKuRZshg2sJWE4P0VaJRHhA8HeAYKw4xEjja8Dy+jFqjlG1/4j22mJ9HuMOsScYRReHJGPI5nxEK6OpLA5YaF/Mtin0LgyegBnYHi/T3bIwav21kEw4Dly1ny79VTv69er64s9XxCxpKNEcrzkfh8cT+rbOKxMgt/52Och07ig86QUhZkKOmBnZfCaq/26Gj+EsDBeZTyrwdPm2DPwuIqw8CTWMzUW12mIAA4UsyCunZdAM8GXfcfV94VFaUsN4jef3w5S+YZIty/AhVAWhgAxpxvcT/y68jdkkNZs5Oi5daXKnuGsdHwjAE81bIDQTTBm8fTYep0dBaS4lDsczPK6yv4beLwPnEZVxJPh31vMPRwqmbGMWouyYaMJYth3K9u+XKtXB7oyvODc34Wp1D+piJHLSuz4ST3tqlMmjQJ33//PbKyspCWlobPPvsMjRs31rSJiIjAwoULcf78eVy8eBEff/yxx4LfVoAdhuNDE56RFDPWNrGg4aSCJ4leFN1hOBW6losx4Nx8wRfN92/MOUO8lxHQnAMVpSzjGFDDSP6aZgLeFYdAPpABxRR52/J8r0RtJb9tBYTx5yyZmffGn59mdYOpc+fOWLRoETp06IDu3bsjLCwMmzZtci+nBADz5s1D7969cd9996Fz586oVasWPv30U+OV0zEDTrtVdxzFf3NRwynopQPUmzkMB8GZiFokhuFYl84Iw06i0aH7/rsiJygzJbXQbDhCGLNDQjwoHm+sxxWj08IqGtePVj5pAL169dJ8fvjhh3Hu3Dm0adMG3377LeLi4jB06FA8+OCD2LZtGwDgkUcewaFDh9C+fXvs3r1bqj7Mgny6Bkde45YnCZplqInl/nAt2WLUgMjSW3Bfrr7Qi8aBwnQ5+dWJPRsuGN4+nhwk77o6nSEl2ykMVz4przlLdvA2iOoo8ysskvpldWPWDte6NBUrVgQApKenAwDatGmD8PBwbN682d3m8OHDOHHiBBITE73KCA8PR2xsrOZlFOIDH7uNcBiOZ20vHsPOsNoasjwaVgzDCV5r5nUwKv/Nv05cExUYYbhSO4gp5wcylsoLBuTa8OBwcBZytNvoKQGxfjRMDS6k5tLZ7Fo7HA7Mnz8f27dvx6+//goASEhIQF5eHjIzMzVt09LSkJCQ4FVOUlISsrKy3K9Tp04FqpBGt6ASuMPFRxsOT5QKoypK83lZ9HhiTAzDWTIvjHkSJe+4QqAchpMEyFiyGKKPAa6cpQDkBhtzE7z5ZUrNWTIAO1xru7Fo0SK0aNECAwYM0CVn1qxZiIuLc79q167NvS9PaEczrqi2s40LRuEej1aiYThmI+/vmU2CHQry72UxXg4nPGE4pmGnfu8/JGfmciese8DpDI6BpIZyliyGMWuayb2ZhAwGk2JChh3ViHpVktsagZVnPhrJggULcNddd6FTp04aT1BqaioiIiJQsWJFjXcpPj4eqampXmXl5+cjPz/fOGUFk70Dei6IzobT4QVjPTvMLDvAk4zOo56pYThBT55V0KinzlNyBsfnQ56lcoD0gdaAkc4OhQqN0lGu98sO/WgPFixYgL59+6Jr1674448/NH/bs2cP8vPz0a1bN/e2xo0bo169eti5c6fBmnF4cRjw5IzIRHgttaCHGHm8Zt4/6JmyrzsMx9FI1yzDIF8HrvX3VOcWok7wDpK9R54li2HUtG+zavk4HA7uWKFMo05IFL+KJvajMXJlyhLS0eIW06JFi/Dggw/innvuwcWLFxEfHw8AyMzMRG5uLrKysrB8+XLMnTsX6enpyMrKwoIFC/Ddd99JnwkHoNTgxdru/b3aQxPIWKJdBsO/fr4keX0vmGej21stmoMk6q3RYURxo+oCfbPh4LeNTLRS/evNfK/yLDnUniUDK3iTsURYAouPnbZBgTE+AqmGrA28X6NGjQIAfP3115rtDz/8MN5++20AwJNPPgmXy4VPPvkEERERSE5Odu9nCsKDdOmcJTnXhWdg5iPIYThJxgKXwReIYPVOTCPHvxi2IWiQccrWhKGH983a0gEcRpFkvclYsjMm5bwopf73fVz+AxuR4C31wJILPpbUMPL/hDPkfCQjlINl8bArz2CZl5eHMWPGYMyYMUHQSAVHaIs5k0y7B9fhNAneHNdYtBAlz8wzqSiljUTfiC7sahhczrtghzHF0PNo0t4nwU/wppwli2FUGM4seEsHmOpZ4vyuSddRQCDv86A4VMj/8JB5ThZ8NpcZ+AZpjkE9kGPzhOGYO3OEVJh1mbyLlOvpEMudEl+oVsww44YjDCeuN8e+OmGF4YSjniHBN1rJWLIaRoQopHtE7DMqytZVZghJxEMnLJQT3rMpr7PhrI5VvAd8s8QCz/0JBvpChhpB6g+M9wHAFYZjHIPDKGIbtoJ66obRZ5pzcHp9rxUjV3EyliyGcZ4liTeOEbPhFLmGjZgsvhOSP6lQ/lPIDoaI1ZO7rQ57hpn3D+yFdHnve54wHGswVr/nCWd5b685ktRBUPTXBcOgMjMMx2P86MGwiTc83kXGfaKus+TU7KBLP1+QsWQxDEq1MSTXxsolCcRyfHhzN8ofYvlpAQgmuODzAIiG4QIYWIR3CYbBoweO0CDT4yR6DvpmJXKI1cBlN0lLxg8CrARvjZfJuMOTsVResPjgZKpHRCAWZfFuFO5Hv22vGJJcib38x7R6P9oFqwxqXInZHCEiZg6RCrmlA7xvFp9h5l+O1DAcIyTnwyryqwd72RkOfQJCnbPkP79KjZNnbTjJkLFkMYwZRCTn7UiVZgxlLVFeCJHEcfkiCYNh2xzeBzs+44J9J3AtpCsYYtMzo08ugd/ZbEPIv94BHVXYHuUJbQWiiG8dAhEgHJZVe5Oognc5xaBRyepGmFHeBtmhQqvn24iuX8eP9a91Wcbh9D8w8wwygeQs6YLLiyMqUq+HhumWYR3R+3thPQwKwzHgmyXmP4xrHdRhuODrR8aSnTG9no4xU3hlcEUzud95Kz5AggMZN9ZEdFBj5yyxr7AmwZvncFyhIP/7Bnu8Fi8L4H1f0aKP3LByk0RdToITBBwsmQE8FMR7gKWr02sLTd9L/mVLxpLFMGpQMnOw400ONnMKPW8tKCGxJnS66Aw7M+4LReGrvUV4h2d6uExLgzlYchyaL39HzECSW2eJVaNIh0gOg093GE5HF/DMOOQTFPiuxTCMcK7UNpWXKSTEs7HHDvohY8li2GEQMcJro6gFy5InGeFntAmOKFGDzp+Kht2PdrjRLYSu+jkq2N3OebNylA7gQThExNhXPxwGJtPjxGgjdtTA4MlbE81M17FAMy+s0gEO1nvG+ajDcI4Qp9c2siFjyWoYlbNEg5MUpP6mLafXhHKWdMIxlZ1vId0A6iwJj0Wi3i7z8mbYfamnjRqddz1Hcj3beNbswBAj2N9BCcOp9tWcW4npoi4jYGT5AzKWLIYdStXYIVTo9n7xSuVoZtR5S/1OK2JGGBkt9oPP5hD13Oi7E3imyOvxxKiRWzqAFYbTNaz7fR/8MJzo+fB43ER1KI3/k2DOklOXDnCGqNoYZ9LYxliqXLky3nvvPWRmZiIjIwPLli1DdHQ0s329evWgKIrX17333utu5+3v999/fzBOiYExv6bk5gPJ19E2g7bFrVk79GOxjibEKO0McxAQ88RILI2j1UIwIZpn36BneDNhhap4DETGdpkqaY7nvxFPOQej1ltjR3HFwqHqcgHqmkua5pKfMaFSpRnIqlWrULNmTXTv3h1hYWFYsWIFlixZgoEDB3pt/+effyIhIUGzbcSIEXjmmWewceNGzfaHH34YX375pfvzhQsXpOvPi30GOwM8IlLFGWPQCcnlbeqQe9Utv3afDYp7Whv/xoW4M8DXXxw8zbzvyzXzynt79pip8/5meqb8Gwv6jAhjwnCiiymX2lvVhnFYifkCDsYntsHsXY4m9BakOku2MJaaNm2KXr16oW3bttizZw8AYOzYsdiwYQOefvppnDlzxmMfl8uFtLQ0zba+ffti9erVuHz5smb7hQsXPNoSwUX64PmPQNkGndWxgYrSk/nLG3yDNI+BI/EiMAweZiMLGvQ8gzTPvmwjRWIYTnRXy9dQ8o6DYcxxGVflcTZcYmIiMjIy3IYSAGzevBkulwvt27fnktG6dWvccMMNWL58ucffFi1ahHPnzmH37t145JFH/MoKDw9HbGys5iULoXwTodyUILhSdbRXUDylXBaG6WiAEjK/0kYlT8t+vJKtJIbx4xtnnSWeWj8cXiPmvqX+4lWfIM+M4BmYRT0jMtN9NAn8PEYR85oEOwwX+PRiVhjOaaCXyRaepYSEBJw9e1azraioCOnp6R6hNhZDhw7Fb7/9hp07d2q2T5kyBVu3bkV2djZ69OiBN954AzExMViwYAFTVlJSEqZPny58HqZi8Wn5hmHhH1GG9KMCqedsSAkGA2SWJ4SXhlDBmrrt83g6bijWvuyFgRltDEPMuNDahCaG4YS9LN5F6tlXP3J0VSd4l9nSAbNmzWImYV95NWnSRPdxIiMj8eCDD3r1Kr344ov47rvvsG/fPrz88st4+eWX8cwzz/jVOy4uzv2qXbu2bh2vYIeZZiLC+G9duTe5UK0hzkMLe20knhLvg9m4EBeHUIEHFRlMOmAOLAwDhNVc77GZTfwbSOJepiCgxxDiMqgMCsMJXhPhczMmWqvdLpjkr17+J0RVlNLBKCMgA1M9S3PmzMHKlSt9tjl+/DhSU1NRo0YNzfaQkBBUqVIFqampfo9z7733IioqCu+8847ftrt378bUqVMRHh6O/Px8r23y8/OZfyMCx/rhI4ctRnmrq1he60vpQXxWGY9UhqvCo5UkQ1lHHpBUOEoHaJLlWYaGYBvDYHmc+KyokreM8zETriVoQowzkNSYaiydP38e58+f99tu586dqFy5Mlq3bo29e/cCALp27Qqn04ndu3f73X/o0KFYt24d17FatWqF9PR004whsZnp/K2NqWEU3OOKYETul/CSLBJzlvivtYP/wALwjb3m3I/lGWa1Y8b2QPpdM3DyzMhiDXCMsAtPSM44BA0Eq8yG0yOK45owr4POa6InZ0mjkjpnyeF9Zpxsu8kWOUuHDh3Cxo0bsXTpUowcORJhYWFYuHAhPvjgA/dMuFq1amHLli0YNGgQfvjhB/e+V199NTp16oQ77rjDQ+5dd92F+Ph47Nq1C7m5uejevTsmT56MV199NWjn5kEZG0VE7lfyOLARCcNZvRsVm3jorIoez4WD+Ykz2Y3LnvAfUuEynDjkBwTrQaOn3hOHB0S3pcESxfImcenEcViJVgfz/uPqb/U5qIyiEOMMJDW2MJYAYODAgVi4cCG2bNkCl8uFTz75BI8//rj772FhYWjatCmioqI0+w0ZMgR//fUXNm3a5CGzoKAAo0ePxrx58+BwOHDs2DGMHz8eS5cuNfx8WBiWsyQzwfsfWbJ1NcL7xYPZOUtSz9ugGkZcMjk70g4GndXQVCYWnuUUBAw4XHBCQczpff5hhbCC7h1TIVoTihVKZBZdYrzXDdP686qTOmdJ293GhUBtYyxlZGQwC1ACwIkTJ7xe4GeffRbPPvus132Sk5ORnJwsTUc5GPPtMssQMVsur0zudjaYVSjb+DICyxfOtAmsPBOWZ4QdBtFn2fPMpOLy1rBCQWoVpN6U/g0EeUUpvR1VAGlhONVbnhAoz7XiRDQMx1UctDzMhiM8MSInRliuX/hvSKEcLAOWUeE7Lmc7CA7yUg0rPmHCOspEoCMp5Bo4uoonBnA8PQvpitYlMnXxXKYR4b2NVhBHG70PBA5dxY1WxnbWgSVGErWGqqAcJ89CunLvJTKW7IzIuG1SwUeRo1p+xrtBIS4eREISxhgignkbPqAwXADwGEjMNjwjPPuKGJ74bGIODXvlEx1eI46cJbkRLP+6cvWZaBjXoDCctssYhh1juRN1eE42ZCyZzJbT0TiaGe7+LOP+2/93pMc2PXK/TY3C4Qvh/hsKsO/vSOQVaW9sPTr+eK4Cfs2I0KdUKX76OxKZ+SVfEQX6DJED6RFer40e9p6PRFpOSTRdryFyLCtcuo4/nKuAU5e1EX8yluTA9NAY5V1kXjjBAZvD4AtG6QAHh4HAlbDOkROk2cyhpgesvle8e/648pRE+ziAyC1rdzbeDUxWmNnI2kpqyFgymd8yIrHzrCopXcIosvVMDM7lhGi26Rnkj2ZG4Nu0aJ1aadl2Jgans0sNoDp0PH4xHF+f8dRRT3f+35kYnLwUJk3eycvh2CpZx69TY5ByUaWjTu/X6cuh2HomxmO7Hpnb06JxJLPEkNVrdJZ3hGdqMZFYZ0kNh35cs8QYm6XmLDF1ZeXycMXbGEgMw2kunX9jjp13xGMICurJTeD9ofYgOZ3eDSfZipOxZAEMmWBQ6j7RK1ejo0UHOqPVskP4SHH/Y13s0I9WQxNeEEyO1jtmMGvxeD9caUVYjfzuy+PpCQj1A4zxMBM+BJdBJTEMxxVmZbXhuYgc7QM4CdGcJVZITuNl0qwHR54lQid6vpylB2Cl1P+ysP4A6tBnKCrFMtwf3R0p9wuuW0VJsphyrH+hbQQjNME12vPlLMlD0HAKckiOL7eLNcDztPF/JJ/wXCJdni9BZIrnMO6ZoTdGIcoytdwJUYzixRCRfxATd+edJGWmjtzffIMfQDop7gPSsWzD8TNc9Vbq84UjZ4kvShj4oC63dIAYbAOJB2PCcKI6cXkBDYKrdAAzHOq9ibywtG/Is2QyRn3tS98yMqeTC+vMeWj9Osr/opT+7hnxnJZd1sGKYVILqmQrGA4Xvl/hzCia7jgKRyPBUAsrbBWEm5odDhTbl+t8BHULBB6deFKcmM4qo24fdXvWPaMuHaBaSNdpYEiOjCWLYVwRQL0YYIiU+qw7r8qLANk1h6w+6BtVwVsu5FWSh2gYiUeOFp4Eb74f9GKGE8t7IHX5DYYlIB5iC3IYjsuw0+M14rHIBUX6ECC8zA0jJEeepTJOMIoISjXClOJferINOz3yjMq18XccK2JEONIOlcvLD2L5Pmq0fc/33OFZSJc9HZ/rEBxKSHxGGjig+kZiGE69OZhhuCCkSvCVPAjO4rlqyFiyGAochricpc6Gc3+puONrMptxY0g/SjcQ5Qo0Ylq+FB39T0AifKAZHIRzgvxtBbi/fVxOKoYHgDVI88R8VDeNUSE5dnK5nDZSw3AcAvTobVg+veaT4EkwPGhOlhEl+RzIWLIAhpQO8HEMvQKEZ8Px2lQyf7UYtHSKHcZ5yU5E6TIJiQSh7g9fGE4ssYcnxMbjKQsI1oNGsF6RcBv1ofg01cIKw/H0mWj/Mc9TTIyfg3g/hkYNxj3DmA1HYbgyjMfX1qicJZ0hLk89ref98iZQupdF9r6G6Bf4AyN4OhIBwzHtnvWe3ffse4YrDBdEdOcsmRaG0wkzOiXHKApGv8hKEWAtcWKYgQ0ylqyBAQ+g0reJFROdPWaaSddRflq77MV+FQlaajQyZLaeBKE2HZ+sgnZA4EmMZXg6WG0kwqWf6BSzICC83Ikwipd3xsGzWLHwgsaGTd8W62Oe9fdkQ8aS2ShePlp8enqxjrwufP6DS08i5tXRJShXEgoc3DoWufiUNMI7x61jURG3SMIAmPlBPLCviqwwnKjR4WAYebpzljj213M+PAas7jAcM5Jo7V8lXDlLXJ5T714mp4HrxJGxZAE8Z3L5/zL/mXYJ+YUCx/Aj8mKBE888vZy9v4c8/1qezczHn+dy+XOW/P1dAV54/gPu/Xkeqn9fduG7X875V45xDG+8/to6fnkcswov5AKrvzzMLZOHlSs2c7fludYX8hx4ZfFWToF8zT75eAdfQwIAOxzDHjSsYbbqMaJkHtsIpMoPjgPF87DByFniOrbaQApGTpUWMpZMxuuUdz+jZ6ELuOdhtmHDc5zSrDhSGXPmrOGX5/L/oB387Jfc8gD/Ov73SGVMm7bK+75eEqsUl/9B/okFe+ES+KXqr+mHxyti3Lil/PI4+nHKh38hN6+ATx5Hmy9OxmLIkNe45AF8Or68ORsZF3L45HG0+fpMFO677yUueeUCSYNuIDlLXOgJ7TDkGIaOY+irFm1MGE7UIBMOw0m8JnrOm1kTS+NNIs9SmUbjXVUMmvIuc38FUDhiV+7z4D24zNlw4NNR7zF0yxPpRy7kDzZ8/WgNL0V5gMcA4ZuFxXevcC2kqz243/c8gzGrjXGlA8Q8c9pcYp5z0/ndFAzDGWL86Ox6ZhiOlVfH0NXJXBuOcpYIneh+vpT22kiK+/s4hKc8IWl8HhGz4dFR+gNAUBxfP/ILlSutHCI6qHPdP+Z9V4J+rRXvgzTXgM2TsM5MqIff7T5hx6rE3gvuy9Q1GMnezDbq5hSGKzeU/sFgzCAv9y5SXAr/l4Xn1yj0z4bz8CxxJkX7wlMj2f3o0j8bzuDRRnG5dBvbgXg0iBJkXWPFxyf2Por6Q8DweAy42kgsHRDcO1Hic90A+4DpA2MaWuLH0PaAjvAhMwxnTPgQIGPJkphRedrXn73lVRkS4tKho7e2LgnGkkw8w4Qm6SjQkQoc0nXkub2t7xM0D55BjRlS4pJa+i/eR2aeYzD1Y2wPdrkAjRqaD4GfD9vQUIUSA1FQcCeWThIDg8IIH49lMAfJQFJDxpIV8EhMDnxwOpcb4rGNZzaTLwpdDo/9XUUCHpFSDS8XeL+h9eiYW+Qp01VYGLBMI5x72YWeXzdXocCUxiCQlW99Hcs9gqGjQAwkYT1Y2/UkUzO2Sy0doCdUJdpG3dxvCz87qbtA1AjVE7ZTo/sZWSJAuAK8ajYcq1yAbLspVK44QoQv/4pBUakZWwUuB1yuwAanH89XwE9/R8JVVITwkEAc7p5sPhWDnEIHIlTyihQHXJw1dUpz6EIEvjsbhYK8fIQ5S+kYoJLbTkcjI197Kxe6gKLCQgCexqM//rwUhq1nopFz8ZKHjoHybWoUTmeHabYVKVd0DPO+kw/S80Kw4c9YZJ3/G2E1I6To+F1aFH6/GK7ZVqgE3o95RQ58+kccLmdcQFi1ErlF5DYSxyHnd62vakqsIZwZhtNjtFhlZlxQMSYMp91ucJ/pdEsxw3CCCfVgznojz1KZI6/IgYMXIpH+1ylseX2he/ulAieUosA8S9+mRuFSQQiev+0exIRqZQT6XDuQEYnszCx8PP0/Gh2FvDaq+/eb1Chk5ofghe73oGp4vlbHwFTEvvQKKMjLx/IxT7u3XS4MQVFBYUBCv02LQnpeKF7s0Rc1Qi8HqJWWH89HQVEUvDXiCfe2S4VOFBUE5v3anhqFc7mhmN17AGoU/S1Fx93nogA48MaQ0e5tlwuu6Cj+ENqRFoXUnDAsG/00Kl066d4uu1I78Q/CXia+O485G060LABLfrDrLEk6hh49ghGGk4XUulYaucKKeN2XtfSJbMOJjCWTURTg3MFf3Z8vFToD9tpcuTkunv/b40b0+z3z0+Dwtzvd7y8VOrmrNbO4nHEBoc5AHt1sfvu6pIjhpQInigr5ahOxyL10SeNRk8GRnd+7318qCNGtY352NiJD9F2L0vz+w173exn9WJCXhwrQJ4MoQdpyIrr18P5BV50l5rGMOR+e6fV62jBrAwWkLGMzRyK8IcudBMF44zo3VoFKyZCxZAG2bz+Ii7lFSLkYhgKXfkMEAGa/9DFyC4vDIID++zo1NQMZlwrw1+VQZOY74SoU0JFx8GeffQc5hQ6sPxn7zxb9N3paejbSckJwJjsUhQF6bdQ8OW4pcgodSP4rRrduVzh5OhN/54bgWFY4CvMLdF0cl8uFMaPfRE6hA1tOR0vT8dDRVGTmO3EgI7LYQ6eTsWOKdfw2NUqCduUPPZ4OrvXjAiizL+ytFjTyWG2CsdyJNIzKoeGosySM6L46w3Cs1DGuWZBa15LXNlSUsgxSWFiIe59chzUnKgKAmCHCICnpbSw+VAUnLhXnishYALb3sHfxUUpFAI5/8lj0Mfulj/HmoSo4liUn5wYAegxYjP/9XgkuOIoNEZ289daXePNQFfx2IVKCdsV06f0K3jlWCUWKA4UF+nX88MNvsfi3Svg5vYIE7Yq5pdt0/PdIZeS7nFKudXLyXry+Lwo/nidjKRgwDQ2px/D+Xo8gtl0ncRA0afad2jjQHYbTFc/igGmYGHMIjddN0HCi2XBlnEsF2q5Xx11dRfyDU6FPI+ifvwnOhrsyE6z0DLPCgkK3TJGcJe2vidL6BnZzl+6/KxSpdQzQEClySdKx0HtSdFF+gVtmYV6+1zb+8Lzugel42csMPeBKUvc//VhUFNCP8fxS/eiQlKRc7hGdwcSVs+Qr9VvtAtAI9v6eGapi6MRlIDHV0wWXToLnw8yt0Wtz8ERcdcx6E54YF8AzQfS8uUK96jCcuErc0Gy4ILP6eEXcWD0b/3dGGzJRT390hvJflsz8EOz/O9Lr1PkriN7TH/xeETclZOObVK2OLlU4JiSMfwZXvsuJH89XQAgUZBfJGTA//SMOnWtexndpWk+F2isXEh5eejef7DpbAdGhLpzPE5/55Y0v/oxF15qX8MN5rcenUOWpEa1X9W1qFKpFFuHEpdL9H9hjYsupGDhrX8JPf2t1VIfeRD2dW09Ho050AQ5fKO0xDN6v+LIGa0o0c1CTaGg4BK8be6Dl0cl/G6PCcDy66mkj9f5nhuECf8+lH8u7FQS0enN4liRb2GQsBZlT2WH47J9wmxpnSIkRERoeDoDfu7T1jP98Gr/PF9V9lZYbhk//8NRRTWiEmCHybar+fBr1rf93XqhXHdWht7DICCFDcedZeTk/QLEh6+1aqxOmwyLFQmfMMJbIc0HV9lKhdx0L8ks8Xs4wscfE/vQK2O8lJCjy7CKzSh88+bkBDeQK8wPhF8XLu4B2ty2sU+AzMFkeseA8LcgvbhHUYbhQAa8NFwIrk/jCEVJKRwt+eTWGiKBnKVioQ2/hFSItOZXepTI6wyvIyoWy3nnaE47BhNE+kCvAE4bjGezktdHrKvPff0afj+4wnKhxwfGey2BRb9YdhvOvB/s9KyTn9NpeBrYxliZPnowdO3bg8uXLyMjI4N5vxowZOH36NLKzs/HVV1+hUaNGmr9XrlwZ7733HjIzM5GRkYFly5YhOlquh4EHp7Mk9JOXnSNZOkfOEseNr74Rcy/JqT8kAs93U12jKvdy8HXkQZ0wXZCbF3wFODpSHSqUVsFb4OFlQTucyahRo5CSkoKcnBzs2rUL7dq1k34M4TAcV8iLL2eJFYYzOmwVjLxd43U1/iT0hN509b3e0xHuD/8nYaSTyTbGUnh4OD766CMsXryYe58JEybg8ccfx8iRI9G+fXtcvnwZycnJiIgoyaVYtWoVmjdvju7du+Ouu+5Cp06dsGTJEiNOwSdqr83KJyZKl7/vyy26ZYSElIRj3n4yCU6JN6aiKPj+s8/1C1Ld0R+/MBthDrnrmn3z7ge6ZajzgTYvWYlwh9zlRL56a4VuGWoDac/nXyJcCSwRXY160P183iLd8qxA//79MXfuXMyYMQOtW7fG/v37kZycjOrVq5uqF18YLgAsYMXaqnQA47i6w3BmXQe9Xa/5ELgw9Y8HdQqLkdW8bWMsTZ8+HfPnz8eBAwe49xk3bhxefPFFrFu3DgcOHMCgQYNQq1Yt9OnTBwDQtGlT9OrVC8OGDcP333+PHTt2YOzYsRgwYABq1qxp0Jl4JySkxLN08pfffLY9mxuKcyf/5JatKArefWaKzzY808PVBt2Zo78j3MFO/M3Md+LUoSPcOgLAh1P/4/PvhRx2T0hoSQjz/Im/EFHE9tIVuICTvxzk1g8A1r78ms+/5/lItL9CkWqWXnZmFkIvnffZ/uQB3/dDab5c6NvYz+HQUU1Bbh4KTh/32ebPXzn6UXXYbf99z2dT1iw9qzF+/HgsXboUK1euxMGDBzFy5EhkZ2djyJAh0o5RtU5tVK1T2/05TPVjT/R9qCo07VQ9c0pbV6zZRiGq/DXtMcIZ2+W3CQ0v+Y6rvd2+ULcLUe1vtK6aNpEl20NUk3h8nYPGKAgtuV6hXMcWfc/R9xHe7x9foVFN36vOW90fon0Zrt43MtJr+4o1qiGuejWmXqLY44kUAA0aNEDNmjWxefNm97asrCzs3r0biYmJAIDExERkZGRgz5497jabN2+Gy+VC+/btmbLDw8MRGxureYlw4udfSo639G0A8ChEyfr1dPhkFl564xuc+u0wLp4vWebi6O4fAQD5OZ7GgcvH8imXLudhyy9ZmDdwuGZ72vE/3O+3/vfdYp1KySliyD18IhMvrfgRv2z5GlnnSgyB/Zu2AoD32kI+fmTk5xfi20MXMfuBxzTbM9POut9/u+rDYjGqfivML0BBgXeD7tAfGZi16iC2r1qNrHMl/bjjw0+L5QguZuxyubD72CX8Z9CTmu3ZWRfdOl3xnKmvR1FhAfLzvRuqh1LS8erHv2P9nAW4+He6e/sVz5HmHuH4laYoCn76IxvTH5ms2V6Ql+euGn9gy9ce+xUVFiA/z3sZhoPHzmHh+pN4/9kXcPlCpnv7mpfnu9+fO1m81Imv+1DNgZPZmDZyJldbMwkLC0ObNm00zxhFUbB582b3M0ZNoM+NIQtewTXt27o/V4yvEfD7mMqV3O/VhpOvwU49KEaqUhT06KHnfQVVv2mMDh8GnzoPNLpiyYSGoJ5DjRJvY0RUSR6gk9NYUhsCsVWrmHIO6uOq9fF5/6jOT33e6v7Qo1MlxvYqtWuh35RnmHqJUmZnwyUkJAAA0tLSNNvT0tLcf0tISMDZs2c1fy8qKkJ6erq7jTeSkpIwffp0YZ3+7+33ce0tiXhj6Gi48gtRtU5tnDtR7CH6cuFSdOh3t/vzyEcXYcHCkThy5BSaN68LAFjw+nqMG7fULW/lk0kY++4S7P0iGZsWL0fVOrWRmXbO/fdv3v0AHQf0w6qkaQCAI0dOoXr1isjJyUetWlVw6VIuatX8Ny5dynXvs+nN/+KGXt2xcNCjyM7MQvX69XDujxMAgN2frced4x5zD9z//vccvPvuUzh69BSuvbYOnE4nVvz3Kwwd+rpb3odT/oNaTa7Bb1/vwPo5C1C5dk1c/PtvzfG6Dv03PnnxFQDAvp+O4+pGNZGefhH16tVATk4eGtQfhrNnL7j3WT93IRLv7YM3RzyOjFNnEN+wvtu4O/7jT7iUnoGCvDzkXrqEBwa8jLXrnsPvx1JxTeNaCA0NwScf78B9973klvfF/DfQpOONSPnpZ3z64ivYuvwdZGdedP993Suv445xj2HD/OIQ8Hc7DqLVDQ1x+nQ6GjWqiby8ArRoPhq//37Gvc8nL76MWx8eiOVjn0HasRSNjrmXLiHjTCpCw8ORsnc/+t83G998+xKOH09Fw4YJiIgIQ/KXe9Cr13S3vO8++ATt+96F1N9T8OXCJdjxwSeaGWurZ7yEfs89gy3L3inu1+S96NS5BU6cOIsmTa5Cfn4BbrppAvb8eMy9z/+SZuD20cPx3oSpOHngV42OAHD2j5OIrVIZuz5Zj3/v+x4/7XsdJ0+eQ5061VChQgR27PgNt9xcEjI+vGM3Un7aj0sZmfj23Q+x9/NkOBwOFObmu483cPZ0fPfBJwCATz/9Dnfe2Q7Hj6fi2mvroKCgEHf0mo4tW/bDDlSrVg2hoaFenzFNmzb1aB/oc8NVWAhFUdwDktHvSxPMY8s8ByvoUV773irnUCShwLPmXMx6zZo1S/FHkyZNNPsMHjxYycjI8Cs7MTFRURRFSUhI0Gz/8MMPlQ8++EABoCQlJSmHDh3y2DctLU0ZOXIkU3Z4eLgSGxvrftWqVUtRFEWJjY01rS/pRa/y/IqNjQ36d7BmzZqKoihKhw4dNNtnz56t7Nq1y6M9PTfoRS/rvXifHaZ6lubMmYOVK1f6bHP8uO9cCRapqakAgPj4ePf7K5/37dvnblOjRg3NfiEhIahSpYpmn9Lk5+cjP19/witBEPbl/PnzKCwsRHx8vGZ76WfOFei5QRD2xVRj6fz58zh/3ndya6CkpKTgzJkz6NatG/bvL3brx8bGon379u4ZdTt37kTlypXRunVr7N1bvNJ6165d4XQ6sXv3bkP0IgiibFBQUIA9e/agW7duWLt2LYDi3I1u3bph4cKFJmtHEIRsTHeD8bzq1KmjXH/99cqUKVOUrKws5frrr1euv/56JTo62t3m4MGDSp8+fdyfJ0yYoKSnpyu9e/dWWrRooXz22WfK77//rkRERLjbbNiwQdmzZ4/Srl07pWPHjsrhw4eVVatWGeLGoxe96GXMy6zvYP/+/ZWcnBxl0KBBStOmTZU333xTSU9PV2rUqGFZnelFL3qVvAS+h+Yry/NasWKF15ymzp07u9soiqIMHjxYs9+MGTOUM2fOKDk5OcpXX32lXHPNNZq/V65cWVm1apWSlZWlXLhwQVm+fLnGAJPc2fSiF70MeJn5HRw9erTyxx9/KLm5ucquXbuUG2+80fI604te9Cp+8X4PHf+8IXQQGxuLrKwsxMXF4eLFi/53IAhCKnb8DtpRZ4Ioa/B+D8tsnSWCIAiCIAgZkLFEEARBEAThAzKWCIIgCIIgfEDGEkEQBEEQhA/IWCIIgiAIgvABGUsEQRAEQRA+IGOJIAiCIAjCB2QsEQRBEARB+ICMJYIgCIIgCB+YupBuWSM2NtZsFQiiXGLn756ddScIu8P7/SNjSQJXOvvUqVMma0IQ5ZvY2FjbLB1Czw2CsA7+nh20NpwkatWq5fchHRsbi1OnTqF27dq2eaBfgXQ3B9Jd7HinT582/Dgy4XluWA0735Oyob4owc59wfPsIM+SJEQe0hcvXrTdzXQF0t0cSHe+49gNuxl3aux8T8qG+qIEO/YFj76U4E0QBEEQBOEDMpYIgiAIgiB8QMZSEMnLy8P06dORl5dntirCkO7mQLoTVoOuawnUFyWU9b6gBG+CIAiCIAgfkGeJIAiCIAjCB2QsEQRBEARB+ICMJYIgCIIgCB+QsUQQBEEQBOEDMpYkM2rUKKSkpCAnJwe7du1Cu3btfLa/9957cfDgQeTk5ODnn39Gr169gqSpJyK6Dx48GIqiaF45OTlB1LaEW265BevWrcOpU6egKAruuecev/t07twZe/bsQW5uLo4ePYrBgwcHQVNPRHXv3LmzR78rioL4+PggaVzMpEmT8P333yMrKwtpaWn47LPP0LhxY7/7Wel+J/QzefJk7NixA5cvX0ZGRobZ6gQd0ed9WSSQ568dIWNJIv3798fcuXMxY8YMtG7dGvv370dycjKqV6/utX1iYiLef/99LF++HDfccAPWrFmDNWvWoHnz5kHWXFx3AMjMzERCQoL7Va9evSBqXEJ0dDT279+P0aNHc7WvX78+vvjiC2zbtg2tWrXC/PnzsWzZMvTo0cNgTT0R1f0KjRs31vT92bNnDdLQO507d8aiRYvQoUMHdO/eHWFhYdi0aROioqKY+1jpfifkEB4ejo8++giLFy82W5WgE8gzsywS6DPMjij0kvPatWuXsmDBAvdnh8Oh/PXXX8rEiRO9tv/ggw+U9evXa7bt3LlTWbx4seV1Hzx4sJKRkWF6n5d+KYqi3HPPPT7bvPTSS8qBAwc0295//31l48aNlte9c+fOiqIoSsWKFU3va/WrWrVqiqIoyi233MJsY6X7nV5yX1Z9Hhj5En1mlocXzzPMri/yLEkiLCwMbdq0webNm93bFEXB5s2bkZiY6HWfxMRETXsASE5OZrY3ikB0B4CYmBj88ccfOHnyJNasWYNmzZoFQ13dWKXf9bBv3z6cPn0amzZtQseOHc1WBxUrVgQApKenM9uUhX4nCCDwZyZhX8hYkkS1atUQGhqKtLQ0zfa0tDQkJCR43SchIUGovVEEovvhw4cxZMgQ3HPPPXjooYfgdDrx3XffoXbt2sFQWResfq9YsSIiIyNN0oqPM2fO4NFHH0W/fv3Qr18//Pnnn/i///s/3HDDDabp5HA4MH/+fGzfvh2//vors51V7neC0Esgz0zC3oSarQBhT3bt2oVdu3a5P3/33Xc4ePAgHn30UUydOtVEzco2R44cwZEjR9yfd+7ciauvvhpPPvkkBg0aZIpOixYtQosWLXDzzTebcnxCLrNmzcKkSZN8tmnatCkOHz4cJI0IwnzIWJLE+fPnUVhY6DErKT4+HqmpqV73SU1NFWpvFIHoXprCwkL89NNPaNSokREqSoXV75mZmcjNzTVJq8D5/vvvTTNUFvx/e+cfFlWd/fH38EsEtFVjUBHZngFZUhpyIU0U/IGKtemSIvb0A6a01vKRkNy2Z9dANy0VY1fQdFvF0dCMtlpF/JWMaAZGCIqGOpGAIIjAAMPAyCDn+4ffucsIDAw/HLTzep7zPNzP/XzOOffO/Rw+99zP5974ePzhD3+Av78/SktLjdbtL9c7Y5xNmzZh165dRuv88ssv98eZfkpvxEzmwYIfw/USOp0O2dnZmDFjhlAmEokwY8YMZGRktNsmIyPDoD4AzJw5s8P6fUV3fL8XCwsLeHl5oaysrK/c7DX6y3nvLby9vc1y3uPj4xEcHIzp06ejsLCw0/oP23l/WKmsrMSVK1eMik6nM7ebZqU3Yibz4GH2WeYPiyxcuJAaGxvplVdeod/97ne0bds2qq6uJrFYTABILpfTunXrhPpPP/00NTU10YoVK8jDw4Oio6Pp9u3bNHbs2H7v+6pVq2jmzJn02GOP0ZNPPkl79+6lhoYG8vT0vO++29vbk1QqJalUSkREb7/9NkmlUnJxcSEAtG7dOpLL5UL93/72t1RfX0/r168nDw8PWrp0Kel0Opo1a1a/9z0iIoLmzp1LEomExo4dS3FxcdTc3EzTp0+/r35v2bKFVCoV+fv7k5OTkyC2trZCnf58vbP0jri4uJBUKqVVq1ZRXV2dcC3b29ub3be+ls5i5q9FOothD5GY3YGHSt566y0qLCwkrVZLmZmZ9NRTTwn7FAoFJSYmGtRfsGABXb58mbRaLeXl5dGcOXMeCN8//vhjoW5ZWRmlpKSQt7e3WfzWL6e/F72/iYmJpFAo2rQ5d+4cabVa+vnnnyksLOyB8H3lypWkVCqpoaGBKisrKS0tjaZOnXrf/e6I1uexv1/vLD2XxMTEdq+DgIAAs/t2P8RYzPy1SGcx7GER0f//wTAMwzAMw7QDz1liGIZhGIYxAg+WGIZhGIZhjMCDJYZhGIZhGCPwYIlhGIZhGMYIPFhiGIZhGIYxAg+WGIZhGIZhjMCDJYZhGIZhGCPwYIlhmG4xZcoUHDhwAKWlpSAizJs3r0/tXbt2DUTURhISEvrULsMw5qM34kxISAhycnKg0WhQWFiId955x2QdPFhieoXExER8/fXX5naj3xIdHY2cnJwe69APECIiIrrURqFQCG2kUmmP7N+Lvb09zp8/j7feeqtX9XaEr68vhg8fLkhgYCAAIDk5+b7YZ5gHhd64edHHDZVK1Ute/Y/ExERBf2d+9jTOBAUFISkpCdu2bcO4cePw5ptvIjIyslv6zP4acZb+LZ0RHR1NgwcPpkceecQs/ikUCsEXrVZLJSUldODAAQoODjb7udOLvb09DR06tEc6oqOjKS8vj5ycnGjgwIFdajNkyBDy8fEhIiKpVNqn18i8efMMymxsbGjjxo1UUlJC9fX1lJmZ2aufwYiLiyOlUmn23/ZBlo4+VyKRSMzuW3+U1p/2uHPnDtXU1NC5c+do/fr1NHz4cLP7pxcnJyeysbHpkQ6iu58vcnR0FMrCwsJIpVJ1WP/eGNCRDB48mJycnExq05GNzuJMUlISffHFFwZtli1bRsXFxSadD84sMZ3S+m4+IiICtbW1BmWxsbGoq6tDbW2t2Xz817/+heHDh0MikWD+/Pn46aef8Pnnn2P79u1m86k1Go0G1dXVPdbT3NyMmzdvorGxsUv1VSoVbt261WO73SEhIQFPP/00Fi1ahCeeeALJyck4cuQI3Nzceqzb2toaL730Enbu3NkLnv66OXz4sEF/Hj58OK5du9amnrW1tRm865+MGTMGI0eOhK+vL9avX4/AwEBcvHgR48aNM7drAICbN2+iqampx3pqamr6JH7U1dXh5s2bvaKrszgzYMAAaLVagzaNjY1wcXGBq6urSbbMPgpmeXCkozuLxMRE+vrrr4VthUJBmzdvpri4OKqurqby8nJavHgx2dnZ0c6dO6muro6USiUFBQUZ6Bk7diylpqaSWq2m8vJy2r17Nw0bNsyoTwqFguLi4tqUh4eHExHRjBkzhLJx48bRiRMnhA/Rbt++3eAL6frjeO+996i8vJxUKhWtWrWKLC0tacOGDVRVVUXXr1+n8PBwA1sfffQRXblyhTQaDRUUFNCaNWvIyspK2B8dHU05OTlt7ERFRdGNGzeosrKSEhISDNrcK/fqaF1eVFREWq2WSktL6Z///KfBfldX1/ueWXJxcSGdTkcjRowwqHf8+HFau3Ztj+2FhIS0q5/FNLm337YWhUJB8fHxFBcXR7du3aK0tDQCOu+jdnZ2JJfLSa1W040bN2jFihVt+mh7GQKVSmXwIeZRo0bR/v37SaVSUVVVFX3zzTfk6uraxndjfcjGxoY++ugjKi4uJq1WS0qlkl599VUCQEqlkqKiogx8kEqlRjNr+szSvVl0W1tbys/Pp9OnTwtlIpGIVq1aRdevXyetVks5OTk0e/ZsYb++X4aEhNCpU6eooaGBfvjhB3J3dycfHx/KysoitVpNqamp9OijjwrtfHx86NixY3Tr1i2qqamhkydP0pNPPmngT+vzq7cTHBxMaWlppNFoKDc3lyZOnGj02mjvN+pqZik6OrrdjOW9HyzvaWapK3FmyZIlVF9fT9OnTyeRSETu7u70008/ERF1eg5aC2eWmD4jLCwMlZWVeOqppxAfH49PPvkEycnJ+P777zF+/HgcO3YMe/bswcCBAwEAjzzyCNLS0pCTkwMfHx8EBQXByckJX3zxRbfsy+VyVFdX4/nnnwcA2NnZ4ejRo1CpVPD19UVISAgCAwPbTBCePn06Ro4cCX9/f6xYsQJr1qxBSkoKVCoVJkyYgG3btmH79u1wdnYW2qjVaoSHh+Pxxx9HREQElixZgsjISKP+TZs2DRKJBNOmTUNYWBjCw8MRHh5u0jHOnz8fkZGReOONN+Du7o4//vGPyMvLM0lHX+Dl5QUrKytcvXoVarVakICAAEgkEgCAh4dHuxO2W8uHH37Yrv7XXnsNhw8fRllZ2f08rF8dYWFhaGpqgp+fH/70pz91qY9u3LgRAQEBmDdvHmbNmoWpU6di/PjxJtm1srLC0aNHoVarMWXKFPj5+aG+vh5HjhwxyHB11od2796NF154AcuXL4enpyfeeOMN1NfXAwB27twJmUxmYFcmkyE9PR0FBQUm+avVarFt2zZMnjwZjo6OAICIiAhERUXhnXfewRNPPIGjR4/iwIEDbTKrq1evxgcffIDx48ejubkZe/fuxYYNGxAREYEpU6bAzc0Na9asEeoPGjQIcrkckydPxsSJE6FUKpGamgoHBwejPq5duxaxsbHw9vbG1atXsW/fPlhaWpp0nF0lNjbWIFMZFRUFjUaDH3/8sVftdCXOfPrpp0hISEBKSgqampqQmZmJzz//HADQ0tJikj2z392wPDhiSmbp1KlTwraFhQWp1WqSy+VCmf6Z9YQJEwgA/fWvf6UjR44Y6HV2diYiInd39w596iizBIAyMjLo0KFDBIAWL15MVVVVZGdnJ+yfM2cONTc3k1gsFo7j2rVrJBKJhDr5+fmUnp7e5lhCQ0M79CkqKoqysrKE7fYyS9euXSMLCwuhbP/+/bRv374OdbaXWYqMjKTLly8bzUiZI7O0cOFC0ul0NGbMGJJIJAbi5OREAMja2po8PDyMSus7ar2MHj2ampubae7cuWbvDw+6JCYmkk6nI7VaLYh+fodCoaDs7GyD+p31UXt7e9JqtbRgwQJh/5AhQ0ij0ZiUWXrxxRcpPz/fYL+1tTVpNBqaOXOm4LuxPuTu7t4ms9xaRowYQTqdjnx9fQkAWVlZUUVFBb3yyisdnq+OMksAaPbs2UREgr6SkhJ67733DOqcPXuWEhISCPhfv9RnugBQaGgoERFNmzZNKHv33XfbnIvWIhKJqLa2lp599tl2z297djw9PYmIyMPDo0O9HWWWiMjgetFLR1miCRMmUENDA4WEhHTJhjHpTpzRi4WFBY0cOZKsra0pKCiIiKjd+NKRWIFh+ogLFy4If7e0tKCqqsog66F/Zi0WiwEAUqkU06ZNg1qtbqNLIpHA19fXYA7SnDlz8N133xn1QSQSgYgAAJ6enjh//jwaGhqE/WfOnIGlpSU8PDxQUVEBALh06ZLQRu/nxYsX2xyL3m8AWLhwIZYvXw6JRAIHBwdYWVmhrq7OqG+XLl0yuLMpKyuDl5eX0Tb3kpycjLfffhu//PILjhw5gtTUVBw8eBB37twxSU9vk5OTAysrK4jF4g5/I51OhytXrpisWyaToaKiAocOHeqpmwzurphcunSpsK3RaIS/s7OzDep21kcHDhyIAQMG4OzZs0K5SqUy+XeWSqVwc3NrY8fW1hYSiQTHjx8HYLwPeXt7o7m5Genp6e3aKCsrw6FDh/Dqq68iKysLzz33HAYMGCCsrrx48aIwp+X06dN45plnjPosEokAAESEQYMGwdnZGWfOnDGoc+bMmTarUlvHSX1MvDdOto41YrEYH3zwAaZOnQqxWAxLS0vY2dlh9OjRRv1rbUefkRWLxSb/NnV1de1mCn/++ec2ZS4uLvjmm28QGxvbJ6tWuxJn9LS0tODGjRsAgBdeeAHff/89Kisru2yLB0tMn6HT6Qy2iahNGQBYWNx9Guzg4ICDBw/i3XffbVOnrKwMFhYWBkG4tLTUqH0LCwu4u7sjKyur1/0mIsHviRMnIikpCdHR0Th69Chqa2uxaNEiREVFmWxHr7OrlJSUwMPDA4GBgZg5cya2bt2KlStXIiAgAM3NzSbpMhV7e3uDRwqPPfYYpFIpqquroVQq8dlnn2H37t2IiopCTk4OHB0dMWPGDFy4cAGpqandsikSiSCTySCXy80+IHxY0Gg0HT52aj1wAjrvo12dvN/S0iIMLvS0frzm4OCA7OxsvPjii23atp5wbKwPdWURxL///W/s2bMHkZGRkMlk2L9/v9DumWeeEXzqii5PT08AQGFhYad1W9P6GPQ3afeWtY4Lcrkcw4YNQ0REBIqKinD79m1kZGTAxsbGZDumxhvg7m/XlceUdnZ2OHDgADIyMvD++++bbEdPT+PMsGHDsGDBApw8eRK2traQyWQICQlBQECASX7wYInpN5w7dw7z589HYWFhh/8I9fMNukJYWBiGDh2K//znPwCA/Px8hIeHw87OTsgu+fn54c6dO93KcOiZNGkSioqKsG7dOqHM1FUWPUGr1SIlJQUpKSnYsmULrly5Ai8vrx6/16kzfHx8cPLkSWE7Li4OALBr1y7IZDLIZDL87W9/w6ZNm+Ds7IzKykpkZmYiJSWl2zYDAwPh6urKq+DMRGd9tKCgAE1NTZgwYQKuX78OAPjNb36DMWPGGGR4bt26hREjRgjbbm5usLe3N7ATGhqKioqKdrNYXSEvLw8WFhYICAjAiRMn2q2TmpoKjUaDpUuXIigoCP7+/sK+4uLiLtuytbXF66+/jvT0dCFbUVpaCj8/P5w6dUqo5+fnhx9++KFbx9Nax5tvvonDhw8DAEaNGiXMk+pPfPbZZ7CwsMDLL7/cIz29EWfCwsIQGxsLkUiEjIwMTJ061eSbaB4sMf2GLVu2YMmSJdi3bx82bNiA6upquLm5YdGiRVi8eLHRyXh2dnZwcnKClZUVRo0aheDgYERGRmLr1q1CR0tKSsLq1ashl8sRExMDR0dHxMfHY8+ePcIjuO6gVCoxevRohIaGIisrC88++yyCg4O7rc8UwsLCYGlpibNnz6KhoQEvvfQSGhoaUFRU1Oe209PT22QHWtPc3IyYmBjExMT0ms3jx48btcn0LZ31UY1Ggx07dmDjxo2oqqpCRUUF1q5d26bvpqWlYdmyZcjIyIClpSXWr19vsNQ9KSkJK1euxH//+1+8//77KCkpgaurK55//nls2LCh06wyABQVFUEul2Pnzp1Yvnw5zp8/D1dXV4jFYuGRUEtLC3bt2oUPP/wQSqUSmZmZXToPYrEYtra2GDRoEH7/+9/jz3/+Mx599FFhMQlwd6L76tWrUVBQgNzcXMhkMnh7e7ebLTMFpVKJl19+GT/++CMGDx6MjRs3Gkwt6A/ExMQgMDAQs2bNgoODgzD5vLa2ts0y/s7oaZypqqrCpEmTTLLZHrwajuk3lJWVwc/PD5aWljh27Bjy8vLwj3/8AzU1NZ2uWnj99ddRXl6OgoICfPXVV3j88ccRGhpq8JbWxsZGzJ49G0OHDkVWVha+/PJLnDhxAsuWLeuR3wcPHkRcXBwSEhKQm5uLSZMm4e9//3uPdHaVmpoaLFmyBGfOnMGFCxcQGBiI5557rlfe6cQw99KVPrpy5UqcPn0aBw8exLfffovvvvuuzdynqKgoXL9+HadPn8bevXsRGxtr8A+/sbER/v7+KC4uxldffYX8/Hzs2LEDtra2nc4FbM3SpUvx5ZdfYuvWrbh8+TI+/fRTgwwWAOzYsQMDBgxAYmJil/VevXoVN27cQHZ2Nv7yl7/g22+/xbhx45Cfny/U2bx5Mz7++GNs2rQJeXl5CAoKwty5c9ud22MKr732GoYMGYJz585hz5492Lx5c49u9vqCgIAADBo0CBkZGSgvLxckNDTU3K71iB6vqGBhYel76eg9S53J/VgNx8JiTIytWDW3TJ48mW7fvi2siGW5K6auVOuvNnpLOLPEMA8QXl5eUKvVBquXjJGamopLly71sVcM8+BhY2MDZ2dnxMTEIDk5ud9lZ/oD+/btE+ae9SaffPJJt+eimQsR7o6aGIbp5wwZMgRDhw4FcHeCbFceR4wcOVJ46WdxcXG7qxEZpq9RKBTIzc3t9EWt95OwsDDs2LEDubm5mDt3rrCsnLmL/qWOd+7cMXmFX2c4Ojpi8ODBAO4+2u1vc67agwdLDMMwDMMwRuDHcAzDMAzDMEbgwRLDMAzDMIwReLDEMAzDMAxjBB4sMQzDMAzDGIEHSwzDMAzDMEbgwRLDMAzDMIwReLDEMAzDMAxjBB4sMQzDMAzDGOH/AF3k8W4Dkt6KAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -92,11 +92,15 @@ } ], "source": [ + "import matplotlib.pyplot as plt\n", + "\n", "radar.waveform.num_chirps = 1\n", "_ = radar.transmit().signal.plot(title='Single Radar Chirp')\n", "\n", "radar.waveform.num_chirps = num_chirps\n", - "_ = radar.transmit().signal.plot(title='Full Radar Frame')" + "_ = radar.transmit().signal.plot(title='Full Radar Frame')\n", + "\n", + "plt.show()" ] }, { @@ -119,14 +123,14 @@ "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[36m(pid=17108)\u001b[0m 0.00s - Debugger warning: It seems that frozen modules are being used, which may\n", - "\u001b[36m(pid=17108)\u001b[0m 0.00s - make the debugger miss breakpoints. Please pass -Xfrozen_modules=off\n", - "\u001b[36m(pid=17108)\u001b[0m 0.00s - to python to disable frozen modules.\n", - "\u001b[36m(pid=17108)\u001b[0m 0.00s - Note: Debugging will proceed. Set PYDEVD_DISABLE_FILE_VALIDATION=1 to disable this validation.\n" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHgCAYAAABZ+0ykAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD8F0lEQVR4nOzddVxV9xvA8c8tukSQUEEMsDtmdzt1ti7MOefcbJ2x2TpnTZ2bc/Zmx+zu7sIuQEVBuvNyfn+g/MYwQEHqeb9e5yX33HO+5zkH5D58UwUoCCGEEELkEOrMDkAIIYQQIj1JciOEEEKIHEWSGyGEEELkKJLcCCGEECJHkeRGCCGEEDmKJDdCCCGEyFEkuRFCCCFEjiLJjRBCCCFyFEluhBBCCJGjSHIjhEh3Hh4eLFu2LFOu7ezsjKIodO/ePVOun1WMGzcORZEJ6EXuJMmNEB9A9+7dURQlaYuLi+PJkycsW7YMR0fHDLlm3bp1k13zv1vnzp0z5LofSteuXRk4cGCmXd/DwyPZ8wwPD+fs2bN8/vnnmRbT24waNYo2bdpkdhhCZDhtZgcgRG7yww8/4OHhgZGRER999BE9evSgVq1alC5dmpiYmAy55ty5czl//nyK/adPn86Q630o3bp1o3Tp0sydOzfZfi8vL4yMjIiLi8vwGC5fvsysWbMAcHBwoE+fPqxcuRJDQ0MWL16c4ddPq9GjR7Nx40a2bt2a2aEIkaEkuRHiA9q9ezcXL14EYMmSJfj7+/P999/TunVrNmzYkCHXPH78OJs2bcqQsrOqjEoU/8vb25tVq1YlvV6+fDkPHz5k8ODBWTK5ESK3kGYpITLR8ePHAShSpEjSvvr163Ps2DHCw8MJCgpiy5YtFC9ePMW5jo6OLF68GG9vb6Kjo3n48CG//fYbOp0uTTG4u7tz6NChFPtVKhVPnjxJlnQNHTqUkydP4u/vT2RkJBcuXKB9+/Zvvcbr+n+8bK5zdnZO2te6dWt27NiRdF/3799n7NixqNX//3V1+PBhWrVqRaFChZKahTw8PIDX97lJzXN9GWeRIkVYtmwZQUFBBAcHs3TpUoyNjd96n/7+/ty+fTvZ9xMSn+XAgQO5fv06UVFR+Pj4sHDhQqysrJIdV6lSJfbs2YOfnx+RkZE8fPiQJUuWJL3/sqmxbt26yc5LTT8jRVEwMzOjR48eSc8ss/pFCZHRpOZGiExUqFAhAIKCggBo2LAhu3fv5uHDh4wfPx5jY2O+/fZbTp48ScWKFfHy8gISm0DOnTuHlZUVixYt4vbt2+TPn58OHTpgYmJCSEhI0jXMzc3JmzdvimsHBAQAsG7dOsaPH4+dnR2+vr5J79eqVYv8+fOzdu3apH0DBw5k27ZtrFq1CgMDA7p06cLGjRtp2bIlu3btSpdn0qNHD8LDw5k9ezbh4eE0aNCASZMmYWFhwYgRIwCYMmUKlpaWFChQgMGDBwMQHh7+2jJT+1xfWr9+PR4eHowaNYqKFSvy5Zdf8vz5c77//vs3xq7RaChQoEDS9/OlP/74gx49erBs2TLmzZuHi4sLAwYMoEKFCtSsWZP4+HhsbW3Zt28ffn5+/PTTTwQHB1OoUCHatWv3Lo8xhc8++4zFixdz7tw5Fi1aBMCDBw/SpWwhsiJFNtlky9ite/fuiqIoSoMGDZS8efMq+fPnV9q1a6f4+voqUVFRSv78+RVAuXTpkuLj46PkyZMn6dwyZcoo8fHxyvLly5P2LV++XImPj1cqVar02mvWrVtXeRM7OzsFUIoVK6YoiqJ88803yc7/9ddfldDQUMXIyChp37+/BhStVqtcu3ZNOXDgQLL9Hh4eyrJly5Jejxs3TlESq25e+VycnZ1few1A+f3335Xw8HDFwMAgad/27dsVDw+PFMc6OzsriqIo3bt3T9qX2uf6Ms7FixcnK3PTpk2Kn59finvcs2ePkjdvXiVv3rxKqVKllBUrViiKoijz589POq5mzZqKoihK165dk53fpEmTZPvbtGmjKIqSqu9p3bp133rPr3rmYWFhyb4vssmWUzepuRHiAzp48GCy1x4eHnz22Wd4e3tjb29PhQoVmD59erK//N3d3dm/fz8tWrQAEps42rZty/bt25P677zJhAkTkpq//i0wMBCAe/fucfnyZTp37syCBQsAUKvVdOjQge3btxMdHZ10zr+/trKyQqPRcPz4cbp27ZqGp/Bm/76GmZkZhoaGHD9+nH79+lG8eHGuXbuWpvJS+1z/beHChcleHz9+nHbt2mFubk5YWFjS/qZNm+Lv75/s2KVLlzJ8+PCk1x07diQ4OJj9+/cnq0G7ePEiYWFh1K9fnzVr1hAcHAxAq1atuHr1KvHx8Wm6TyHE/0lyI8QH1L9/f+7evYulpSW9evWiTp06SZ1fX/Y7uXPnTorzbt26RbNmzTAxMcHMzAxLS0uuX7+eqmu6u7unSKr+a926dUydOhVHR0eePn1KvXr1sLOzY926dcmOa9myJWPHjqV8+fIYGRkl7U9ISEhVLKlRsmRJJk+eTIMGDbC0tEz23n9fp0Zqn2tkZGTS/kePHiU77mVSlCdPnmTJzZkzZxg7diwajYbSpUszduxY8uTJQ2xsbNIxxYoVw8rKCj8/v1fGly9fPgCOHj3Kxo0bGT9+PIMHD+bIkSNs2bKF1atXJytPCPF2ktwI8QGdO3cuqbZly5YtnDhxgtWrV+Pm5papca1bt46ffvqJjh07MnfuXDp16kRwcDB79uxJOqZWrVps27aNY8eO0b9/f549e0ZcXBw9e/bk008/fWP5r5tMTqPRJHttaWnJ0aNHCQ0N5ccff+TBgwdER0dTsWJFfv7552SdijOSXq9/5X6VSpXstb+/f1LiuG/fPm7fvs3OnTsZOHAgc+bMARJrwXx9fV/7jP6d9HTs2JFq1arx8ccf07RpU5YtW8bQoUP56KOPiIiISPVzFCK3k+RGiEySkJDAqFGjOHLkCAMGDGDFihUAr0x0ihcvnjSCJioqipCQEEqXLp1usXh6enL27Fk6d+7Mr7/+Srt27diyZUuyGoP27dsTHR1N06ZNk+3v2bPnW8t/WfNhaWmZrLPzv0dJAdSrVw8bGxvatWuXrCnNxcUlRZmpnX33ZWfhtz3X9LBr1y6OHDnC6NGj+eOPP4iMjOTBgwc0atSIkydPJmtye52zZ89y9uxZxo4dS9euXVm9ejVdunRhyZIlSc/xv6Os/vscX0dmLBa5hQwFFyITHT16lLNnzzJo0CCCgoK4fPky3bt3T9b8UqpUKZo0aZI0GklRFLZs2cLHH39MpUqV0i2WdevWUb16dXr16oWtrW2KJim9Xo+iKMlqCZydnWnbtu1by345KqdOnTpJ+0xMTFIMXX5ZY/LvGhKdTkf//v1TlBkREZGqZiofH59UPdf0Mn36dGxsbPjyyy+BxJFXWq2WH374IcWxGo0mKab/JiwAV65cAcDQ0BBITNTi4+OTPUfglc/nVSIiIl55HSFyGqm5ESKTzZgxg40bN9KjRw+GDx/O7t27OX36NEuWLEkashwSEsL48eOTzhk9ejRNmjTh6NGjLFq0iFu3buHg4EDHjh2pVatWstqR2rVrJ+sf89K1a9dwd3dPer1+/XpmzpzJzJkzCQgI4MCBA8mO37lzJ0OHDmXPnj2sXr2afPny8c0333D//n3KlSv3xnvct28fXl5eLFmyhBkzZqDX6+nVqxd+fn7Jah1OnTpFYGAgK1asYN68eSiKwueff56iOQgSO+R26dKFWbNmcf78ecLDw9mxY8crr5/a55oe9uzZg7u7O0OGDGHBggUcO3aMhQsXMnr0aMqXL8++ffuIi4ujWLFidOzYkYEDB7Jp0ya6d+9O//79+eeff3jw4AHm5uZ8+eWXhISEJCVgoaGhbNiwgW+//RZFUXjw4AGtWrVK6rfzNhcvXqRRo0YMHjyYp0+f4uHhwblz59L1/oXIKjJ9yJZssuX07eWQ51cN81WpVMq9e/eUe/fuKWq1WmnQoIFy/PhxJSIiQgkODla2bt2qFC9ePMV5BQsWVJYvX540nPz+/fvK/PnzFZ1Op8Dbh4KPGzcuRZnHjx9XFEVRFi1a9Mr76Nmzp3Lnzh0lKipKuXnzptK9e/dXDjn+71BwQKlQoYJy+vRpJTo6WvH09FQGDRr0yqHg1atXV06dOqVEREQoT548UX766SelcePGKYZAm5iYKH///bcSGBioKIqSNCz8VcOigVQ915f3kjdv3ld+//4dp4eHh7J9+/ZXPqcvvvgiRQx9+vRRzp8/r0RERCghISHK1atXlZ9++kmxt7dXAKV8+fLKqlWrFE9PTyUqKkrx8fFRtm3bplSsWDFZ2Xnz5lU2bNighIeHKwEBAcrvv/+ulCxZMlVDwV1dXZUjR44oERERiqIoMixcthy7qV58IYQQQgiRI0ifGyGEEELkKJLcCCGEECJHkeRGCCGEEDmKJDdCCCGEyFEkuRFCCCFEjiLJjRBCCCFyFEluhBBCCJGjSHIjhBBCiBxFkhshhBBC5CiS3AghhBAiR5HkRgghhBA5iiQ3QgghhMhRJLkRQgghRI4iyY0QQgghchRJboQQQgiRo0hyI4QQQogcRZIbIYQQQuQoktwIIYQQIkeR5EYIIYQQOYokN0IIIYTIUSS5EUIIIUSOIsmNEEIIIXIUSW6EEEIIkaNIciOEEEKIHEWSGyGEEELkKJLcCCGEECJHkeRGCCGEEDmKJDdCCCGEyFEkuRFCCCFEjiLJjRBCCCFyFEluhBBCCJGjaDM7gMzg6OhIWFhYZochhBBCiDQwNzfn6dOnbz0u1yU3jo6OeHt7Z3YYQgghhHgH+fPnf2uCk+uSm5c1Nvnz55faGyGEECKbMDc3x9vbO1Wf3bkuuXkpLCxMkhshhBAiB5IOxUIIIYTIUSS5EUIIIUSOIsmNEEIIIXIUSW6EEEIIkaNIciOEEEKIHEWSGyGEEELkKJLcCCGEECJHkeRGCCGEEDmKJDdCCCGEyFEkuRFCCCFEjiLJjRBCCCFyFEluhBBCCJGjSHIjhBBCiBxFkhshhBBC5CiS3AghhBAiR5HkRgghhBA5iiQ3QgghhMhRJLkRQgghRI4iyY0QQgghchRJboQQQgiRo0hyI4QQQogcRZIbIYQQQuQoktwIIYQQIkeR5EYIIYQQOYokN0IIIYTIUSS5EUIIIUSOIsmNEEIIIXKUTE1uateuzbZt2/D29kZRFNq0afPWc+rWrcvFixeJjo7m3r17dO/e/QNEKoQQQojsIlOTG1NTU65evco333yTquMLFSrEzp07OXz4MOXLl+eXX35h8eLFNGnSJIMjFUIIIUR2oc3Mi+/Zs4c9e/ak+vh+/frh4eHBsGHDALh9+za1atVi8ODB7Nu3L6PCzPKMLcyxss+HpV0+dAYGbz1eo1ah0ajRatWJ//7na41GjU6rQaNR/Wffi2NevqeWVk0hhMhOzE3yUszCGAdjA1Somf3XDnYdPJHZYaW7TE1u0qp69eocOHAg2b69e/fyyy+/vPYcAwMDDA0Nk16bm5tnVHipotZq0Gi1aHS6xH9fbrrEf9UvXmt1OtS6l+9r0Oh0mFnnwcreDiv7fNjlt8O+oB357K2xMDXASKO82BIw0igYvvg3aZ828V+d5CNCCJFjKApER+mICDcgMtKAqEgDEvSq/7+PishgNdrnwRgGPcHDxJjmlruT3n/Wqp4kN5nN3t4eX1/fZPt8fX2xtLTEyMiI6OjoFOeMGjWK8ePHp/oaBUq6UatbR4wtzDEwNsbQ2BgDE2MMjI0wNDbC2sIISxM1pjoFnVpBpwadWkH7r68TX4PqP2WrXlHToQI0KgW1KvFfjQo06hf//nf/f95PFP1iez/6BIUE5cW/CZCgKOgTQK8kvv7v+3oFFEVBee8rCyGEeBNFgYR4LfGxOvRxBsTHGqCP1REXbURctBFKguaV5xlFh+LsdZZiAZ6AwjbnWpS0uJH0/pMEe577+L7y3OwuWyU372LatGnMnj076bW5uTne3t6vPHb05D580b8dlkYqzLR6DDXJP7o1KgWVKipD402L2Nh4AoPCCfAPJSAglKCgcAIDwwkKDCMwMJzAwLAXW+LXQUHhRETEEBcXT3y8nrg4PfHxevT6BBRF0hQhhMgsarUGeztH8ud3xtHBifyOTjjmdya/Q0EcHApiaGgEgCpBj1F0KMbRIVhFPcEoOhTiYwkPDyMiIoyIyHB0CXocDDWYmZnhYVWQwy718DbOSyVDd4qrHhCvqOk0+xw7T9wmPi42c288g2Sr5MbHxwc7O7tk++zs7AgJCXllrQ1AbGwssbFv/uapVCqW/DWCHp/WAvRvPDYuTo+vbzA+z0MID48mKiqGyMhYIiJjiIqKJTIyhsioWKKjY0lISJ4wJCQkoOgTSNDrURISEl8nKMTGxhETE//i39d/HRsb/2JfHEFBEURFxbz9oQkhhMgSDA2NqFCuGvb2+bG1dSCfrQP58jlgn9cWF2MNBiSkOEcbH4uxjzvGkYEYhvtjGhf5+pFAWlAstNy3KMQBu7I8M7UBwIRIaqou8JH6EgAjVt1m6+FrGXSXWUO2Sm5Onz5NixYtku1r3Lgxp0+ffucyLSxMWLl6BK1bVkJRYPeVYBZPXoiXhw8BAaH8u0IjJiYOP78QqeUQQgiRara29rRt/SktW3TE0iIPan085uG+WIY8wyL0GeZeV1ErKROb1wmNjuFeQBD3AoK4HxhEWEziH/DqvA6YtOqL1t4ZgIQEPWrv83xme4Z8ponnztt2g7lrz6b7PWY1mZrcmJqaUrRo0aTXLi4ulCtXjsDAQB4/fszUqVPJnz9/0lw2CxcuZMCAAUyfPp2lS5fSoEEDOnXqRMuWLd/p+kWKOLB33yQKF7ZDr8Dac+F82agf0eER6XJ/Qgghcq9SJSvQ/pPPaVKlOhZRwZgF3cPo/iPyRAX9q99kIp/wSLxDQ/lvR8aIuDhu+QVwyy+Am8/9ue0XiM9rPqM+H7+QovbOxERFcG7nGkw89rHyuyqYm+i4/TiYoYvPsefikwy626wlU5ObypUrc+TIkaTXc+bMAWD58uX07NkTBwcHnJyckt739PSkZcuWzJkzh4EDB/LkyRP69OnzTsPAzfNas2zLBAoXzktEnIq/L8YxsvW3ktgIIYRIM61WR7EixalftgI1ixamjK01Dqo4TCP80V7dlPxgFTwJCeOY52OOeT3mmMdj7gcGv9/1DQxxLlUJgD3Tv+SLKqZ8PfwjtBo1h64+pcPUQ4RE5Mz+Na+iIkWemLOZm5sTGhpK6+/6sfTnNuQ10rP8ZBjffz6K5x5emR2eEEKIbOKjkmXo0agZlRztcNYpmEcGoEmIT3FcrF7PNR8/Lj/z5bz3M455POZhUEi6xlKkfHWGTJhKldhjlDPwQKtJ7Jmz8uA9+s4/SVx86pu9sqqXn98WFhaEhYW98dhs1ecmPRkZG5HHMLHz8JiOA3j+LDCTIxJCCJFVmRsaUNnRno+cCtC0TGnK5bPGVIkHFIjxgRfjO+JQ4RWl56qvH0du3ea0hyc3/QKIT8i45KJYxZrMGPwJLdV/ozZWADUHLnvz80Z3Dl59mmHXzcpybXJjYKBB/aLN098/NHODEUIIkWUYaDSUymdDlQL2VMnvQNX8DrjZWqNW/aujjBKPggpfRculZ34cvnuPAzducMsvgIQPNOgkr6MzHfoOZEilMIqqbgKw56o/Pyw9yaUHAR8khqwq1yY3eezzZXYIQgghMpmZgY6y9vko75CPCg52lLfPR8l8edFpUk6MF21oRrhZPnzUxuy6cpk/tm3ksc+HrxlxLFqSmi078nk9F+poL2KuiiBGD4MWnWfRTvcPHk9WlGuTG8cizpkdghBCiA8or4kx5V8kMi+TmaLWeVCr/zufPMSotUSa5yPc3I4wM1vCzWw5d9OdretXc+LkAfT6lH1rMpJGq6NMnebUbtmej4vpqaa6hJnqMQB3n0XQcfI+rnsFfdCYsrJcm9zUKpcPiOTa9UfExX3YH1IhhBAZK4+xERUd7KiU345KjvZUdLTH2crilcdGaoyItshHuKkNEaZ5CTezIdbAFFQq/Px9OXF8P1u3rcbr0YMPfBeJCpWpQudvRtLMMYAqqjMYqxI7+DwJimHamoss23+PmLg3T0Cb2+Ta5KZM3sSEZtbPGzM5EiGEEO/DwtCACg52VMpvTyVHOyo62lPE2uqVx4brTJMlMhGmNsQZGAPg7e3FvRu3uHfvBvfu3+L+/ZsEBWdO3xUDrZoaZZ3p/lk7qhXLgwv7MVDFAXD3aRjT1l5m9dEHxOtz1YDnVMu1yY2JNrHn+vHjNzM5EiGEEKllaqCjvH2+pESmkqM9rjbWrzw2XGdClKUD4aY2hJvZEGFqg15rgF6vx+vRfe5fuMjdeze5/+Am9+/fIiIy/APfzf8ZaNU0Ku9IjZJ21CxpR7XidhhqVUDQiw2uegQxde1lNp/2SrG8j0gu1yY3L2eHjI7OPZMaCSFEdlPAwpzazgWo6Zyfmk4FKGGb95V9ZMI1RkRbvUxkbAk3s0GvNSQhIYFHjx5w++wZ7ty9zp2713nw4DaxsVlnbT5TIy2HprWgcjGbZPsjFGPuR1iw/dAFdhy5zPm7/pkUYfaTa5MbtQouXX2Ej490wBJCiKzCzcaams75ExMapwIUymOZ4pgwtERZOhBlaZeUzMTrElfN9vb24vbly4mJzB137t67SXR05Ie+jVRTq1WsGl6PysVsCI2B+5rieKsL4hFrw+Y1azi19Q/08dIvNK1ybXIDsHzNqcwOQQghci2NWkVZu3zUcs5PrRfJTD4zk2TH6BMUniZoiMrrhN6+GGHm+YgzSDwmIOA5N29c5c7dDdy+487dezcIC0vfmX8z2oxeVfi4mhNxioZN2g5448C9iyfZtWgkgc8eZXZ42VauTm6ePJVaGyGE+FBUKiiTz5b6hZ1oUNiZmk75sTAyTHZMdLwez1iFMMv8GBYuR4SVIwkaHQCxsbG4X7/AufPHOX/hBB6edzPjNtLNd23LMqhtaQC2KU257pvAniUDuX32cCZHlv3l6uQmxPd5ZocghBA5mkseS+oXdqJhYWfquThha5q8ZiYsLh6PWBWhFvboXMqht3FCUSdOoBcLPH7iwfkXycyVa+eIjo7KhLtIX2q1iqk9qjG8XUkADsRV5ff1hzixaSlxsdGZHF3OkKuTG7+nfpkdghBC5Ci2pibUdylI/cLONCjsjMt/+sxE6RPw1GsJt3ZGXags0eY2oFKjAuKBiIhwLl85w/kLJzh/4TjPfJ5kyn1kFAsTHau/b0jzio4AHI0uS69Rv+J973omR5az5O7kxi97tc0KIURWY2ago7ZzwRdNTU6U/c/SNvGKwlPFkEibQsQ6uhFuZptUMwPw7NkTrt+4xPUbl7hx8xIenvdIyMBFJjOTa34LtvzYBLf8FsQpGjZH1WLY6J95ev9GZoeW4+Tq5CYg4M1LpgshhEipuI01Ld2K0NKtCNUKOKRYh8lPZUSkTSEibJwJsXBI6jMTHx/Hvbs3/pXMXCYgIHd0D2hVtSArh9XF0sSAUMWMv8Ib8NMPo3l6X+Zaywi5NrkJDY8mPl6mqxZCiLfRqtXUdMpPm1JufFy8GM4Wpsnej9SZEpqnACFW+QmxcEya8Tc0NJgb509w4+Zlrt+4xO077sTE5K4+Jdbmhsz+shqfNygKwCPFkb9D6/DbjwN59uBWJkeXc+Xa5CYkNHf9BxNCiNRQqzU4OBSghHMRmhcvSi17a0oYJmDE/5uKElRqQiwdCczjRFCegsQYJa7Z9PiJB9cv7uLGjcRk5tHjhyhK7pxJ1yyPDV93rseoJnmwNNCjKHBWqcDO0DIs+/Frnj2UxCYj5drkJjRMkhshRO6VJ48NTgULU7BAIQoUKESBAi6UsMtHCYN4bIKfYBHmg1pRSOzmC3FaIwLzFMTbKC9XQqJ5+PgRT07v4ckTTx4/8cT7qVeWmvU3M1jlc6Rys45UrlKJ7oUe4ap6COh5ruRlc2QNjl3y4PCaPjx/dD+zQ83xcm1yE6/PmR3WhBDiv+ztC1CsaAmKFS1FsWIlcS1aEmtrW1ASMA97jnWgF9ZBjzDxSb7qtZ+i5WJILAc8vTl45zaPH3sRGhacOTeRxZWs0Zi2A8ZR3cyTBqoTGKliiVdUrLquZcqqg3jcmkOCXmYa/lBybXIjhBA5jVqtJn/+QkmJjGuxkhQrWhJzc0tQFAxjwjCNDMQ04jHGvlcwD/HGKCEu6fz4hATOePuy5cZtdty+z8MgGVH6NlqdAU17DadOiza0Ve+hqMoTgHP3Auk95wg3HwVnany5lSQ3QgiRDWk0Wgo5F6FYsVIUK1KCYsVKUbRIcYyNTdHoYzGJDMIkIhDT5+6YeARgHBGAgZJyEEVgZBR773uw4/YD9j3wJCQ6dzctpUVeR2c6Dp9BucJ56aheQx5VCJEx8YxecYEFO27Jyt2ZSJIbIYTI4nQ6A4oUdqNY0cSamGLFSlHYxRUDnQFGMWGYRARgGhGIqdcpjCP8MYkJf2U5MfHx3PILwN3XH3dfPy54+3D6sTd6+RBOE5VaTaUm7WnSYwiVTB7TQrUWA5Wehz5htJ9ykGsegZkdYq4nyY0QQmRB5uaWVK9Wj5o1G/FRhepYEYtxVAhG0aEYRwVifGcPJhGBaBNe3Y/jaWg413z9uO7rxzWf57j7+nPHP5D4HDpB3ofiXKoSzfuMJH/hYjRUHaea+goAey484bOZRwgKj83cAAUgyY0QQmQJBhoNlYoUoeVHtajhVpIi1haYRIdhFO2P4dW1rz0vJj6em88DuObrh/uLROa6rz/+kdl/DaasxNLWgSY9hlC6VlNMiaCtsh4XjS8Ak9deYcLqy9IMlYVIciOEEB+IRq2ikJUlRa3zUMwmD0Wt81AmvyPF89mS10CN+uWB8T7w3CfZuQGRUdwPCOJ+YBD3AoK4HxDEdV9/7gYESW1MBtIZGFGrfS9qftIDnaERjglPaKPfTF6jBEIiYukx+xjbzj7K7DDFf0hyI4QQGSSPsREfuxXl4+JFKGGbF5c8limWKvi3eI2OIEXL/cBgzt2/zxUvL+4FJiYygVEyN9eHVrp2M5r0GIKljT2gUOTZVtrbP8DASM0NryA6TD3IXe/QzA5TvIIkN0IIkY7yGBvRunhR2pdyo2FhpxTJjF6lJtrYiigjC6KNLQnTmXL10SP2nD/N7mMHCAoOyKTIxUsGxiZ0GDIdt6p1AYh+7kH90DU0dDMB1Gw84UHvuccJj5J5a7IqSW6EEOI9vSmh8U3QEupYnJi8TkQZWRJrYEp4ZDhnzx7hxMmdnD1/jKioiEyMXvybRV47uo2dj0Ph4sTFRON/5E+GVw6hkJsZMXF6hi05x287ZOmErE6SGyGEeAdvSmj8MCDMsSTBdsWIMrYCICDgOSf37+DEyf1cvnKW+Pi415QsMotD4RJ0GzsPi7x2hAf5YXZyGr+0LIBOa8b9p6F0nX6YSw+kZi07kORGCCFS6WVC06GUGw3+k9A8x4CI/CUJyvf/hOaJtycnTmzk+Mn93Lp9NdcuIpkduFapS8dhP2NgZEz445vUD/6bpm2cAFh/7CF9558kLEoS0uxCkhshhHgDa2MjWpcoSvuSqUtoHnrc4eixlRw7vhdPL1kgMTv4qNWndOzdj6KaB+QLvoSrrQ9WhfIRHRvP4EVnWbTnTmaHKNJIkhshhPiPtyU04f9pcvLwuMuRYys5cmw3jx49zKSoRVoYG2qoVyY/X37emhqFjbBVLUt8wxrAgFuPg+n28xGZbTibkuRGCJHrOVtZUNbOlnIO+fiooCP1XV6V0JQiyK4o0S8SGk+v+xw+spKjx/bg9ejBa0oWWUmZQnloUjE/TSoWoHYpOwx1GiASiESfoHD2znP2X37KvktPOH/XX5alyMYkuRFC5BoGGg0lbfNS1j4fZe1tKffi3zzGRimO9VVeNDnZFUtKaLwePeDI0b85cnS3NDllE6Wd8zCwTSmaVy6Ag7VJsvdCFHPu6fOzastxVm7YS3CELJ2QU0hyI4TIkayNjZKSl3L2+Shnn4/ittavnEQvVq/ncVQckaY2GDkVJ9TGJSmhefToIUeOreLw0d14et77wHch3lUVVxtGdypH64+ck/ZFRMdx8nYQEYUa42NeDs8gPWumDMT73vVMjFRkBEluhBDZmkoFRfJYUdY+H+XsbZNqZQpaWrzy+MDIKK76+HHDP5Bo83xYu1WmcJX66IwS/6oPBR499uDI0dUcObobD8+7H/BuxPuqW8ae0Z3K0ahCfgASEhQ2nvDgz713uPwkjk8nLsHW3IWAZ49Y8cOXhPg9y+SIRUaQ5EYIkW0Y67SUymeTVBNT1t6WMna2mBsavPL4+wFBuPv6cdXnOVefPcf9uT82LqVo0qgNtds1wcTENOnYx088OHJ0D0eO7uahh4yOyW6aVy7AqE7lqFnSDoC4+ARWHb7P9I3XuOsdipGpOT0mL8G2gAvBfs8kscnhJLkRQmRJBhoNtZ0LUMHRjnIvmpaK5c2DRq1OcWxUXBw3ngckJjE+z7nmk7hCdlhMYh+KQoWK0aRRO7o3+BhbW/uk87yfPuLwkZ0cObqbBw8locluVCpoV6MQ33csS8WiNgBEx8azdN89Zm52x+t5OJC4nMJnP/6GQ+HihAX5s/LHvpLY5HCS3AghsgxDrYbGRQrRrqQrHxcviqWRYYpjnodHcsXHF3efFzUyPn7cDQhMMbIlTx4bOrRsSeNGbXAtVippf1hYCIeP7mb/ga1cv3Epw+9JpD+tRkXXukUY2bEsJQpaARAeFcfCXbeZs+U6PkFR/z/WwJBuY+ZRsHg5IkODWTnuKwKeemVS5OJDkeRGCJGpDLUamhQpRPtSbrRyK4LFvxKap6HhnPB6kqxGxif89eswGRoaUbNGQxo3akOVSjXRaBJ/xcXFxXL23DH2H9jK6bOHiYuTmWazI0Odhh6NijK8fVlc7M0BCAqPYf62m8zffpPAsJhkx2u0WjqPnIVLmapER4bz14Svee4lncJzA0luhBAfnJFWS9OihWhXypWWrskTmichYWy+eZfNN+9y+rE3b1uxQKVSUa5sVZo0akOd2k0xNTVLeu/GzcvsP7CNw0d2ERoWnEF3Iz6EmiXtWDW8LgVtE7+/z4OjmLPlBr/vvPXKZRHUag3tBk/DtXIdYmOiWDVpAE/v3/jQYYtMIsmNEOKDMNZpaVrUhfalXGnhWiRZJ+DHIaFsvnmXTTfucvbJ07cmNADOTkVo3KgNjRp+jF0+x6T9z549Yf/Brew/sI0n3p4ZcCfiQ/uquRtzv6qOTqvmsV84MzdfZ8m+O0TF6F95vEqlovWA8ZSu1ZT4uFjWThvMo5vSBJmbSHIjhMgwxjotzYsVpn0pV5oXK4zZvxIar+CXCc0dzns/S1VCY2VlTcP6rWjcqA1urqWT9oeHh3Lk6G72vehHIwtU5gw6rZp5X31E3+bFAVh37CF95p4gMib+9ecYGvPJwEmUqtkEvT6eDTNH8ODyqQ8VssgiJLkRQqQrE52O5sVcaF/KjeauhTE10CW95xkUwqYXCc0Fb5+3lmVqYkapUhUpW6YSZUpXplTJ8kn9aOLj4zh7/jj79m/h9JnDxMXJ7LI5iZ2VMRtGN6BmSTsSEhRGr7jAjE3ubzzH0taBrqPn4lC4OPFxcfwzdyy3zxz6QBGLrESSGyHEeytoaU59F2dauBamWTEXTP6V0DwMDE5qcrr49M0JTR6rvJQpU5myZSpTpnQlihQujuY/MwrfunWVfQe3cvjILkJCgjLkfkTmqlzMhk1jGlLAxpTg8Bg+nXGUPRefvPEcpxIV6Pz9HMysrAkPDmDdT0N4dOvyB4pYZDWS3Agh0sza2Ih6Lk7UL+xEAxcnitlYJ3v/QWAwm2/cYeONu1x+5vvachzsCyQmMmUqU6Z0ZZwKuqQ4xtvbi2vXL+DufpErV8/yzOfNH3Iie/uiQVF+H1ADIwMtNx8F0W7yQe49DX3jOZUat6fFV6PR6nQ8e3iLNVMGEuL/9ppBkXNJciOEeCtjnZaaTvlpWNiZ+oWdKG9vh1qtSno/Xp/Ahac+HHroxZab97ji8zxFGSqVikLOxSj7smamTGVsbeySHZOQkICHx90XycwFrl2/SEBAyrJEzqNRq5jRuyoD2yTOSbTtjBdfzDr2ypFQL6k1Wpr1Gka1Vt0AuH5iL1vm/UhcTNRrzxG5gyQ3QogUNGoVlR3taVDYmQaFnfmooAOG2uS/Lm74+nPIw4tDD7w45vUkaTbgl7RaHa7FSiU1MZUuVRELC6tkx8TFxXLn7nWuuScmM9dvXiY8/M1/pYucJ6+FIWtG1qdhucRRbxNXX2bimstv7GRubG5Jp+EzKVyuGgAH/57PsQ1/fohwRTYgyY0QAoBS+WySmpnqFCqYbO4ZSBzddPihF4cfPuKwx6MUk+kZGhpRqmSFF8lMZUqWKIeRkXGyY6KiIrh+8zLu7he55n6B23euERMTneH3JrKusi7WbB7TEBd7c8Kj4ugx+xj/nH7zDMK2BYvQbcw8rB0KEhMVyeY5o7h99vAHilhkB5LcCJFLOVlaJCYzhZ2o5+KEg7lZsvcDIqM44vGIQw8fceihFw8Cg5O9r9PpKFG8HBXKf0SF8h9RskQ5dLrkC1gGBwfifv0i7tcvcNX9Avfv3yIh4dVzk4jcp1/z4szsUxVjQy0PnoXyyeQD3PAKfuM5xSrVpuPwnzE0NiXI15vVU76TWYdFCpLcCJGLlLDNS/9qFWhQ2JliefMkey8yNo7jXk847JGYzFz1eZ6sWUCt1uBarGRiMlPhI8qUqpSiZsb3+VOuXbvANffzXLt+gUePHn6I2xLZTF4LQxZ/V4vWHzkDsOfCEz6beYSg8DcP56/WsivNeo9ArdHg4X6O9dOHESkzT4tXkORGiFyiZ8Uy/NKiAca6xGHa8foEzns/S6qZOfvkGbH6/9eqqFQqihR2pXy5xGSmXNkqmJmaJyszMMify1fOcPnyGS5fOcPTZ48/6D2J7KdhOUeWD6mDY14TYuL0jFp+gXnbbryxf41KraZZr+F89PGnAFzcv5kdv08mQf/6yfxE7ibJjRA5nJmBjgUfN6Zr2ZIA7LvvwW9nL3P8FZ2ACxZwSaqZqVCuGpaWyWt3wsJCuHz1LJevnOHKlbN4et3/YPchsjedVs2kzysyvH1ZAG49DubTn49w1SPwjecZGBnTYejPuFWtC8D+lb9wYtPSDI9XZG+S3AiRg5Wzt2V1x48pZmNNvD6BHw4eZ/ap80l/Jdvlc0xMZF70m/nv0OyoqAiuul9Iqpl58PA2CQkJmXAnIjtzzW/B38PrUamoDQB/7L7N0MVnX7s21Evm1vnoNnY+jkVKEBcTzeZfxnDz1P4PEbLI5iS5ESKH6lulHDOb1sdIp+VRcCifbdzB3Yg4GtRrlZTQODoUTHZObGwM129cTmxqunKG23fc0UvVv3gPvZu4MqdvNUyNdASERvPlvBNsPfPorefZu7jRbeyvWNrYER4cwJopA3ly99oHiFjkBJLcCJHDWBgasLB1UzqUdgNg592HrA834qsfF1GoULFkx+r18dy6fY3LVxKbmm7cvExsbExmhC1ymDxmBiz6thbtahYC4MCVp/SYfZRngW+fYC9xRNQMDI1NeP74AasmDiD4uXcGRyxykkxPbvr378/w4cOxt7fn6tWrfPvtt5w/f/61xw8cOJCvv/4aJycn/P392bhxI6NGjSImRn4hC1HR0Y5VHT+miLUVcXo9Kx+HYNW0P31f1NAkJCRw//5NLr1IZtyvXyQqKuItpQqRNnXL2LNyaF0K2JgSG6dn7F8Xmf3P9VSt/F61RRea9xmJWqPhwdUzrJ8+lOiIsIwPWuQomZrcdOrUidmzZ9OvXz/Onj3LoEGD2Lt3L25ubvj5+aU4vmvXrvz000/06tWLU6dO4erqyvLly1EUhaFDh2bCHQiRdXxTrQLTm9TDQKvBJzqO64VqUbx2YufNgIDnrF67iP0HtxEWFpLJkYqcykCrZvynFRnevgxqtYo7T0L4bMYRLj0IeOu5eR2dadJzKMWr1gPg4r5N7Fg4RUZEiXeSqcnNkCFD+PPPP1m+fDkA/fr1o2XLlvTq1Yvp06enOL5GjRqcPHmSNWvWAODl5cWaNWuoVq3ahwxbiCzFysiQRW2a0rakKwCPjWzxrtocY60hQUEBrFm3iK3b10hzk8hQlYrmZdngOpRyThxht3jvHQYvOktkzJuTE2MzC+p27kfVFp3RaHXo9fEc/Gs+J/9Z9iHCFjlUpiU3Op2OSpUqMW3atKR9iqJw4MABqlev/spzTp06xWeffUaVKlU4f/48Li4utGjRgr/++uu11zEwMMDQ8P/TyJubm7/2WCGymyr57VnV6WMKWVmiR4WnS3V87EsSEhbM2vXz2bJ1FdHRkZkdpsjBdFo1Y7uU5/uOZdFq1PgGRfH1gpNv7TSs1mip0qwj9bp8jcmLNcfunD/KvmWz8Pf2zPjARY6WacmNjY0NWq0WX1/fZPt9fX0pXrz4K89Zs2YNNjY2nDhxApVKhU6n4/fff0+WIP3XqFGjGD9+fHqGLkSmszEx5rvqlRhWqxpatYooIwvuuDbARzFg/fK5bN6ykshI6UsjMlY5F2uWDalDORdrANYefch3f5wmIPTNtYTFKtWmac+h2BYsDICv5z32LJ3Bw6tnMjxmkTtkeofitKhbty6jR4+mf//+nD17lqJFizJ37lzGjh3L5MmTX3nOtGnTmD17dtJrc3NzvL29iYmJ+1BhC5Fu8luYMbhGFfpWLY+RRgOAf97CXHOowNp/VrNh03IipPOlyGBajYrvO5ZjbJfy6LRq/EKiGPDbaTae9HzjefmcitK011CKVqgJQERIIIdWL+DSvs2y5phIV5mW3Pj7+xMfH4+dXfJJw+zs7PDx8XnlOZMmTeKvv/5iyZIlAFy/fh1TU1MWLVrElClTUF7RFT82NpbY2JTrlUS9pR1YiKykqLUVw2pV5fMKpdGp1QCEm9rwIF8J/jhyhHUbRklHYfFBlHK2YtngOkkT8m0+6Un/307hF/L61d0NjE1o9Nl3VGneGbVGQ3xcHGe2/82xDX8SExn+oUIXuUimJTdxcXFcvHiRhg0bsnXrViBxLZuGDRvy66+/vvIcExOTFLOj6l+shaNSqV6Z3LxOdLTU3Iisr6ydLSNqV6N9aTc0KhUAIRYOPMxXkqVHDrF2Ug9CQoIyOUqRG2jUKoa1L8P4bhUw0GkIDIvh299Ps/bYmxdHdSlbjTYDxpPHLj8AN08dYN+K2QT5PPkQYYtcKlObpWbPns2KFSu4cOEC586dY9CgQZiamrJsWWIv+RUrVuDt7c3o0aMB2L59O0OGDOHy5ctJzVKTJk1i+/btaZ4SPkqapUQWVr2gIz82rkdDZ8ekfYF5nPCwK8nfRw6xeuLnBAX5Z2KEIjcpXsCSpYPrUM3NFoDtZx/R79eT+AS9fkI+Q2NTmvQYQuVmHQEI8vVm24LxPLx69oPELHK3TE1u1q9fj62tLRMnTsTe3p4rV67QrFkznj9/DoCTk1OypGXy5MkoisLkyZPJnz8/fn5+bN++nTFjxqT52tHR0iwlsp4OlSrwQ4M6lDBLXLlbQYW/TWE88pVkw7GDrJr4Kf7+vm8pRYj0oVarGNSmFJM+r4iRgZbg8BgGLTrLX4fevGBqkfLVaT1gPFa2DgCc3bmGAyt/ITb67bMTC5EeVEDq23JyAHNzc0JDQ1m6biK9u4zL7HCEwNoqL8Nbt+GLYvmxTUj85Z+gUuNrU5Q9wfH8c/QAJ04eIDw8NJMjFblJEQdzlg+pQ40Sif0i91x4Qt/5J/AOeP3UAoYmZjTtNYxKjdsBEPjsMVt/HYfn9QsfJGaRs738/LawsCAs7M0DJ7LVaKn0FC3NUiITmZlZUL92E76qVYNa2ghMokMgIQq9Wou7xorfzruz5fBigoMDMztUkQtVc7Nl+7jG5LUwIjQylqF/nmXp/ntvPKdYpVp83H8cli9Wlj+zfRUH/ppHXIzU1ogPL/cmN1GS3IgPy9jYlJrVG1C/XgvqlSxJqYfHMYl6CvEQo9Kw41ko47bv5O6Tt6+YLERGaV65AOu/b4CJkZazd/zo8tMhHvm9fs4kI1NzmvUeQYWGbQAIeOrFlvnjeHTz0ocKWYgUcm9yI0PBxQdgYGBItap1aFC/FdWr1cPQwBA739sUvrkLtaInJD6BBeevMevwMcJiUk5ZIMSH9HmDoiweWAutRs2eC0/oOO3QG5dPcK1Sl4/7/4CFdT4SEhI4s/1vDv39K3Gxrx8WLsSHkGuTmygZCi4ykEqlonnT9vTtMwxLy8S1djTxsThe3Y5TZGKH4J13HtBnyx4CIqXaXmS+IZ+UZkbvqgD8feg+veceJ17/6i6ZWp0Brb7+Iam2xt/bky3zfuDx7asfLF4h3iTXJjdx+rQNHRcitVwKuTJ44HjKlK4EgO/zp9w7sZOuJhE4WZgSp9cz9sBxfjl9gTRMzSREhlCpYHrPKgxtVwaAWZvdGbns/Gt/Ng1NzOg6ei4uZaqQoNdzautKDq/5jXhZmFVkIbk2uREivRkZGfPFZ9/QsX0PtFodUVERLF0+l3ze7kxvUgdDrSmeQSF8tnEH5548y+xwhUCrUbFkYG0+a1AUgOFLzjH7n+uvPd4sjw2f/fgbDoWLEx0Rxtppg/FwP/ehwhUi1dKc3Li4uODh4ZERsQiRbdWo3oBvvxmL/YtZWI8d38vKJTOYWqsCn7RoAMC2W/fos2UPwdHyF67IfCaGWjaMakCzygWIi0+gz9zj/H34wWuPt3Zw4vPxC7G2L0BYkD9/T/gaH487HzBiIVIvzcnN/fv3OXr0KEuWLGHjxo3ExMgvapF75bN14NtvxlKrZiMAfHyeMPfXScQ/uc2ujh/jkseS2Hg93+8/yq9nZPSIyBryWhiyfVwTqrnZEhEdR6dph9lz8fXLITgULsFn437HzMqagGeP+Gt8P1k+QWRp6rSeULFiRa5du8bs2bPx8fFh4cKFVKlSJSNiEyLL0mi0dOzQk+VLdlKrZiPi4+NYteYPen7ZiqrqMI706opLHkseBgZTd8kaSWxEluFka8qx6S2p5mZLQGg0jcfseWNi41KmKj2mLMHMyppnD2+xZOQXktiILC/Nyc3Vq1cZNGgQjo6O9OrVCwcHB06cOIG7uzuDBw/GxsYmI+IUIssoWaI8fyzYRP+vvsfY2JRr7hf4sl9bNq35jdWfNGVms/oYaDVsunGHqgtXcvHpq1e5F+JDMjLQMODjkpyZ3ZriBa149DycOiN2cvaO32vPKVmjMZ+N+w0jEzM83M+xbExvIkJkYkmRPSjvsxkYGCiDBg1SoqKiFL1er0RFRSkrVqxQ7O3t36vcjNrMzc0VRVGUkVMHZHossmWvzdzcUhkycIJyeP8d5fD+O8qWTWeU5k3bKyqVSqnlXEC5P7ivEjthmBL2wyDlqyrlMz1e2WQDFBNDrTL4k9KK919dFP2OXop+Ry/lyq9tlfx5Td54XpVmnZRx/1xRJmy9pnQaOUvR6gwy/V5ky93by89vc3Pztx77zqOlKlWqRK9evejSpQsRERHMnDmTJUuWUKBAAcaNG8fWrVupVq3auxYvRJbSuFEbvu47kjx58gKwa/dG/lg8EyUmgrktGtKvankA7gUE8en67VzxeZ6J0QoBZsZa+rcsyZBPSmFraQyAh08Y0zdcY8XBe8TGv346jAafDqBup74AnN+9np2LpqIkyPQZIvtIc3IzePBgevbsiZubG7t27eKLL75g165dKC8mRfD09KRHjx54enqmd6xCfHDOTkUY+O04KpRPTNQ9Pe8xZ954rrlfoEnRQvz2cUecrCwAWHzhKiP3HZWZhkWmsjQ1YMDHJRjUpjTW5oYA3Hsawk/rr/H34fuvnZgPQKPV0vqb8ZRv0BqAw2t+58ja3z9I3EKkpzQnN19//TVLly5l+fLl+Pi8ui/B8+fP6d2793sHJ0RmqVSxBh3adeejavUAiI6OYuXfC9iwaTnmOg1LPmnO5+VLAfAgMJivt+3liMfjTIxY5HbW5oYMbFOKbz8uiaWpAQC3Hgczbd1V1h57iD7h9UkNgKGxKZ1GzqJohRro9fHs+G0Slw788yFCFyLdpTm5ady4MY8ePUqqqfm3ggUL8vjxY+Li4li5cmW6BCjEh2JoaETjhq1p/8kXFCpULGn/sRP7+P2P6fj4PKFdSVfmtmyInZkpCQkK885cZPyhk0TGyXIeInPYWBgx5JPS9G9ZAnMTHQDXvYKYsvYKG096kvCWpAbA3NqWT39YgEPh4sRERbL+52Hcv3Qio0MXIsOkObl58OABDg4O+Pkl72FvbW2Nh4cHWq1MeiyyFxsbO9q2/pRWLTthaZG4DlRUVAS792xi89a/8fb2ws7MhHWdW/NJSVcAbj0P4Mute2SmYZFp7KyMGdquNP1aFMfUKDGpufIwgMlrrrDljFeql/awLViEz8b9hpWtA2FB/qya9A3PHtzKwMiFyHhpzkRUKtUr95uZmREdLSvBiuyjRPGytG/XnXp1mqHRJP5XePbsCf9s/YtdezYREREGwOflSjGjWT2sTYyJ0+uZceIcU4+eIVavz8zwRS7lmNeE4e3L8GVTN4wNE39uz931Y8raK+w4l7amUedSleg6ei7GZhb4PfHg7wn9CX7unRFhC/FBpTq5mTVrFgCKojBx4kQiIyOT3tNoNFSrVo0rV66ke4BCpCeNRkud2k3o0K47JUuUT9p/5epZNv2zklOnD5HwYlRIQUtzFnzchGbFXAC49NSHvlv2cs339fOCCJFRrEwNmPR5JXo3dcVQpwHg1C1fJq+5wt5LaU9IStVsQrvBU9HqDHh06zKrp3xHVFhIeoctRKZIdXJToUIFILHmpkyZMsTG/n9ESGxsLFevXmXmzJnpH6EQ6cDC3IpWLTvRtvWn2NraA4k/t4eO7GDT5pXc/1c1vEoFfSuXZ2rjOpgbGhAdF8+kI6eYfer8WztlCpERGldwZPHA2hSwMQXgiPszpqy9wqGr79YsWr315zTrPRyAm6cOsGnOKFnVW+QoqU5uGjRIXPxv6dKlDBw4kLCwsAwLSoj0Usi5KO3afk7jRm0wMkqc6yMw0I+t29ewfcdagoIDkh1fLG8efm/dhDqFCgJw0usJX23dy92AoA8euxAmhlqm96xC/1YlALjzJIT+C05yxP3dZr1WqdU07TmM6q0/A+DM9lXsWTpD5rAROU6a+9z06tUrI+IQIt2o1WqqVK5F+3bdqVKpVtL+u/dusGnzCg4f3UXcf0Y3lbWzZWitKnQsVRytRk14TCxjDx7n93OXU90xU4j09FFxW5YPqUMxR0sA5m+7wagVF4iKebe+XloDQ9oNnkqpGo0B2Lt0Jqe2yqhWkTOlKrnZtGkTPXr0ICwsjE2bNr3x2Pbt26dLYEKklb19AZo1+YSmTT7B3i4/AHq9npOnDrBx8wrcr19McU7dQgUZVqsqTV/0qwHYeecBg3YdxCs49IPFLsRLOq2aH7tWYGSHMmg0ah77hdP7lxMcvPr0ncu0ypefdoOn4FyyIvFxsfwzdyzXj+9Jx6iFyFpSldyEhIQkzWsTEiIdzkTWYWBgSJ1aTWjerD0VK1RP2h8WFsKuPRv5Z+sqfH2Td7ZUq1S0LVGMoTWrUKWAAwD6hAQ2XL/D7JPnZekEkWlKOVuxYkhdKhRJXObj70P3+e6PM4REvNus1+bW+ajbqS8VG3+CRqsjKjyUNVMH4nUjZaIvRE6SquTm301R0iwlsgI31zI0b9aehvVbYmaWuPxBQkICFy+dZPeeTZw4dZC4uOQfCIZaDZ+XL8XgGlUoljdxPpvI2DiWX77OL6cu4BksibvIHGq1ikFtSjH5i0oY6jT4h0Tz9YKTbD7l9U7lmVpaU6t9L6o074zOIHEJhvuXT7L7z+n4e3umY+RCZE0y457INiwt89CoQWuaN2tPkcJuSfufPXvCnn2b2bvvH3yfp6y6tzIy5Ksq5RnwUUXszBJHmwRERvH7ucv8dvYy/pFRH+wehPgvFztzlg6uTZ3SiaP4dpx7RN95J/ENTvvPpZGpOTU/6UG1Vp9iaGwCgOeNixz6+1e8bkptjcg9UpXcXLp06ZXLLbxKpUqV3isgIf5NrdZQpXJNmjdtT43qDdDpEtfMiYmJ5tjxfezeu4krV8++8uczv4UZ31WvTJ9KZTE3TDzPKziUX06dZ9ml67Jkgsh0vZu4MqtPNcxNdIRFxjHkzzMs3X8vzeUYGJvwUatPqdG2O8YvajK9713n4N/zeXDldHqHLUSWl6rkZsuWLRkchhDJOTo60aJZe5o0/gRbG7uk/bduX2P33k0cOrwzaQbh/yphm5ehNavQtWwJdJrEyc7cffyYeeIcG27cIV6GvYpMZmdlzJ/f1aRlVScAjl33oeecY3j6hqepHK2BIVWbd6ZW+16YWloD4ON5l0OrfuXOuSPpHbYQ2UaqkpuJEydmdBxCAIk1NZ9168cXn/VPWhIhJCSIfQe2snvPJjw877723LJ2toxvUJNWxYsm7Tvi8YhZJ86z975HhscuRGq0r1mI3/rXwMbSiJg4PWNWXmTu1hupWuDyJY1WS8XG7anT6UssrPMB4O/tyeE1v3HjxN5U17QLkVNJnxuRZdjlc2T09zMoW6YyAOcvHGfHzvWcOnOY+PjXNyGpVSqG1qzCuPo1MdBqSEhQ2Hr7HjNPnOO897tNdiZEerMyNWBev4/4tH5i8n35QQDdZx/lhldwqstQqzWUrd+Kep37kefFdAdBvt4cWbeQa4d3kJAg650JAalMbgICAnB1dSUgIIDAwMA3/lWQN2/edAtO5B716jRn6OCJmJlZEBERzi/zxnPg0Pa3nudsZcHST5pT+8WMwttu3WP0/mMyo7DIUhqUc2DZ4DoUsDFFr09g2oZrTF57hbj41DWRqlQqStVqSv2u/bHJXwiAsEA/jm1YxMV9m9G/IfkXIjdKVXIzePDgpOUWBg0alJHxiFzGyMiE774ZS/NmiZM/3rh5mSnThvHM58lbz/2sXEl+adEQCyNDwmJiGbL7ECsuX8/okIVINZUKxnQuz7huFVCrVdz1DqHH7GOcvZP6xVcNjU3pMOxnXCvXBiAiNIgTm5Zyftc64mKjMyp0IbK1VCU3K1eufOXXQrwPN9cyjB09kwL5C6HX61m1ZiEr//4NvT7+jedZGxux4OPGtC+VOBz81CNvem7ehUeQzFMjsg5rc0NWDq1D88qJtYqL995h8KKzRMa8+ef73yxt7On2w6/YF3IlNiaKExuXcHr738RGRWZU2ELkCO/U50atVvPJJ59QokTiYm43b95k69at6PXS3iveTqVS0bljb3r3HIRWq8P3+VOm/jSca+4X3npuoyLOLG7bHEcLM+L0eiYdOcWME+dktW6RpVQqmpf1oxpQyM6cqJh4vvntFCsO3k9TGY5FS9JtzHzMrW0JC/Rj9ZTveHr/RgZFLETOkubkpmTJkmzbtg17e3vu3LkDwMiRI/Hz8+Pjjz/mxg35zydezyZvPkaN/DlpqYQjx/Ywa84PhIe/eR0nI62WKY1r8+1HifMo3fELoPvmXVx66pvhMQuRFn2bufHLVx9hqNNw/2koHacd4ppHYJrKKF6tPu2H/oSBoTG+nvdYNekbQvylc7wQqZXm5Gbx4sXcuHGDypUrExwcDICVlRXLly9n0aJF1KxZM71jFDlEzeoNGT50CpaWeYiKimT+gsns3vvmhVgBytvnY3n7FpTMZwPA7+cu8/2+o0TFpb56X4iMZmyo4bf+NfiiYTEAtpz2otcvx9O8LlSNNl/QuMcQ1Go19y6eYMOM4cRERWREyELkWGlObsqXL58ssQEIDg5mzJgxnD9/Pj1jEzmEoaERX3/1PW0+7grA3bvXmTxtGI+fvHnuGbVKxZCaVRj/Yoj3s7Bw+m7ZK3PWiCynqKMFG0Y1oKyLNXp9AqNWXGDW5rR1bldrtLTo+z1VmnUC4Nyudez+8ycZ3i3EO0hzcnP37l3s7Oy4efNmsv358uXj/v20tSmLnK+Qc1F+HDMHFxdXANauW8yS5b+8cd4aSDnEe+ute/Tbto8AWQdKZDFtqzuzdFBtLE0N8AmKpNvPRzjqnrYmJEMTMzqNmEHRCjVJSEhg37KZnN72dwZFLETOl6rkxtzcPOnrUaNGMW/ePMaPH8+ZM2cA+Oijj/jxxx8ZOXJkxkQpsqVmTdsxcMCPGBkZExDwnKnTR3Dp8tvXuZEh3iI70KhVTO1emWHtywCJSyh0nX4Yn6C0JeBW+RzpNvZX7JyLEhsdxcZZI2XpBCHeU6qSm+Dg4GQT96lUKtavX5+0T6VSAbB9+3a0Wpn0OLczMjJh8HfjaNK4LZA40/DU6SMIDn59p0pDrYaOpdzoV7UCVQs4ADLEW2Rd9nmMWT2iHnXLJP6sztzkzpiVF4jXp23UXv5ipek2dj5mVnkJDXzO6snf8uzBrYwIWYhcJVWZSP369TM6DpFDFHZxY9zYX3ByKoxer2fZirmsXrvotbNaO1la0LdKOXpWLIOtqQkAMfHxTD16hp9PnJUh3iJLMdRp6FavMJM+r4SDtQmhkbH0mnOcf057pbmsEtUb0X7wVHSGRvh43GHV5AGE+svoPyHSQ6qSm2PHjmV0HCIHaNWiEwP6j8HQ0Ag/Px8mTR2C+/WLKY5TqaBhYWe+rlqBFq6F0ajVADwKDmXRhSssu3QdvwiZpExkHTYWRvRrUZz+LUtgl8cYAHfPQDpOPcS9p2+exuBVqrf+nGa9hwNw98IxNswcIRPzCZGO3rkNydjYGCcnJwwMDJLtd3d3f++gRPZiYmLKkEETaVi/FQBnzh5h2s/fExqafH0nC0MDvqhQmn5VyuNqY520/8ADTxaeu8LOuw+kpkZkKW4FLBnUphSfNyiKsWHir8tHz8OZv/0mv++6RVRM2kcy1Wrfi8ZfDALg7I7V7FkyQ0ZECZHO0pzc2NjYsGzZMpo3b/7qAqXPTa5SpEhxxv8wlwL5CxEfH8fipXNYv3Fpsmao0vls6Fe1PN3KlsTMMDEZDo2OYeWVG/xx/gp3/NM2wZkQGa1eGXuGfFKallWdkvadv+vHnC3X2XTSM819a16q3aEPjT7/DoBDqxdwdN0f6RKvECK5NGciv/zyC1ZWVlSrVo0jR47wySefYGdnx9ixYxk6dGhGxCiyqKJFSjBn1l+YmZrj4+vNpClDuHnrCgBatZq2JYrRr2p56rwYzg1ww9ef389fZvXVm4THykrGIuvQadV0ru3CoLalqVAkLwAJCQrbzz5i9pbrnLjxfv1h6nT8koaffQvAwb/nc2zDn+8dsxDi1dKc3DRo0IA2bdpw8eJFEhIS8PLy4sCBA4SGhjJq1Ch27dqVEXGKLKZgARd+nrYEM1Nzrl47zw/jvyEsLHFUU7uSrkxrUheXPJYAxOsT2Hr7Hr+fu8Ixz8eZGbYQKeQxM+DLZsUZ8HEJ8uc1BSAyOp7lB+4xd9sN7r9Dn5r/qtupLw0+HQDAgb/mcXzj4vcuUwjxemlObkxNTXn+/DkAQUFB2Nracu/ePdzd3alYsWK6ByiyHltbe2ZMX0qePHm5e/c6o3/4isjICMra2TKzeX3quSRW5fuERbD44lUWX7jG07DwTI5aiORUKpj0eSW+a10SUyMdAM8CI/l1+00W7blDYFhMulynXud+1O/WH4ADK+dyfNOSdClXCPF6aU5u7ty5g5ubG15eXly9epWvvvoKT09P+vXrx7NnzzIiRpGFWFlZM/OnZdjlc8Tr0QNGjO6DMQlMb9WIPpXKolGriYqLY+aJ88w8eU7WfxJZkkoFfwyoSe+mbgBc9Qjkl3+us/bYQ2LjE9LtOvW6fE39rl8DsH/FHE5sXpZuZQshXi/Nyc3cuXNxcEicuGrChAns2bOHTz/9lNjYWHr06JHe8YksxNTEjOlTF+PkVBgfX29Gje7N5yVc+KFeDfIYGwGw3v02o/Yf5XFIWCZHK8SrqVTwW/8a9G7qhl6fQJ+5J1h5KP2XjqnftT/1uvQDYN/y2Zz8Z3m6X0MI8WppTm5WrVqV9PWlS5dwdnamePHiPHr0iICAgHQNTmQdBgaGTJm0ENdipQgM8mfrvFHs6dCMEvkSO15eeebL4F2HOPnIO5MjFeLN5n1Vnb7Ni5OQoNBjzjFWH3mY7tdo0O0b6nb+CoC9y2ZxasuKdL+GEOL13nvcdlRUFJcvX06PWEQWpdFoGf/DXMqVrUJC4FNM9y9hZcvaAPhFRPLDweMsv3SdhNfMQixEVjGnbzX6typBQoJC71+OZ0hi0/Czb6nT8UsA9iyZweltf6X7NYQQb6Z+l5N69eqFu7s70dHRREdH4+7uTu/evdM7NpEFqNVqRo34iVqVa5L/wUk+urGdBgXtidPr+eXUBUrOW8LSi+6S2Igsb2afqnzXuhQAfednTFNUw8+++1di87MkNkJkkjTX3EyYMIEhQ4Ywf/58Tp9OXOG5evXqzJkzBycnJ8aNG5fuQYrM8903P9C2chXcLq/HMC4KNGr23PNg+J7DMvmeyDZ+6lmZwW1LA9Bv/kmW7b+X7tdo9MVAardP/CNv95/TObNj1VvOEEJkJCUt2/Pnz5UuXbqk2N+lSxfFz88vTWVlxmZubq4oiqKMnDog02PJ6lvvnoOUW3/9o0RPHK7EThim3Piut9K8WOFMj0s22dKyTf6ikqLf0UvR7+il9GtePN3LNzA2UVr0HaVM2HpNmbD1mlKtZddMv2fZZMuJ28vPb3Nz87cem+aaG51Ox4ULF1Lsv3jxoiy9kIN069iLcdVKY//wJAAbrt/myy17iYyTWYVF9jGuWwVGdSoHwHcLT7Nw9+10K1uj1VG5WUfqdOyLmVXiWmk7/5jKuV1r0+0aQoh3k+Zs5K+//uLrr79OsdRC3759k42kEtnXpx93Zm71Elj43iZBURh74DgzT5zL7LCESJMxXcrxY7cKAAz58ywLdtxKl3JVKhVl6rSgwacDyGOXHwB/b0/2r5jD7bOH0+UaQoj3k6rkZtasWUlfK4pCnz59aNKkCWfOnAGgWrVqODk5sXLlyoyJUnww37TpwE/V3DAM8yUyATqt2sS++56ZHZYQaTKyY1kmflYJgOFLzjF36410KbdYpVo0+nwg9i6Jk/+FBj7n6NqFXDqwhQS9TFgpRFaRquSmQoUKyV5fvHgRgCJFigDg7++Pv78/pUqVSnMA/fv3Z/jw4djb23P16lW+/fZbzp8//9rjLS0tmTJlCu3atcPa2hovLy8GDRrE7t2703xtkdy0zl0ZXKog6rhIfOPV1F+wiPuBwZkdlhBpMrRdaaZ2rwzAqOUXmP3P9fcus4BrWRp3H0Sh0onlRoWHcnLzMs7sWE1cTNR7ly+ESF+pSm4aNGiQIRfv1KkTs2fPpl+/fpw9e5ZBgwaxd+9e3Nzc8PPzS3G8Tqdj//79PH/+nA4dOuDt7Y2zszPBwcEZEl9uoVWrWd3zC9o62YCSwM04HbVnzCIsJjazQxMiTQa2KcXPvaoC8MNfF/l547X3Ks+mgAuNPv+OEh81BCAuNoZzO9dwfNMSol4sFCuEyHreqwdw/vyJ7c3e3u82K+2QIUP4888/Wb58OQD9+vWjZcuW9OrVi+nTp6c4vlevXlhbW1OjRg3i4xOrgL28vN4teAGArakJO/t8TnlrcwAOxZrQctpk9Anpt76OEB/CN61KMPvLagBMWH2ZqeuuvnNZFjZ21O/yNeUbtEGt0ZCg13Pl0FYOr/2dUH/f9ApZCJFB0jyJn0ql4ocffiA4OBgvLy+8vLwICgpi7NixqFSqVJej0+moVKkSBw4cSNqnKAoHDhygevXqrzyndevWnD59mgULFuDj44O7uzujRo1CrX79bRgYGGBubp5sE4kqONhx6dvelLc2J16jY22sFS0ksRHZUL8WxZnXL/H3xpS1V5i4+vI7lWNsZkGTHkP47vcdVGzcDrVGw60zB/ltYHu2/jpeEhshsok019xMmTKF3r178/3333PyZOIw4Vq1ajF+/HiMjIwYO3ZsqsqxsbFBq9Xi65v8l4Wvry/Fixd/5TmFCxemQYMGrFq1ihYtWlC0aFF+++03dDodEydOfOU5o0aNYvz48am/wVxArVLRr2p5pjetj6FGTZSRJSvCjBg07XsSJLER2cw3rUokJTbTN1zjx78vpbkMnYERH338KTXb9cTYzAIAz+sX2L/yF57ceb+mLSHEh5fm5KZ79+706dOH7du3J+1zd3fH29ub3377LdXJzbtQq9U8f/6cvn37kpCQwKVLl8ifPz/Dhw9/bXIzbdo0Zs+enfTa3Nz8nZvRcoLiNtb80aYp1Z0SmxQD8xRkeQCMmTaUhAR9JkcnROo5WBvzx4CatKzqBMCsze6MXpFyDq43Uas1VGz8CXW79MPCOh8APh53OPDXXO5dPJHuMQshPow0JzfW1tbcvp1yIqzbt29jbW2d6nL8/f2Jj4/Hzs4u2X47Ozt8fHxeec6zZ8+Ii4tLVrtw69YtHBwc0Ol0xL1igrnY2FhiY6VjrFatZnitqoyu+xGGWi3xai1ehaqx6eEzxk8ZiF6GsYps5LP6Rfjlq4/IY2ZITJyeH/++xMxN7mkqw9TSmo7DZ+BSpgoAQb7eHFr1K+7HdqHIWmlCZGtp7nNz9epVBgwYkGL/gAEDuHo19R344uLiuHjxIg0bNkzap1KpaNiwYdKaVf918uRJihYtmqxvj6urK0+fPn1lYiMSVXS048xXnzGhYS0MtVr8LRy5XKEjWx75MWHyQOLj5dmJ7ME+jzFbfmjEiqF1yWNmyPm7flQeuDXNiY1j0VJ8NXstLmWqEB0Zzq4/f2J+/9ZcO7pTEhshcoA019yMGDGCnTt30qhRo2QLZxYsWJAWLVqkqazZs2ezYsUKLly4wLlz5xg0aBCmpqYsW7YMgBUrVuDt7c3o0aMB+P333xkwYABz585l/vz5FCtWjNGjRzNv3ry03kauYKzT8mO9GgyqURmNWk1QdAyPi9UlrEBpzl86yY/jB0hSKLKNrnULM69fdazNDYmN0zNh9WVmbHJHn5C2ZKRCw7a07DcGnYEhfk88WDttEP5PPDIoaiFEZkhzcnPs2DFcXV355ptvkjr+bt68md9++41nz56lqaz169dja2vLxIkTsbe358qVKzRr1oznz58D4OTklKwJ6smTJzRt2pQ5c+Zw7do1vL29mTt37iuHjed2dQoV5PfWTSiWNw8Am+94YNTsKywdnHG/fpEfxn1DXJw014msL5+VEb/1r8EnNQoBcPG+P73mHOe6V1CaytFotTTrPZKqLToDcOvMIf75ZQwxURHpHbIQIpOpSFxBM1W0Wi179uyhX79+3L9/PwPDyjjm5uaEhoby/bRvmT7618wOJ91ZGBowtXEd+lYpD8CTkDCGHTjJx9/+RKFCxfD0us93g7sRJhOQiWygU20X5verjo2lEXHxCUxae5npG64Rr09bbY25tS2dRszEqUQFEhISOLx6Acc3LpYmKCGykZef3xYWFoSFhb3x2DTV3MTHx1O2bNn3Ck5kHEdzM/Z274ibbV4A/jh/hfFHzvDDhIUUKlQMP39fRo7qI4mNyPJsLY1Y0L867Wu6AHD5QQC9fjnONY/ANJdVsHh5Oo+chbm1LVHhoWya/b2MhBIih0tzs9Tff/9N7969GTVqVEbEI96Rs5UFe7p3ooi1FY+CQ+m5eRcnHz9l3NhfKFe2CuERYYwc1YfnfmlrOhTiQ+tQsxC/9q+OraUxcfEJTF1/lWnrrxIXn/Y5mKo060SzPiPR6nT4et5j7bRBBPo8zoCohRBZSZqTG61WS69evWjUqBEXL14kIiJ5e/XQoUPTLTiROkWtrdjTvRNOVhbcDwii6Yr1PA4J47sBP1CndlNiY2MZ+2N/PDzvZnaoQrxWHjMDFvSvQec6hQG45hFIzznHuPIw7bU1Wp0BLb8aTcXG7QC4fmIvW+f/SGy0LHIpRG6Q5uSmdOnSXLqUOAOoq6trsvek/frDK2Gbl91fdMTRwozbfgE0XbGeZ2ERdOvSl0/afEZCQgLTpo/g6rVzmR2qEK9VqWhe1n3fABd7c+L1Cfy04RqT1155p9oaCxs7Oo+cTQHXMiTo9Rz4ay4n/1me/kELIbKsNCc3GbVCuEi7cva27PqiI7amJrj7+NFs5Qb8IiJp2uQTvuydWIP228JpHDm2O5MjFeL1+jZz45evPsJQp+HBs1C6Tj/MxfsB71RWodKV6Th8JmZW1kSGBrNh5ggeXj2TzhELIbK6NCU3nTp1onXr1hgYGHDw4EH++OOPjIpLvEUlR3t2fdGBPMZGXPT2oeVfGwmMiqZbl75Jic3adYvZ9M/KTI5UiFczNtTw+zc1+bxBUQC2nvai5y/HCYl4tykKPmr1KU16DUWj0fLs4S3WThtC8PPcu9SKELlZqpObfv36sWDBAu7du0dUVBTt2rWjSJEijBgxIiPjE69Qwyk/2z5th4WRIacfefPx35uI1CuMGDaV5k3bA7Dpn5UsWjIzkyMV4tWKOVqwYXQDyhSyRq9PYPTKi2meZfgljVZLy6/GUKlJ4s/+1SM72L5gInGx0ekZshAim1FSs12/fl358ccfk15/+umnSnh4eKrOzUqbubm5oiiKMnLqgEyP5V22qgUclKAxA5XYCcOU/T06K2YGOsXC3Er5ZdZfyuH9d5QDe24qbVt3y/Q4ZZPtdVv7moWUoPWfKfodvRTvv7oodUrbv3NZxmYWSo/Ji5UJW68p4zZfVqq3/jzT70822WTLmO3l57e5uflbj0312lKFCxdmxYoVSa9Xr16NVqvF3t4+tUWI92Sk1bKsXQtMDXTsv+9J61WbsLLNz4L56yhXtioREeGMGvsVW7atzuxQhUhBq1Exs09V1o9qgIWJAUfdn1Hpu60cu/7qhXLfJm/+Qnw5YxUuZaoSHRnO6infcXrbX+kctRAiO0p1s5ShoWGyYd+KohAbG4uxsXGGBCZS+qFedYrlzYN3aBjdNmzHrWQlJvw4DwsLK549e8LoH/vh6Xkvs8MUIgXHvCasGVGfWqXsAJix6RpjVlxM87pQL7mUrUbnkbMwNrMgyNeb1VO+47mX/OwLIRKlqUPxpEmTiIyMTHptYGDAmDFjCAn5/4y3Ms9NxijvkI/BNaoA8N2OA9Ss9zGDB45Hq9Vx/cYlfhj/DcHBaZ8PRIiMVr+sA6uG18MujzEhEbH0nHOMrWcevXN5lZt2oMVXo9FotDy6fYW1UwcRESI/+0KI/0t1cnPs2DHc3NyS7Tt16hSFCxdOei3z3GQMrVrNojZN0WrUbLh+B8fa7ejSuQ8ABw9tZ/rM0bIIpshyVCoY2aEsEz+riEaj5srDADpNO8SDZ29eE+a15anVNO05jOqtPwMSOw5v+3U88fKzL4T4j1QnN/Xr18/IOMQbDK5RmfIOdgRFRfOsZCO61GoGwLIV81j594JMjk6IlKxMDVgxtA6tqjoBsGz/XQb8fproWP07lWdobEqHYdNxrVwHgIN/z+fYhj/TLV4hRM6S5kn8xIflmjcPP9SrAcAFi6JUqtKM2NgYps8cxaHDOzM5OiFS+vdsw9Gx8Xz7+2mW7n/3/jBW+RzpNmY+doWKERsTxT+/jOXmqf3pGLEQIqeR5CYLU6ng99ZNMNJpuRQUiUmLZkRFRTD8+97cuHk5s8MTIoVvW5fk555VMHgx23CnaYfeaW2olwoWL0eXUXMxs7ImNPA5a6Z8x9P7N9MxYiFETiTJTRb2ZeVy1C5UkPDYOIIqf4KRSsWKvxZIYiOynDxmBiwZWJs21Z0B2HzSkz7zTrzzbMMAZeu2pM23E9DqDHj64BZrpnxHaIBveoUshMjBJLnJoopaWzG1UWL/ggOxJtjaOeHpdV+WUxBZTjU3W9aMrI9zPjNi4vQMW3KO33bceufyVCoV9bt9Q91OfQG4deYgm2aPJi5GVvQWQqSOJDdZUEVHO7Z92h4LI0MuPw/CutVgAOb9Oon4+LhMjk6IRCoVDG5bmqndK6PTqrn/NJQu0w9z+cG7LXoJoDMw4pNBkylVswkAxzcu5uDf82UkphAiTd4pubG0tKRq1arky5cPtTr5JMd//SUzhL6PxkUKsa5za8wMDbjy7DnX3RpTWKvj4OEdXL4iqxuLrCGvhSHLBtWm5YvRUOuOPeSr+ScJi3r35Nvc2pauY+aRv2gp4uPi2LZgAlcPb0uvkIUQuUiak5tWrVqxatUqzMzMCA0NTfYXlaIokty8h8/KleSPNk3RaTQceODJYn/4tn1VIiMjWPjH9MwOTwgAapa0Y9XwuhS0NSM6Np5Bf5zlz7133qtMh8Il6DZ2HhZ57YgIDWLttME8unkpnSIWQuQ2aU5uZs2axdKlSxk9ejRRUdIGnl5G1K7K5Bd9bFZfvcmQg6dZsngXAMv/mo9/wPPMDE8IVCoY8WJSPq1GzZ0nIXT+6RDunkHvVW7JGo35ZOBkDIyMef74AasnDSDI1zudohZC5EZpTm7y58/PvHnzJLFJJ2qVitnNG9C/WgUAZp04x+gDxxg4YBxWVtZ4et5j8z9SGyYyl62lESuH1qFJxQIA/H3oPv1/O0VEdPw7l6nRamncfUjSjMP3Lp1kw4zhxESGp0vMQojcK83Jzd69e6lcuTIeHh4ZEU+uYqjVsKJdS9qVciUhQWHY3sP8euYSrsVK8XGrLgD8Mn8iev27f4AI8b7qlrHn72H1cMxrQmR0PN8uPM3yA++3SKWFjR2dhs+kYPFyAJzYtJSDf88nIeHdZjAWQoh/S3Nys3PnTmbMmEHJkiVxd3cnLi55B8Lt27enW3A5mZWRIZu6tqV2oYLExMfTc/NuNt64g06nY9iQyajVag4c3M7Va+cyO1SRS6nVKkZ3KsePXcuj0ai54RVEl+mHufko+L3KLVKhBu2HTMPUIg9R4aH8M3csd84dSZeYhRAC3iG5+fPPxPVcfvzxxxTvKYqCViujy9/GzsyEPV90opSdDSHRMbRfs4Vjno8B6N1zMMWKliQkJIjfF0knYpE57KyM+Wt4XRqWcwQS14b6buEZImPevRZRpVZTr3M/6nTqi1qt5un9m6ybPpTg59K/RgiRvtKciWg0moyII9cw0en4p1s7StnZ4B0aRuu/N+Hu6w9AxQrV6dyxNwAzZo0hMNAvM0MVuVTDco78NawudnmMCY+K45vfTvH34QfvVaappTXth0yjSPnqAJzfvZ49S36WFb2FEBlCqlk+IJUKlrdrTuX89vhHRNJo2ToeBAYDYGGRh1EjfwZg2461nDx9MBMjFbmRVqPix64VGNWpHGq1imsegXSZfpg7T0Leq1ynEhXoOPxnLPLaERsdxbbfJuB+dFc6RS2EECm9U3JTp04dhg0bRokSJQC4efMmM2bM4MSJE+kaXE4ztVEd2pZ0JSY+ng5rtyYlNgDDh0zGJm8+Hj16yG8Lp2VekCJXcs1vwcqhdaniagvAH7tvM+TPs0THvl8H3xptvqBR90FoNFr8Hj9k3fQh+D1+mB4hCyHEa6nffkhyn376KQcOHCAyMpJ58+YlDQs/ePAgXbt2zYgYc4TuFUoztFZVAL7csodTj/7fz6BVi07UqtmIuLhYJk0dQkxMdGaFKXKhfi2Kc3FuW6q42hIYFkOXnw7Tf8Gp90psjEzN6TJqDk17DUOj0XLt6C4WDesqiY0Q4oNR0rLdvHlTGTRoUIr9gwcPVm7evJmmsjJjMzc3VxRFUUZOHfDBrlk5v70S9sMgJXbCMGVsverJ3itYsLCye/sV5fD+O0qnDr0y/fnIlns2+zzGyo7xjRX9jl6KfkcvZc/EpopjXpP3L9eluDJw4U5lwtZryg8bLyhVmnXK9HuVTTbZsv/28vPb3Nz8rcemuVmqcOHCrxzuvW3bNqZOnZrW4nI8W1MT1nVujaFWy9Zb95hy9HTSe1qtjrHfz8DIyJiLl06xYdOyTIxU5CZtqzvzx4Ca2FgaER0bz8hlF1iw4ybvuz5lpcbtad73e3QGhgT5erP+56E8vX8zfYIWQohUSnNy8/jxYxo2bMiDB8lHTzRq1IjHjx+nW2A5gUatYlXHVhS0tOCufyC9/tmd7MOjV4+BuLqWJiQ0iJ9+HikrH4sMZ26sY07favRs7ArA5QcBfD7zKLceB79XuTpDY1r1G0P5Bq0BuHPuKP/MHUNUeOj7hiyEEGn2TmtLzZs3j/Lly3Pq1CkAatasSY8ePRg4cGC6B5idTWlUh3ouToTFxNJx7VbCYv4/7LVC+Y+Shn3PnD1W1o4SGa5mSTtWDKmDi705CQkKP2+6xvhVl4mLT3ivcvPmL0TnkbOxcy5Kgl7PwVXzObl5mSTrQohMk+bkZuHChfj4+DB06FA6deoEwK1bt+jcuTPbtm1L9wCzq46l3BhSswoAff7ZzS2/gKT3zM0tGTViOmq1mh0713Hi5IHMClPkAjqtmnHdKjCifRk0GjUePmH0mHOMEzd837vsUjWb0ObbCRgamxIW5M/GmSPwvH4hHaIWQoh3905Dwbds2cKWLVvSOZScw8xAx++tmwAw4/hZ/rmVfB2eLp36YGtrz6PHHiyQYd8iA5UoaMXKoXWoWNQGgOX77zJo0VnCouLecubbVWvZlRZ9RwHg4X6ejbNGEh7k/97lCiHE+5JJ/DJA4yKFsDAy5EFgMD8eSj73j4mJKa0/Thwyv+jPGURHy+rqIv2pVPBNq5L81KMyxoZa/EOi+XrBSTaf8kqX8is37ZCU2JzaupL9y+fIopdCiCwjVclNQEAArq6uBAQEEBgY+Ma29Lx586ZbcNlVC7ciAGy/fR99QvJn1apFZ8xMzfF69IBTZw5lRngih7OzMmbFkDo0rpgfgD0XntB77nF8gtInkS7foDUf909cW+7kP8vZt3x2upQrhBDpJVXJzeDBgwkLC0v6WjoKvp5KBc2LFQZg193kI8p0Oh0d2vcAYN36JfIcRbqr6mrLhtENKGBjSlRMPMOXnuf3nbfSrfwydVrQ5tuJAJzZvkoSGyFElpSq5GblypVJX69YsSLDgskJKjvak8/MhJDoGE54JV/tuGGDj7G1scPP35cDh6TztUhfvRoX49f+NTDUabj1OJgOUw5y+z3Xhfq3kjUa88mgyajVas7vWc/uxbJqvRAia0rz8gvx8fHY2tqm2G9tbU18fHy6BJWdtXrRJLXvvgfxCf8fYqtSqZKGfm/avIK4uPfv0CkEJI6GWtC/On8OrI2hTsOW015UH7I9XRMbt6r16DD0JzQaLZcPbmHnwinpVrYQQqS3NHcoVqlUr9xvaGhIbGzsK9/LTVq4JiY3u+4kX0On+kf1KeRclPCIMLbvXJsZoYkcyD6PMetHNaBmSTsSEhTGrbrEtPVX33um4X8rWrEWnUbMQqPVce3oTrb+Ol6aVIUQWVqqk5tvv/0WAEVR6NOnD+Hh4UnvaTQa6tSpw+3bt9M/wmykgIU55RzyoU9IYM99j2TvdenUB4Bt29cQGRmRGeGJHKaaW2L/mvx5TQkOj+HzmUfZdeFJul7DpWw1uoyag1an48bJffzzy1iUhPeb9E8IITJaqpObwYMHA4k1N/369UOv//+wz9jYWDw9PenXr1/6R5iNtHBL7Eh85vFTAiL/PzKldKmKlCldidjYWDb9s/J1pwuRan2aujK/X3UMdBpueAXRbspB7j9N36UOnEtWotvYeegMDLl99jAbZ30vw72FENlCqpObwoUTP7gPHTpEu3btCA4OzqiYsq2kJqm7yZukunb+EoB9B7YQGOj3weMSOYeBVs0vX33EV82LA7D5pCc9fzlGeFT69ndzKlGBT3/8FQNDY+5eOM76n4eRoJc+dUKI7CHNfW4aNGiQEXFkeyY6HQ1cnADYeef/Q8Crf1SfGtUboNfHs37D0swKT+QADtaJ/WtqlEjsX/PDXxf5acO1dL9O1RadadprBFqdjgdXz7Bu+hD08dIBXgiRfaR5tNTGjRsZMWJEiv3Dhw9n/fr16RJUdtSgsBNGOi0eQSHcfLGOlKmJGYO/Gw/A+o3LePzE4w0lCPF61Yvn4/wvbahRwo6g8Bg+nrA/3RMbAyNj2g/5iZZfjUGr03Hz1AHWTBlIfGxMul5HCCEyWpqTmzp16rBr164U+3fv3k2dOnXSJajsqIVryon7vuwzDFtbe554e7J85fzMCk1kc182dePQtOY4WJtw3SuIaoO3sedi+nYctingwpczV1O2bgv0+nj2LJnBuulDiIuR5UGEENlPmpulzMzMXjnkOy4uDgsLi3QJKrtRqf7f3+Zlk1TZMpVp82INqZmzfyBW/voV72DiZxUZ06U8ABtPeNDrl+NERKdv35fStZvR+pvxGBqbEBrgy4YZI3h063K6XkMIIT6kNNfcuLu707lz5xT7u3Tpws2bN9MlqOymvL0djhZmhMXEcszzCTqdAUMHTwZgx851XL12LpMjFNmNRq1i0bc1kxKbcX9fovNPh9M1sdFodbToO4qOw37G0NiEh1fPsnBwZ0lshBDZXpprbiZNmsTmzZspUqQIhw4lLvzYsGFDunbtSseOHdM9wOygTYmiABx44EmsXk+f7t/hVNAF/4DnLPxzRiZHJ7IbIwMNa0bUo/VHzuj1CfT/7RSL995N12tY2tjTaeQsCriWAeDYhj85tHqBzGEjhMgR0pzc7Nixg7Zt2zJ69Gg6dOhAVFQU165do1GjRhw7diwjYszSDLUaelcqC8CmG3coUqR40oR9v8wbT0REWCZGJ7IbK1MDtvzYiNql7ImOjafbz0fYeuZRul6jSIUatB8yDVOLPESFh7J5zmjuXsh9/3eFEDlXmpMbgF27dr2yU3Fu1LVsCezMTHkUHMqW2w+ZP3ctGo2WI8f2cPLUwcwOT2QjjnlN2DWhCWUKWRMcHkPbSQc4fsM33cpXqdXU69yPOp36olareXr/JuumDyX4uffbTxZCiGzknZIbS0tLOnToQOHChZk5cyZBQUFUqFABX19fnj59mt4xZmmDqlcG4Nezl2jUuA2urqUJCwth3q+TMjkykZ24FbBk98SmOOcz42lAJM1/3Mt1r6B0K9/E3Ir2Q6dRtEJNAM7vWc+exT8THyfrwQkhcp40JzdlypThwIEDhISEUKhQIRYvXkxQUBDt2rXDycmJ7t27Z0ScWVKTooUomc+G0OgYVly5yYKF0wFY+fcCgoL8Mzk6kV1UdbVl+7jG2FgacedJCM1/3IvX8/C3n5hKBVzL0mnkTCxt7ImNiWL7b5O4dmRHupUvhBBZTZpHS82ePZvly5fj6upKdHR00v5du3blunluBr6otVl6yZ1qtZvh4FCAwEA/tu9cl8mRieyiacX8HJjaDBtLI87d9aPOiJ3plthotDqqt/6cXtOWYWljj7+3J38O/0wSGyFEjpfmmpsqVarw1Vdfpdjv7e2Nvb19ugSVHZSxs6Fx0ULoExL4/dxVJs1JTGjWblhCTEz0W84WAj6rX4TFA2uj06rZe/EJHacdSpeh3ubWtlRu1pHKTTtiZpUXgBsn97F1/jhiomRFeiFEzpfm5CYmJuaVk/W5urri55d7FoV8WWuz+eZdXCvXJX9+Z4KCAti+Y20mRyaygxEdyjKtR+LP0KrD9+k99wRx8e83DLuAa1mqtepGqZqN0Wh1AIT4+3B8w2LO78m9S6MIIXKfNCc327Zt48cff6RTp04AKIpCwYIFmT59Ops2bXqnIPr378/w4cOxt7fn6tWrfPvtt5w/f/6t53Xu3Jm1a9eyZcsWPvnkk3e69ruwMzOhS5kSAMw9fYkBkxIXxFy/cSnR0TJdvXg9rUbFb/1r0LupGwBztlxn+JJzKErqyzAzM8PBwQG1Wo1Gq6NoxVqUq98SO2fXpGO8793g2pEdPLx6hoQEPW5ubul9K0IIka70ej1eXl7Exb3/Qr1pTm6GDh3Kxo0bef78OcbGxhw9ehR7e3tOnz7NmDFj0hxAp06dmD17Nv369ePs2bMMGjSIvXv34ubm9saaIGdnZ2bOnJkpc+v0rFgGA62G04+8MStWgYIFXAgODmTLttUfPBaRfViY6NgwqgGNKuRHr09g8J9nWbDjVqrPV6lUjBo1ik8++QSVWo2hsSkGRiao1C+7zinERkcRGxWJvlJB2lX6Gvg6Q+5FCCEyQmRkJF27dn3vkddpTm5CQ0Np0qQJNWrUoFy5cpiZmXHp0iUOHny3OV2GDBnCn3/+yfLlywHo168fLVu2pFevXkyfPv2V56jValatWsW4ceOoXbs2VlZWry3fwMAAQ0PDpNfm5ubvFGfStVUqelcqB8Ci81dp9fn3APyz9W+ioyPfq2yRcznnM2P7uMaUcs5DeFQc3X4+ws7zj9NUxqhRo2jfoQOLli7n7gNP4uP1ACTo44kKCyEqPJSEBH1GhC+EEBnOyMiISZMmMW7cOPr164eSlirtV1DSsn3++eeKgYFBiv06nU75/PPP01SWTqdT4uLilDZt2iTbv3z5cmXLli2vPW/8+PHK5s2bFUBZtmyZ8s8//7z22HHjximvMnLqgDTF+nJr4VpYiZ0wTHk6or/iUsBZObz/jnJw7y3FxsbuncqTLedvlYvZKN5/dVH0O3opj1Z0VsoXtk7T+RqtTqnevINy1+Ox8t3Q7xXHIiUVxyIllbz5CylGpuaZfn+yySabbOm1NWnSRDl//rxiY2OT4j1zc3NFURTF3Pztv/fSPBR82bJlWFpapthvbm7OsmXL0lSWjY0NWq0WX9/ks7D6+vq+duRVzZo16d27N19++WWqrjFt2jQsLCyStvz586cpxv/qW6U8ACuu3KB+o8R+PucvnMDfP/1mkhU5R9vqzhye1gL7PCZceRhA9SHbufIwMNXnOxQuwYAFW+k2dDIqtRr3GzeJDAvG7/FDArw9iZblPYQQOciTJ08AyJMnz3uVk+ZmKZVK9cqqogIFChASEvJewbyNmZkZf/31F19++SUBAQGpOic2NpbY2PSZhbWQlSXNiroAiXPbTOkxEYDde9+tI7XI2QZ/Upqfe1ZBrVax6/xjuv58mPCo1A/1LluvFa37/4jO0IiI0ECiwhV8vO4T/Dx3zQIuhMg99PrEpnW1Os11L8mkOrm5dOkSiqKgKAoHDx4kPv7/v6Q1Gg0uLi7s2bMnTRf39/cnPj4eOzu7ZPvt7Ozw8fFJcXyRIkVwcXFh+/btSftePoC4uDjc3Nx4+PBhmmJIi96VyqBWq9h/35O8hctga2tPSEgQp07LGlLi/zRqFfP6fUS/Fokj6n7bcYtBi86gT0j5R8GrqDVamvQYQvXWnwFw98Ix3HcspeGiP6RPjRBCpEKqU6MtW7awdetWVCoVe/fuZevWrUnb2rVr+eqrr/jss8/SdPG4uDguXrxIw4YNk/apVCoaNmzI6dOnUxx/+/ZtSpcuTfny5ZO2bdu2cfjwYcqXL8/jx2nroJkWOo2aHhXLAPDnhau0bZN4r3v3/5Muw9ZEzmBurGPbj43p16IECQkKQ/48y7cLT6c6sTG1tOaLCQuTEpsj6xayevK3xETK5HsAHh4eDBw4MLPDEGmgKApt2rTJ7DDeyNnZGUVRKFeuXJYoJ7vKavefps4+X3zxhWJoaJhunYc6deqkREVFKV988YVSvHhxZeHChUpgYKCSL18+BVBWrFihTJ069bXnv61D8X+3lx2S0tqhuHXxokrshGGKx9CvlEIFXJI6EjvYF8j0DliyZY2tgI2pcml+W0W/o5cStvELpc1HTmk636FICWXw4r3KhK3XlNFrTyvFP2qQ9J6bm5ty/vx5xc3NLdPvM63bsmXLEv/PjRyZbH+bNm0UJbGNO9WbjY2NYmxsnGGxenh4JA06CA8PVy5evKh06NAh059hRm8lS5ZUNm7cmHT/AwcOfOVx/fv3Vzw8PJSoqCjlzJkzSpUqVd5atqIoyQaN/FtcXJzi5eWlzJo165UDVd72c5WW3/1v2pydnRVFUZRy5cq91/XVarViZ2enaDSaTP+evmn75JNPlPPnzytBQUFKeHi4cvnyZeWzzz5LcdyECROUp0+fKpGRkcr+/fuVokWLpuk5vnz9UkxMjHLv3j1lzJgxry3jTb/rMrRD8cqVKzEyMqJ3795MnTo1qdNPhQoVcHR0TGtxrF+/nmHDhjFx4kSuXLlC+fLladasGc+fPwfAyckJBweHNJeb3hoXLQTAPzfv0fLjrgCcOXuEZz5PMjEqkRWo1Sp6Ni7GuTmtKedizbPASOp9v5OtZx6luoxy9T+m908rsbJ1wN/bk0XDunH7zKEMjPrDioqKYuTIkW+ctiE1/P39iYrK2Ikyf/jhB+zt7alQoQLnz59n3bp1VK9ePUOvmVo6nS5DyjUxMeHhw4d8//33PHv27JXHvJyTbMKECVSsWJGrV6+yd+9ebG1t03y9Hj16YG9vj4uLC/379+fzzz9n7Nix73sbmS4hIQFfX9+kfiNZVWBgIFOmTKF69eqULVuWZcuWsWzZMpo0aZJ0zIgRI/juu+/o168f1apVIyIigr179yabWiW1GjZsiL29PcWKFWPcuHGMGTOGXr16pectvVKaMr4yZcoovr6+yt27d5XY2FjFxcVFAZRJkyYpK1asyPSM9G3bu9bc3PyutxI7YZjStnQJZfuWC8rh/XeUKpVrZfr9yJa5W6Pyjkm1NfodvZQrv7ZVnGxNU32+WqNVmn85Upmw9ZoyYes1pduY+YqhiVmK47J7zc22bduUmzdvKtOnT0/a/6qam3bt2inXr19XoqOjFQ8PD2XIkCHJ3vfw8EhWqzBu3DjFy8tLiY6OVry9vZW5c+cmvWdgYKDMmDFDefLkiRIeHq6cOXNGqVu37htj/W/5Go1GCQ8PT6o9Ll26tHLw4EElMjJS8ff3V/744w/F1DTx+12qVClFr9cnDWHNkyePotfrlTVr1iSVN2bMGOX48eNJr0uVKqXs2rVLCQsLU3x8fJSVK1cqefPmTXr/8OHDyvz585U5c+Yofn5+yqFDhzL8+/XfZ/ByO3PmjDJ//vyk1yqVSnny5EmyGrmiRYsqR48eVaKiopQbN24ojRo1emXNzX+n//jzzz+VHTt2pPnn6t81J+3bt1euXbuW9L3Zv3+/YmJikhTrDz/8oDx+/FiJjo5WLl++rDRt2jTp3P/WOKjVamXx4sXKw4cPlcjISOX27dvKd999l+zn7r/q1q37yhqgOnXqKGfPnlWio6OVp0+fKtOmTUtWs3P48GFl7ty5yvTp05WAgADl2bNnyrhx4z74/9OLFy8qEydOTHr99OlTZejQoUmvLSwslKioKKVz585J+6pUqaJcunRJiYqKUs6fP6+0bdv2lTU3/60R279/v/Lrr7++Mo5Mq7mZM2dOrlsVvJCVJUXz5iFOr8egcAXMTM15/MSDCxdPZnZoIpOUKGjF9nGN2Tu5GeVcrAkOj2HYknNUHbSNR36p6x9jamlN94mL+KjVpwAcXvM7a6Z+R0xk6lcFNzA2+uDbu9Dr9YwePZpvv/32tdMxVKxYkfXr17N27VrKlCnD+PHjmTRpEt27d3/l8e3bt2fw4MF89dVXFCtWjLZt2+Lu7p70/q+//kr16tXp0qULZcuWZcOGDezZs4eiRYumKe64uDgMDAwwMTFh7969BAUFUaVKFTp27EijRo349ddfAbhx4wYBAQHUrVsXgNq1ayd7DVC3bl2OHDkCgKWlJYcOHeLy5ctUrlyZZs2aYWdnx/r1ydcB6969O7GxsdSsWZN+/fq9Ms5u3boRFhb2xq1WrVqpvu//0ul0VKpUiQMHDiTtUxSFAwcOJNVqqVQqNm/eTGxsLNWqVaNfv36vnYj134oVK0aDBg04e/bsO8dnb2/PmjVrWLp0KSVKlKBevXps3rwZlUoFwMCBAxk6dCjDhg2jbNmy7N27l23btr32Z0GtVvPkyRM6duxIyZIlmThxIlOnTqVjx44AzJw5k3Xr1rF7927s7e2xt7fn1KlTKcpxdHRk165dnD9/nnLlyvH111/Tu3fvFLVU3bt3JyIigmrVqjFixAh+/PFHGjVq9Nr7Te/vd4MGDXBzc0ua8d/FxQUHB4dk3+/Q0FDOnj2b9P02NTVlx44d3Lx5k0qVKjF+/Hhmzpz51mtVqlSJSpUqvdf3OzXSPBS8cuXK9O3bN8X+nLwqeIMiTgCcf+pLy7ZfALBl66r3nj1RZD+2lkaM/7QCfZq6odWoiYtP4Pddt5i05gqBYTGpLsexaCm6jJqDpY090ZHhbJ4zmjvnjqQpFgNjI6adO5zGO3h/o6rWJzYq+u0H/seWLVu4cuUKEyZMoE+fPineHzJkCAcPHmTy5MkA3Lt3j5IlSzJ8+HBWrFiR4ngnJyd8fHw4cOAA8fHxPH78OGlNuoIFC9KzZ0+cnJySmllmzZpFs2bN6NmzZ6qWitHpdAwdOhQrKysOHTpEt27dMDIy4osvviAyMpIbN24wYMAAtm/fzsiRI3n+/DnHjh2jXr16bNq0iXr16rFs2TL69OmDm5sbDx48oEaNGvz8888ADBgwgMuXLyeLpVevXjx58oRixYpx7969pOcwcuTIN8a6bdu2t35YeHt7v/WeX+dNc5IVL14cgEaNGlG8eHGaNm2a9MxHjx79ylG0a9asQa/Xo9VqMTIyYvv27UybNu2d43NwcECn07F582YePUpsDr5+/XrS+8OGDWP69OmsW7cOgO+//5769eszaNAgBgwYkKK8+Ph4xo8fn/Ta09OT6tWr06lTJzZs2EBERARRUVEYGhqmeCb/1r9/fx4/fpx0jTt37uDo6Mj06dOZOHFi0mfItWvXmDgxcWqR+/fvM2DAABo2bJgsufi39Ph+W1hY4O3tjaGhIXq9nv79+ydd7+Vn+ZvmoOvWrRtqtZrevXsTExPDzZs3KVCgAAsXLkxxrVOnTpGQkICBgQEGBgb88ccf/PXXX2+M733JquBvoVWr6VkhcZRUvGNxnAomriO1d98/mRyZ+JCMDDQMbFOK7zuWxcLEAIAtp734ftl57j0NTVNZ5Ru0ptXXP6AzMMTviQdrpw7E39szA6LOekaOHMmhQ4de+RdeiRIl2Lp1a7J9J0+eZNCgQajVahISkq+avmHDBgYNGsTDhw/Zs2cPu3btYvv27ej1esqUKYNWq+Xu3bvJzjE0NHzrHFnTp09n8uTJGBkZER4ezsiRI9m1axezZs3i6tWrREb+f5mVkydPotFocHNz4/nz5xw9ejTpj7+6desyevRoXF1dqVevHtbW1uh0Ok6eTKzxLVeuHPXr1ycsLOVEjEWKFElKbi5evPjGeAHCw8MJD099jV9GKFGiBI8fP07WZ+dVo14BBg8ezIEDB9BoNBQtWpTZs2fz119/0bVr13e69tWrVzlw4ADu7u7s3buXffv2sXHjRoKDgzE3Nyd//vxJz/2lkydPvnFUT//+/enVqxdOTk4YGxtjYGDAlStX0hRXiRIlUjyDkydPYm5uToECBZJG+F67di3ZMc+ePSNfvnyvLTc9vt9hYWGUL18eMzMzGjZsyOzZs3n48CFHjx5N1fklSpTg2rVrxMT8/4+6132/O3fuzK1bt9DpdJQuXZr58+cTFBTEqFGj3use3iRLrAqelU1qVJtqBR2J0iuYVGlBeFws4yZ+S0Qamg5E9qVSQde6hZn8RWWc85kBcOGeP8OXnOPY9ZRzMb2JztCYZr2GUblZYtX27bOH2fzLmDQ1Q/1bbFQ0o6rWf6dz38e71Nq8dPz4cfbu3cu0adOS1pN7V0+ePMHNzY1GjRrRuHFjfvvtN4YPH07dunUxMzMjPj6eSpUqpejc+bYPhRkzZrB8+XLCw8Pf+Ff5qxw5coRffvmFokWLUrJkSU6cOEHx4sWpV68eefLk4cKFC0kdos3MzJJqff7r3wlCRMTbmzm7devGH3/88cZjmjdvzokTJ9J0Py+ldU6yt/Hx8eHBgwcA3L17F3Nzc9auXcvYsWOT9qdFQkICjRs3pkaNGjRp0oRvv/2WKVOmUK1atVRP+PpvnTt3ZubMmQwdOpTTp08TFhbG8OHDqVatWprLSo3/TieiKMobJ7FLj++3oihJz/rq1auUKFGCUaNGcfTo0aTv6X+/v3Z2dmlO8AAeP36cdK3bt29TpEgRJk2axPjx45MlR+kp01cFz8raFC/K0JpVAPAs2ZgYI3NmzxzFNfcLmRyZ+BBqlbJjRu+qVHVNHA3y6Hk4Y1deZPXRB6S1RdKhcAnaD/0J2wKJM1wfXv0bR9f/8d5Nm++TaGSW77//nitXrnDnzp1k+2/dukXNmjWT7atZsyZ3795NUWvzUnR0NDt27GDHjh0sWLCAO3fuUKZMGS5fvoxWqyVfvnxp/kD39/d/5QfsrVu36NGjByYmJkm1NzVr1kSv1yfdi/v/2jvzuBrT949/OnVOKdkpa2OUFkuWSdLXFCHMbyZkGzMky4xtJoTslXWyhBGmGSPrNJiETERkqyQphVTatCja1Omc03K6fn/07fk6WlTkJPf79bpeL8/9XM91X/d9P85zda9RUcjNzcXatWsRERGBwsJCXL9+HQ4ODmjdujU33wYo3xjV2toaSUlJ77y6pqGHpV7fk6yid61iT7KKOUfR0dHo2rUrNDU1uQ/i4MGDa2W/ovzNmjWrt49A+fBHUFAQNmzYgOTkZIwfPx67du1CWloaTE1NuTklQHnb3b17t0o7pqamCAoKwoEDB7i0Hj16yOgUFxdDUVGxRn+io6NhbW1dyXZ+fj53zEB9aIj25vF43EqoxMREPH/+HBYWFnjw4AGA8iOWjI2NuTqJjo7G9OnToayszAUodWlvPp8PgUDQeIKbilPBTU1N0bdv33c+Fbyx0qNNKxwcPwYA8EzDADltu+Pvkwdxye+MnD1jNDQ8ngL2vrbDcIGoBL+cfoDd5x5BUly3j5CCggKGjLPB8O9+ghKfj/zsTJzZvRaJkQ07ma4x8/DhQ5w4cQI///yzTPrOnTsRGhqKtWvXcsuvFy1ahAULFlRpx8bGBoqKiggJCYFIJML3338PkUiE5ORk5OTk4Pjx4zh69Cjs7e0RHh6O9u3bw8LCApGRkfD19a2z3ydOnICzszOOHDkCJycntG/fHnv37sWxY8e4rSsA4ObNm/juu++4obfIyEgoKytzXf8V7Nu3D3PnzoWnpye2bduGnJwcaGtrY+rUqZgzZ061AV1VvOswBZ/Ph4GBAQBAIBCgc+fOMDQ0hFAo5AI9V1dXHDlyBPfu3cPdu3exePFiqKmpcWcK+vv7IzY2FkeOHMHy5cvRokULbN68ucr8WrVqBQ0NDfB4POjo6GD9+vWIiYlBdHR0vfwfNGgQLCwscPnyZbx48QLGxsZo3749Z2/79u1wdnZGfHw8IiIiYGtri379+uG7776r0l5cXBxmzJiBUaNGITExEdOnT4eRkRESExM5naSkJFhaWqJnz57Izs6u8vih/fv3Y/Hixdi7dy/c3Nygq6sLZ2dnuLq6vtMfNu/a3itXrsS9e/cQHx8PZWVljB07FtOnT8f8+fM5nd27d2Pt2rWIi4tDYmIiNm7ciPT0dJw9exYA8Ndff2Hz5s34448/sHXrVnz22WdYtmxZlfm1bdsWGhoaUFJSQp8+fWBnZ4dr165VOST7PvngS87kKbVZCi5QVKTQeTOo2HkZZWzbQtf9ommT837i8Xhy959JwwqPp0CHl35J0guzqPjcTNq/cAh1aKVSL1vqbTqQzYY/uGXeU1a6UjP1lvWy9bEvBX9zszMtLS2SSCTVLgUvKiqipKQkmaWogOwyZSsrKwoODqa8vDwqKCigoKAgGj78fxsfKikpkZOTEyUkJFBRURGlpaWRl5cX9e7du1pfq1sGXSE1LQWvEDs7OyIimaXG3t7eVFxcXElXW1ubvLy8KCcnhwoLC+nx48fk6urK3Q8ICKBdu3Y1eBu9udlaBQEBATJ6CxcupKSkJJJIJHTnzh0aNGiQzH0dHR26efMmSSQSevLkCY0aNarGTfykUimlpaWRp6cnt63I6/7UtHT/9fdKT0+PLl68SJmZmSQWi+nJkye0cOFCTldBQYHWr19PKSkpVFRU9Nal4AKBgA4dOkS5ubmUk5ND+/btoy1btlB4eDj3TLt27cjPz4/y8/PfeSn4m23s7e1NHh4eDdbeGzdupNjYWBKJRJSdnU2BgYE0efLkSnrOzs70/PlzEovFdOXKFdLR0ZG5b2xsTOHh4SSRSOj+/fs0fvz4KpeCV1BSUkLPnj0jd3f3Kk/9Bt7fUnDUpUIUFBTI1taWfHx8KCoqiiIjI+ncuXM0ffr0Bv/P976kNsGNpXZ3KnZeRjnrl1Hghft08LdzpKKiKnffmTSsKPIU6PgyM5JemEVF52bSRNPP6m1Lb/Bwcjh2k5zPRdKakyE0YOSEd/LtYw5umDCpq5ibm1NOTg61atVK7r4w+bDyvoKbOg1LnT9/HmPHjsWDBw8QFRUFBQUF6Ovr4/Dhw5gwYQLGjx9fF3ONlo4t1AAAr9TaolhZDUeP74NEInrLU4yPGSVFBRxfZo5JQ7ujpLQM37oEwDs4uc52BCrNMHr2CgwcVT7Onvb0EbxcVyH7E1kNxWC8D8aOHYstW7YgLy9P3q4wPlJqHdzMnDkTX375JSwsLGQmxQHAsGHDcPbsWUyfPr3B165/CNqpqgIA+OptUFpagrD7lTdnYjQd+Eo8eK4wx/ghn6G4RIrJW6/B527dD2HtpG0A66W/oF3nz1BWVoZAbw8E/LUP0tLSBvCawWi6rFixQt4uMD5yah3cfPvtt9iyZUulwAYAAgIC8Msvv+C7775rEsFNW9XyGfslSiqIjApjy76bMAIlHk6uHIZvBmtBUlyKiVuu4eK9uq1iUOILMGScDcynzoOiEh+vsjJxZvdqJEWFNpDXDAaDwaiJWgc3ffv2rTGavnjxYqXVDx8r7SqCG74K7tytvLsmo2mgzFfEP6uHY6xRV4iLSjFh81Vcvl/75ZMKCgro8+VYWHz/E1p1KD809lHQFfjsc4ZYWLeN/RgMBoPx/qh1cNOmTZsaN7TKzMzkTgj/2NFQL9+srZSvgpC7tdutkfFxoSJQhPdaC4wa0AUiSSnGbfTH1QfptX6+e19jjJq5FJ16lC8Xf5WVCf+juxF549+GcpnBYDAYtaTWwY2ioiJKa5g7UHFOyMdOO9VmMPusKwAgpbAIz54lyNkjxvummbIizq4biRH9OqFQUoKvna/gRlTtdlnV0NLBSJsl0BlYfiidpLAAt7z+xB2fEygtbpjNqBgMBoNRN2odjSgoKODw4cPV7iZYsbPhx46dyUA0U1JEgVo7/BsV+fYHGB8VaipKOLd+JIb17QihuARfOV3G7Udv32K/RVsNDP9uIQyHfQMej4fSkhKEXjyJm6d+h6ggr+EdZzAYDEatqXVwU9WpvG9y9OjRd3JG3rRupoIFgwcCAFK79sftE45y9ojxPlHkKeCf1cMxrG9H5IuKMXb9ZQQ/eVHjM8qqzfGfCbNg8s334CurAAAe3r4E/2O/Ijej/tunMxgMBqPhqHVwM2vWrIb0o1Ews39vqAv4KFRtg6vJGbgffkfeLjHeI9tnD8KoAV1QKCnB6HV+CImp/hR7RSUlfDF6Msym/Ai1FuVzyZIeheHyYVekxUZ9KJcZDAaDUQ+qP3b0E8REWwcA8LJtdxz43UXO3jDeJ7NH9YSdVS8AwEzXmzUGNgZDRmKh21mMnbsSai1a42VKAv7a/DM8VtuywEbOJCYmws7OTt5uMOoAEcHKykrebtSIlpYWiAiGhoaNws7HTGNpbxbcvEb/nroAgPtxMYh7+ljO3jDeF//ppQG3+SYAAMfj93EmqOqdh7sZDMCcbccxxWEn2nbshoLcLJzf54z9P1sj5u71D+hx08LDwwNEBAcHB5l0KyurOh8eaGRkhN9///19uidDYmIiiAhEBKFQiLCwMEycOLHB8mssGBgY4J9//uHKX10AuWDBAiQmJkIsFuPOnTswMjKqc14V9UtEKCkpQXJyMnbu3AmBQFAnOx4eHvD29q5z/u+LqvJPSUmBpqYmHj58KCevasfH2N51hQU3/6V58xZop1xe2f9cPidnbxjvC60OzfHP6uEQ8BVx6mYCNv0dUUmnQzdtfLvmV8zeehhddfuiSCxCwF/78eu8rxB22QtlZXU7CZxRGbFYDAcHB7Rq1eqd7GRlZUEsFr8fp6ph3bp10NTURP/+/REaGsqdUN4Y4PP5DWJXVVUVCQkJWLlyJZ4/f16lzuTJk+Hq6gpnZ2cMGDAADx48gJ+fH9q3b1/n/GbOnAlNTU10794dCxYswPTp07F27dp3LYbcKSsrQ2ZmJqTSxv2b8Sm0Nwtu/ku3rp9DUFx+ftSTlLpvvc9ofDRvpoSz60agfctmCHuahVl7bsncb9lOE+N+3oj5e/6B3iBzSKWlCL10Cr/O+wrXT/6GYknDfkQ/Jfz9/ZGRkYFVq1bVqDdhwgQ8fPgQEokEiYmJWLp0qcz9N4elHB0dkZycDIlEgrS0NOzZs4e7JxAIsH37dqSmpkIoFOLOnTswMzN7q68FBQXIzMxEXFwcFi5cCLFYjK+//hoA0Lt3b1y9ehUikQhZWVlwd3eHmlr5WXS9evWCVCpFu3btAACtW7eGVCqFp6cnZ3vNmjW4det/72GvXr3g6+uLgoICZGRk4OjRo2jbti13PyAgAHv37sWuXbvw8uVL+Pn5vdX/+nDv3j2sWLECJ0+erHZF7NKlS/HHH3/g8OHDiI6Oxrx58yASiWTmY2pra+PGjRsQi8V49OgRRowYUaWtvLw8ZGZmIjU1Ff/++y/OnTuHAQMGvFMZrK2tERkZybXNlStXoPrfo3QUFBSwbt06pKSkQCKRIDw8HJaWltXa4vF4OHjwIBISEiASifDkyROZTWodHR0xc+ZMjBs3juuVMDMzq3JY6ssvv0RISAgkEgnS09OxdetWKCoqcvcDAgKwZ88euLi4IDs7G8+fP4ejY8MuZmkK7f02WHDzXz7X+hz8UgkA4LmwUM7eMN4VBQXg6FIz9O3eBs9zRBi/0R/iovK/ppqpt4SlrT1+OuCD/hZW4PF4eBR0Bft+moALBzZBmJctZ+9rj6qq8geX+iCVSrF69Wr89NNP6Ny5c5U6AwYMwKlTp/D333+jT58+cHJywsaNG2FjY1OlvrW1NZYsWYIff/wROjo6GDduHKKi/jcnys3NDSYmJpg6dSr69u2L06dP49KlS9DW1q6T3yUlJRAIBFBVVYWfnx9yc3NhZGSESZMmYcSIEXBzcwMAPHr0CNnZ2VwANXToUJlrADAzM+OOsGnZsiWuXbuG8PBwfPHFFxg9ejQ0NDRw6tQpGR9sbGxQXFwMU1NTzJs3r0o/p02bhoKCghrlP//5T63L/SZ8Ph8DBw6Ev78/l0ZE8Pf353q1FBQUcObMGRQXF8PY2Bjz5s2Di8vb5y7q6Ohg+PDhCAkJqbd/mpqa8PT0xKFDh6Cvrw9zc3OcOXMGCgoKAAA7OzvY29tj2bJl6Nu3L/z8/HD+/Plq3wUej4fU1FRMmjQJBgYG2LBhA7Zs2YJJkyYBAHbs2IGTJ0/i4sWL0NTUhKamJoKCKp9B2KlTJ/j6+iI0NBSGhoaYP38+Zs+eXanXwsbGBoWFhTA2NsaKFSuwfv36agMFgLV3bfj4d917T/TW+hwAUEpAtoj9xf6x4/zdAFiZlJ8XZb35KtKyReArN8Pgr7/DfybYQkVNHQCQGHUXV47sRlpc4x4jrwpVVWUIC//54Pk2V5sIkajuGxaePXsWERERcHZ2xpw5cyrdX7p0Ka5evYpNmzYBAOLi4mBgYIDly5dXuRVFt27dkJGRAX9/f5SWliIlJQWhoeXneXXt2hW2trbo1q0b1+2+c+dOjB49Gra2tlizZs1b/eXz+bC3t0erVq1w7do1TJs2DSoqKpgxYwZEIhEePXqERYsWwcfHBw4ODnjx4gVu3rwJc3NzeHl5wdzcHB4eHpgzZw50dXURHx+PIUOGYNu2bQCARYsWITw8XMaXWbNmITU1FTo6OoiLi+Pq4c35Sm9y/vz5t34s0tJqf7TIm7Rr1w5KSkqVdqnPzMyEnp4eAGDEiBHQ09ODpaUlV+erV6/GpUuVj7Dx9PTkNn5VUVGBj48Ptm7dWm//OnbsCD6fjzNnzuDZs2cAIDPvZdmyZXBxccHJkycBACtXrsSwYcOwePFiLFq0qJK90tJSODk5cddJSUkwMTHB5MmTcfr0aRQWFkIsFkNZWbnGnfsXLFiAlJQULo+YmBh06tQJLi4u2LBhAzfnLDIyEhs2bAAAPH36FIsWLYKFhYVMcPE6n3p71wYW3PwXnU6dAaQht5id4PyxM/XLz7Fmaj8AwI97AxH6NBdfjJ4E8ynzoN6mfLz4ecIT+B/dg6fhgXL09NPDwcEB165dw44dOyrd09fXx7lzsvPdAgMDsXjxYvB4PJSVlcncO336NBYvXoyEhARcunQJvr6+8PHxgVQqRZ8+faCkpITY2FiZZ5SVlZGdXXPPnIuLCzZt2gQVFRUIhUI4ODjA19cXO3fuxIMHDyASiWT8U1RUhK6uLl68eIEbN27ghx9+AFDeS7N69Wr07NkT5ubmaNOmDfh8PgIDy985Q0NDDBs2DAUFBZV86NGjBxfchIWF1egvAAiFQgiF8j3gV19fHykpKTJzOIKDg6vUXbJkCfz9/aGoqAhtbW24urri2LFj+Pbbb+uV94MHD+Dv74+oqCj4+fnh8uXL+Oeff5CXlwd1dXV07tyZq/cKAgMDa1zVtGDBAsyaNQvdunVDs2bNIBAIEBERUSe/9PX1K9VBYGAg1NXV0aVLF6T8dwpEZKTshrHPnz9Hhw4dqrX7qbd3bWDBzX/p3r4d8DINmYWityszGi1f6LTDQbvy7tht/0TiftHnWLh3F9p1/gwAkJORimsn3PDw1sU6r9RpbIhERWiu9uFX8tSn16aCW7duwc/PD1u3bsXhw4ffyY/U1FTo6upixIgRGDlyJPbv34/ly5fDzMwMzZs3R2lpKQYOHFhpcufbPgrbt2/H4cOHIRQKa/yrvCquX7+O3bt3Q1tbGwYGBrh9+zb09PRgbm6O1q1b4969e9yE6ObNm3O9Pm/y+gejsPDtw+TTpk2Du7t7jTpjxozB7du361SeCrKyslBaWgoNDQ2ZdA0NDWRk1O7oktfJyMhAfHw8ACA2Nhbq6ur4+++/sXbtWi69LpSVlWHkyJEYMmQIRo0ahZ9++gmbN2+GsbHxW4PZqpgyZQp27NgBe3t7BAcHo6CgAMuXL4exsXGdbdWGkpISmWsiAo9X/ayRT729awMLblC+UqpTc1XgJZCUnSNvdxj1pGObZvBeOwLNlJVw+cELxGr/iCnjy3+MhHk5uHnKHff8TkNawxlpHxvvEmjIi5UrVyIiIgIxMTEy6dHR0TA1NZVJMzU1RWxsbKVemwokEgkuXLiACxcuYN++fYiJiUGfPn0QHh4OJSUldOjQoc4/8FlZWVX+4EZHR2PmzJlQVVXlem9MTU0hlUq5skRFRSE3Nxdr165FREQECgsLcf36dTg4OKB169bcfBsAuH//PqytrZGUlPTOq2saepiipKQEYWFhsLCw4HrXFBQUYGFhwc05io6ORteuXaGpqcl9AAcPHlwr+xXlb9asWb19BICgoCAEBQVhw4YNSE5Oxvjx47Fr1y6kpaXB1NQUN2/e5HRNTU1x9+7dKu2YmpoiKCgIBw4c4NJ69Ogho1NcXCwzMbgqoqOjYW1tXcl2fn4+UlPrv8M5a++3w4IbALo9e6NFfnnjPEirelkco3GjIlDEmbUj0KmtKhJyyhCq7YDPVFqiWCJGoPdhBJ07gmIx65VrDDx8+BAnTpyQWX0ClM+JCQ0Nxdq1a7nl14sWLcKCBQuqtGNjYwNFRUWEhIRAJBLh+++/h0gkQnJyMnJycnD8+HEcPXoU9vb2CA8PR/v27WFhYYHIyEj4+vrW2e8TJ07A2dkZR44cgZOTE9q3b4+9e/fi2LFjePHif8d43Lx5E9999x039BYZGQllZWVYWFjA1dWV09u3bx/mzp0LT09PbNu2DTk5OdDW1sbUqVMxZ86cagO6qnjXYQo+nw8DAwMA5avMOnfuDENDQwiFQi7Qc3V1xZEjR3Dv3j3cvXsXixcvhpqaGjw8PACUr4iLjY3FkSNHsHz5crRo0QKbN2+uMr9WrVpBQ0MDPB4POjo6WL9+PWJiYhAdHV0v/wcNGgQLCwtcvnwZL168gLGxMdq3b8/Z2759O5ydnREfH4+IiAjY2tqiX79++O6776q0FxcXhxkzZmDUqFFITEzE9OnTYWRkhMTERE4nKSkJlpaW6NmzJ7Kzs/Hq1atKdvbv34/Fixdj7969cHNzg66uLpydneHq6vpOPcefenvXFvqURF1dnYiIHLYs4tJmTJtPok2rqdh5GQ3q0lHuPjKpuxxbZkbSC7Po1dkfaM+5W+R8LpJmbjpIrTU6y9239yG6uroUGhpKurq6cvelruLh4UHe3t4yaVpaWiSRSIjKf+E5mTBhAj18+JCKioooKSmJ7O3tZe4nJiaSnZ0dASArKysKDg6mvLw8KigooKCgIBo+fDinq6SkRE5OTpSQkEBFRUWUlpZGXl5e1Lt372p9fd1+VdK7d2+6evUqiUQiysrKInd3d1JTU5PRsbOzIyIiS0tLLs3b25uKi4sr6Wpra5OXlxfl5ORQYWEhPX78mFxdXbn7AQEBtGvXrgZvIy0tLaqKgIAAGb2FCxdSUlISSSQSunPnDg0aNEjmvo6ODt28eZMkEgk9efKERo0aRUREVlZWnM7rSKVSSktLI09PT+revXslf8zMzGr1Xunp6dHFixcpMzOTxGIxPXnyhBYuXMjpKigo0Pr16yklJYWKioooPDxcpn0q8jM0NCQAJBAI6NChQ5Sbm0s5OTm0b98+2rJlC4WHh3PPtGvXjvz8/Cg/P5/z9U07AOjLL7+kkJAQkkgklJ6eTlu3biVFRcUa29jb25s8PDw+mfZ+XWr6rav4fqurq9emnA37n6axSVXBzWFnVyp2XkbZ65YST0FB7j4yqZ2oKiuR7UgdCtr5NUkvzKJinzl0+Ny/tPrvO2Q0ejIpNKG2/JiDGyZM6irm5uaUk5NDrVq1krsvTD6svK/ghg1LATBq2xzIBm6mZqLsI59k+ikwoEdbzBmti2/NPkcL1fJdpaXEgy9Z4NqDNJx3m4u8F+ly9pLBYNSXsWPHYsuWLcjLy5O3K4yPlE8+uNHU7ALNolwAwJmIyLdoM+RFC1U+ppn3wOxRPTFAux2Xnl3WAhHog7siLXgfOoCwy15y9JLBYLwPVqxYIW8XGB85n3xwY6DXF6qi8uAm5Fn9Z68zGoYh+h0wx1IXk/7THaoq5a9rUUkZHhRqIkZ9KJLRBU/Dg3De7Xu8yqr7EkUGg8FgND0++eBmsEFfKJaVQkpAQm7l2e6MD08bdWVMH66N2aN6opdWay790bM8XEtviULD2ShVbwlJYQEu/emI8Ktn5ecsg8FgMBodn3xwM6jH54AwFmniIpTWYekl4/2ioACY9+mIOZa6GD9EC8r88v0jRJJSnLqVgJP3ctHtGwd0NeoHAIi9dws++zcgP7tum6wxGAwGo+nzSQc3KirN0LNNK0AIPMp48VZ9RsPQvJkSvNeOwHDDTlza/adZ+NMvFn/diMdngyzxfz9th3IzNYiF+bj05zZEXDsvR48ZDAaD0Zj5pIMbPd2+UCsqP9clMrX+uzky6k9LNQF8nUdhsF4HFEpKcDwgHgcvxeB+fDaUVZvj/+ZtRF+zsQCA5Ef34bVrFV69ZBstMhgMBqN6Pungpm+fL6AqKj9u4clLduzCh6ZtC2Vc2mCJAdrtkJ0vgeU6P4THl58D01XPENZLf0Frjc6QSktx3fMAbnn9CWJDhwwGg8F4C590cNOn1wA0L3wKAHjAhqU+KBqtmuHy5tHordUamblijFp7CQ+Tc8HjKeLLyT/AbPIP4CkqIicjFV47VyI1li3TZzAYDEbtqP7Y0SaOAhTwRY8eUCwrgaRUiuisup8cy6gfnduqIuCXseit1Rpp2YUYtsoXD5Nz0apDJ9huOYRh384HT1EREQE++G3xJBbYMDgSExNhZ2cnbzcYdYCIYGVlJW83akRLSwtEBENDw0Zh52OlMZX/kw1uVJVboq20/CDFqMwXkJaxnYk/BFodmuO6y1fQ7dISyS+EMHfwRUzqK/QeOgbzd59GN/3+kIiE+Md1Jbx3r0GRuFDeLjPeEQ8PDxARHBwcZNKtrKzqfHigkZERfv/99/fpngyJiYkgIhARhEIhwsLCMHHixAbLr7FgYGCAf/75hyt/VQGko6MjVzcVUp+DD19/vqSkBMnJydi5cycEAkGd7Hh4eMDb27vO+b8vqso/JSUFmpqaePjwoZy8qh3jx49HaGgocnNzIRQKER4eju+//76SnrOzM9LT0yESiXDlyhVoa2vXKZ+KYKdCioqKEBcXhzVr1ryvolTLJxvcNFdtA7XC8nk2Ec/ZkNSHQLtTC9xwGYvPNdXxND0fZg7/IvWVFOPtNmHSMheoqKnj2ZMIHLCbhKgbdT+1mdF4EYvFcHBwQKtWrd7JTlZWFsRi8ftxqhrWrVsHTU1N9O/fH6GhodwJ5Y0BPp/fIHZVVVWRkJCAlStX4vnz6ifsP3z4EJqampz85z//qVd+M2fOhKamJrp3744FCxZg+vTpWLt2bX3dbzSUlZUhMzMTUqlU3q7USE5ODjZv3gwTExP07dsXHh4e8PDwwKhRozidFStW4Oeff8a8efNgbGyMwsJC+Pn5QVlZuc75WVhYQFNTEzo6OnB0dMSaNWswa9as91mkSnyywY2aSmuo/HelVFx2rpy9afoYdm+D67+MRdf2zRGdkocRa6+gpd6XmL/rNPoN/wZlUimu//0bPFbZIu8FW7nW1PD390dGRgZWrVpVo96ECRPw8OFDSCQSJCYmYunSpTL33xyWcnR0RHJyMiQSCdLS0rBnzx7unkAgwPbt25GamgqhUIg7d+7AzMzsrb4WFBQgMzMTcXFxWLhwIcRiMb7++msAQO/evXH16lWIRCJkZWXB3d0dampqAIBevXpBKpWiXbvy40Fat24NqVQKT09PzvaaNWtw69Yt7rpXr17w9fVFQUEBMjIycPToUbRt25a7HxAQgL1792LXrl14+fIl/Pz83up/fbh37x5WrFiBkydPoqioqFq90tJSZGZmcpKdLTucr62tjRs3bkAsFuPRo0cYMWJElXby8vKQmZmJ1NRU/Pvvvzh37hwGDBjwTmWwtrZGZGQk1zZXrlyBqqoqAEBBQQHr1q1DSkoKJBIJwsPDYWlpWa0tHo+HgwcPIiEhASKRCE+ePMHPP//M3Xd0dMTMmTMxbtw4rlfCzMysymGZL7/8EiEhIZBIJEhPT8fWrVuhqKjI3Q8ICMCePXvg4uKC7OxsPH/+HI6Oju9UF2/jxo0bOHv2LJ48eYKEhAT8+uuviIyMlAlWFy9ejE2bNuH8+fOIiorCjBkz0KlTJ4wbN47TMTIywv379yEWixEaGor+/ftXmV92djYyMzPx7Nkz/PXXXwgMDHzn9n4bn2xwo96sDRRLiwEAOSKJnL1p2swYro3AHf+Hjm1U8ShViA2Rn2HaTh9MWuaCNh27IjczDR5rZiHAcz/Kyhr3XzyNDRWVZh9c6oNUKsXq1avx008/oXPnzlXqDBgwAKdOncLff/+NPn36wMnJCRs3boSNjU2V+tbW1liyZAl+/PFH6OjoYNy4cYiKiuLuu7m5wcTEBFOnTkXfvn1x+vRpXLp0qU5d61KpFCUlJRAIBFBVVYWfnx9yc3NhZGSESZMmYcSIEXBzcwMAPHr0CNnZ2VwANXToUJlrADAzM8P169cBAC1btsS1a9cQHh6OL774AqNHj4aGhgZOnTol44ONjQ2Ki4thamqKefPmVenntGnTUFBQUKPUt5fldXR0dJCWlob4+HgcP34cXbt25e4pKCjgzJkzKC4uhrGxMebNmwcXF5da2Rw+fDhCQkLq7ZempiY8PT1x6NAh6Ovrw9zcHGfOnIGCggIAwM7ODvb29li2bBn69u0LPz8/nD9/vtp3gcfjITU1FZMmTYKBgQE2bNiALVu2YNKkSQCAHTt24OTJk7h48SLXixUUFFTJTqdOneDr64vQ0FAYGhpi/vz5mD17dqVeKhsbGxQWFsLY2BgrVqzA+vXrqw0Mgfff3sOHD4euri5u3rwJAOjevTs6duwIf39/Tic/Px8hISFcL6aamhouXLiAx48fY+DAgXBycsKOHTvemtfAgQMxcODAd2rv2vDJrpZSa9YaSqUxAIA8CQtuGgKBEg+7fxyMH8foAQCi8lvDr+M89OqoAgB4lZWB+1e8ccfnOCSFBfJ09aNERaUZLvpEfPB8x3zdDxJJ3YeGzp49i4iICDg7O2POnDmV7i9duhRXr17Fpk2bAABxcXEwMDDA8uXLceTIkUr63bp1Q0ZGBvz9/VFaWoqUlBSEhoYCALp27QpbW1t069aNG2bZuXMnRo8eDVtb21qN+fP5fNjb26NVq1a4du0apk2bBhUVFcyYMQMikQiPHj3CokWL4OPjAwcHB7x48QI3b96Eubk5vLy8YG5uDg8PD8yZMwe6urqIj4/HkCFDsG3bNgDAokWLEB4eLuPLrFmzkJqaCh0dHcTFxXH18OZ8pTc5f/78Wz8WaWnv1iMaEhKCmTNnIiYmBh07doSjoyNu3bqF3r17QygUYsSIEdDT04OlpSVX56tXr8alS5cq2fL09IRUKoWSkhJUVFTg4+ODrVu31tu3jh07gs/n48yZM3j27BkAyMx7WbZsGVxcXHDy5EkAwMqVKzFs2DAsXrwYixYtqmSvtLQUTk5O3HVSUhJMTEwwefJknD59GoWFhRCLxVBWVkZmZvW7pC9YsAApKSlcHjExMejUqRNcXFywYcMGbs5ZZGQkNmzYAAB4+vQpFi1aBAsLC5ng4nXeR3u3aNECaWlpUFZWhlQqxYIFC7j8NDU1AaBS2TIzM7l706ZNA4/Hw+zZs1FUVITHjx+jS5cu+O233yrlFRQUhLKyMggEAggEAri7u+PYsWM1+veufNrBjbS8+zVXzIKb90239mrwdhqLflrqKCPgFg3GLTVjSKVSxN0LwD2/f/A0PJDtW/OJ4eDggGvXrlX5F56+vj7OnTsnkxYYGIjFixeDx+Oh7I135fTp01i8eDESEhJw6dIl+Pr6wsfHB1KpFH369IGSkhJiY2NlnlFWVq40lPImLi4u2LRpE1RUVCAUCuHg4ABfX1/s3LkTDx48gEgkkvFPUVERurq6ePHiBW7cuIEffvgBQHkvzerVq9GzZ0+Ym5ujTZs24PP5CAwMBAAYGhpi2LBhKCioHNj36NGDC27CwsJq9BcAhEIhhELhW/XehdeDlKioKISEhCA5ORmTJ0/mekxSUlJk5uwEBwdXaWvJkiXw9/eHoqIitLW14erqimPHjuHbb7+tl28PHjyAv78/oqKi4Ofnh8uXL+Off/5BXl4e1NXV0blzZ67eKwgMDKxxVc+CBQswa9YsdOvWDc2aNYNAIEBERESd/NLX169UB4GBgVBXV0eXLl2QkpICoDy4eZ3nz5+jQ4cO1dp9H+1dUFCAfv36oXnz5rCwsICrqysSEhJw48aNWj2vr6+PyMhImWHM6tp7ypQpiI6OBp/PR+/evbF3717k5ua+dZj6XfhkgxuBkgqUSsobhfXcvD/4AhXM+e4r/GLVFs2VSiEiFZwtG42wTD7uX3FD+NVzKMhhE7jfBxKJGGO+7ieXfOvLrVu34Ofnh61bt+Lw4cPv5Edqaip0dXUxYsQIjBw5Evv378fy5cthZmaG5s2bo7S0FAMHDqw0ufNtH4Xt27fj8OHDEAqFNf5VXhXXr1/H7t27oa2tDQMDA9y+fRt6enowNzdH69atce/ePW5CdPPmzblenzd5PUAoLHz7isFp06bB3d29Rp0xY8bg9u3bdSpPTbx69QqxsbF1XkEDABkZGYiPjwcAxMbGQl1dHX///TfWrl3LpdeFsrIyjBw5EkOGDMGoUaPw008/YfPmzTA2Nn5rMFsVU6ZMwY4dO2Bvb4/g4GAUFBRg+fLlMDY2rrOt2lBSUiJzTUTg8aqfNfI+2puIuLp+8OAB9PX1sWrVKty4cQMZGRkAAA0NDe7fFdd1DfCA8lVkFXk9efIEPXr0wMaNG+Hk5FTjHK934ZMNbkAEpdKKnpuGqdxPifZde8B47GT8PLIzhivfh4JCKdLL2uOXe61xyecXJDy4w3ppGoB3CTTkxcqVKxEREYGYmBiZ9OjoaJiamsqkmZqaIjY2tlKvTQUSiQQXLlzAhQsXsG/fPsTExKBPnz4IDw+HkpISOnToUOcPelZWVpUf2OjoaMycOROqqqpc742pqSmkUilXlqioKOTm5mLt2rWIiIhAYWEhrl+/DgcHB7Ru3ZqbbwMA9+/fh7W1NZKSkt55dc2HGJZ6EzU1NfTo0YMbXoiOjkbXrl2hqanJfRAHDx5cK1sV5W/WrH5zuioICgpCUFAQNmzYgOTkZIwfPx67du1CWloaTE1NuTklQHnb3b17t0o7pqamCAoKwoEDB7i0Hj16yOgUFxfLTAyuiujoaFhbW1eynZ+fj9TU1LoWj6Mh2pvH43EroRITE/H8+XNYWFjgwYMHAAB1dXUYGxtzdRIdHY3p06dDWVmZC1Dq0t58Ph8CgYAFN+8bXlkpeCgf78xlPTf1hi9QwbBpCzHsm4kYz78CHYX7AIDzMcCcXw4h++VLOXvIaGw8fPgQJ06ckFl9ApTPiQkNDcXatWu55deLFi3CggULqrRjY2MDRUVFhISEQCQS4fvvv4dIJEJycjJycnJw/PhxHD16FPb29ggPD0f79u1hYWGByMhI+PrWfauBEydOwNnZGUeOHIGTkxPat2+PvXv34tixY3jx4n+9kTdv3sR3333HDb1FRkZCWVmZ6/qvYN++fZg7dy48PT2xbds25OTkQFtbG1OnTsWcOXOqDeiq4l2HKfh8PgwMDACUrzLr3LkzDA0NIRQKuUBv+/bt8PHxQXJyMjp16gRnZ2eZ1WD+/v6IjY3FkSNHsHz5crRo0QKbN2+uMr9WrVpBQ0MDPB4POjo6WL9+PWJiYuq1bw4ADBo0CBYWFrh8+TJevHgBY2NjtG/fnrO3fft2ODs7Iz4+HhEREbC1tUW/fv3w3XffVWkvLi4OM2bMwKhRo5CYmIjp06fDyMgIiYmJnE5SUhIsLS3Rs2dPZGdn49WrV5Xs7N+/H4sXL8bevXvh5uYGXV1dODs7w9XVtc57PL3Ou7b3ypUrce/ePcTHx0NZWRljx47F9OnTMX/+fE5n9+7dWLt2LeLi4pCYmIiNGzciPT0dZ8+eBQD89ddf2Lx5M/744w9s3boVn332GZYtW1Zlfm3btoWGhgaUlJTQp08f2NnZ4dq1a1UOyb5P6FMSdXV1IiIKuRhGxc7L6NVaO7n79LFK9z6DyO63f8n9nD9l+ywm6YVZVOg9k2xG6Mjdt6Ymurq6FBoaSrq6unL3pa7i4eFB3t7eMmlaWlokkUiIyn/hOZkwYQI9fPiQioqKKCkpiezt7WXuJyYmkp1d+f9ZKysrCg4Opry8PCooKKCgoCAaPnw4p6ukpEROTk6UkJBARUVFlJaWRl5eXtS7d+9qfX3dflXSu3dvunr1KolEIsrKyiJ3d3dSU1OT0bGzsyMiIktLSy7N29ubiouLK+lqa2uTl5cX5eTkUGFhIT1+/JhcXV25+wEBAbRr164GbyMtLS2qioCAAE7H09OT0tLSSCKRUEpKCnl6etLnn38uY0dHR4du3rxJEomEnjx5QqNGjSIiIisrK07ndaRSKaWlpZGnpyd17969kj9mZma1eq/09PTo4sWLlJmZSWKxmJ48eUILFy7kdBUUFGj9+vWUkpJCRUVFFB4eLtM+FfkZGhoSABIIBHTo0CHKzc2lnJwc2rdvH23ZsoXCw8O5Z9q1a0d+fn6Un5/P+fqmHQD05ZdfUkhICEkkEkpPT6etW7eSoqJijW3s7e1NHh4eDdbeGzdupNjYWBKJRJSdnU2BgYE0efLkSnrOzs70/PlzEovFdOXKFdLRkf1tNzY2pvDwcJJIJHT//n0aP368TPnffK9KSkro2bNn5O7uTu3atavSt5p+6yq+3+rq6rUpZ8P/uDUmqaic++cDqdh5GcUunit3nz42UVFTp28WOZHzuQd09rwnSXzmkPTCLIr9YyIZdm8jd/+aonzMwQ0TJnUVc3NzysnJoVatWsndFyYfVt5XcPPJDkvxi8vnKrwoFL1Fk/E6+oMt8NWPq6HZRhWjef9CX6H84NELd5/BZudN5BUWy9lDBoPxsTN27Fhs2bIFeXl58naF8ZHy6QY3peXzbF4I2dlFtYHHU8Q3ixzR38IKvRRiMIpOQU2hBCWlZXA6cR8u/0TiHYaQGQwGg2PFihXydoHxkfPJBjeC4vKgJpP13LwVnqISJtr/AmNTU4xWOA89XiIAIDw+G7N338KDxBw5e8hgMBgMxv/4ZIObVnnly/BC06o/JI4BKCrxMWn5Nkw26YRRCkfRTKEIxSVSbDoZAZfTkSiVsu4aBoPBYDQuPtngpnlhDkrLynAu+qm8XWm0KPEF+HHtVvw0QAgdhfID+8KeZmHWrlt4mJwrZ+8YDAaDwaiaTza4AYCwl3nIFn18m6B9CJQEytixbT3m9oiDikIxikvL4HziPnaciWK9NQwGg8Fo1DSKU8EXLFiAxMREiMVi3LlzB0ZGRtXqzpkzBzdv3kROTg5ycnJw5cqVGvVrIuEVm0xcFcrNVHFm/3L8pB0PFYViPEgRYeDPZ/ELG4ZiMBgMxkeA3IObyZMnw9XVFc7OzhgwYAAePHgAPz8/tG/fvkp9c3NzeHp6YtiwYTAxMUFKSgouX76MTp061TnvF+zAzEp07NAK9w7Nw1ea6QCAgzdfYNCik3j8LE++jjEYDAaDUUvkHtwsXboUf/zxBw4fPozo6GjMmzcPIpEIs2bNqlL/+++/x4EDB/DgwQPExMRgzpw54PF4sLCwqHPeL8VsT5bXGdy7KyJ++xYG6nkoJiUsOhaPH7ddYL01DAaDwfiokGtww+fzMXDgQPj7+3NpRAR/f3+YmJjUyoaqqir4fD5ycqpejiwQCKCuri4jFbxkB2ZyzP26P65vsUQ7QRGyper4att9HDh5Q95uMRgyJCYmws7OTt5uMOoAEcHKykrebtSIlpYWiAiGhoaNws7HTGNpb7kGN+3atYOSkhIyMzNl0jMzM6GpqVkrGy4uLkhPT5cJkF5n1apVyM/P5+T1k1IfPEuqt+9NBb4SD78vHYHffuwPPq8M0UWdYOrgh2u37snbNUYTwcPDA0QEBwcHmXQrK6s6Hx5oZGSE33///X26J0NiYiKICEQEoVCIsLAwTJw4scHyaywYGBjgn3/+4cpfVQDp6OjI1U2F1Oegy9efLykpQXJyMnbu3AmBQFAnOx4eHvD29q5z/u+LqvJPSUmBpqYmHj58KCevakdt2huo23zY6nhf7V1X5D4s9S44ODhg6tSpGD9+fLXHpm/duhUtWrTgpHPnzgCAMgUeHiQlfkh3Gx3tWqjg1s4JmD28GwDg0it9fLnQA3FPnsjZM0ZTQywWw8HBAa1atXonO1lZWRCLG3aF47p166CpqYn+/fsjNDSUO6G8McDn8xvErqqqKhISErBy5Uo8f1793l8PHz6EpqYmJ//5z3/qld/MmTOhqamJ7t27Y8GCBZg+fTrWrl1bX/cbDWVlZcjMzIRUKpW3KzVSm/au63zYmpBHe8s1uMnKykJpaSk0NDRk0jU0NJCRkVHjs/b29li5ciVGjRqFqKioavWKi4tRUFAgIwBQqKQMadmnO5dEu1MLhPxqDaMeLSAhAQ6kD8CUhb8gJyPt7Q8zGg2qfP4Hl/rg7++PjIwMrFq1qka9CRMm4OHDh5BIJEhMTMTSpUtl7r85LOXo6Ijk5GRIJBKkpaVhz5493D2BQIDt27cjNTUVQqEQd+7cgZmZ2Vt9LSgoQGZmJuLi4rBw4UKIxWJ8/fXXAIDevXvj6tWrEIlEyMrKgru7O9TU1AAAvXr1glQqRbt27QAArVu3hlQqhaenJ2d7zZo1uHXrFnfdq1cv+Pr6oqCgABkZGTh69Cjatm3L3Q8ICMDevXuxa9cuvHz5En5+fm/1vz7cu3cPK1aswMmTJ6v9QxEASktLkZmZyUl2drbMfW1tbdy4cQNisRiPHj3CiBEjqrSTl5eHzMxMpKam4t9//8W5c+cwYMCAdyqDtbU1IiMjuba5cuUKVFVVAQAKCgpYt24dUlJSIJFIEB4eDktLy2pt8Xg8HDx4EAkJCRCJRHjy5Al+/vln7r6joyNmzpyJcePGcb0SZmZmVQ5LffnllwgJCYFEIkF6ejq2bt0KRUVF7n5AQAD27NkDFxcXZGdn4/nz53B0dHynungbtWnv2syHlWd7vw257nNTUlKCsLAwWFhY4Ny5cwDKX0ILCwu4ublV+9zy5cuxZs0aWFpaIiwsrF55i1BWr+eaAoP12uOC81i0VlNEHrXAztiecF3vAElhgbxdY9QBVT4feWs//PyTVpv2QFRSUqdnpFIpVq9ejb/++gu//vqrzPBwBQMGDMCpU6fg5OSEkydPYsiQIdi/fz+ys7Nx5MiRSvrW1tZYsmQJpk6dikePHkFTU1Pmo+Lm5gYDAwNMnToV6enpGD9+PC5duoQ+ffrg6dPabd4plUpRUlICgUAAVVVV+Pn5ITg4GEZGRujQoQMOHjwINzc32Nra4tGjR8jOzoaZmRm8vLwwdOhQ7roCMzMzXL9+HQDQsmVLXLt2DQcPHsSSJUvQrFkzuLi44NSpUzILJGxsbHDgwAGYmppW6+e0adPg7u5eY1nGjBmD27dv16rc1aGjo4O0tDRIJBIEBwdj1apVSElJAVD+233mzBlkZmbC2NgYLVu2xO7du2tlc/jw4Th8+HC9/dLU1ISnpydWrFgBb29vqKurY+jQoVBQUAAA2NnZwd7eHj/++CPCw8Mxa9YsnD9/Hr169aryXeDxeEhNTcWkSZOQnZ2NIUOG4Pfff8fz589x+vRp7NixA/r6+mjRogVsbW0BADk5OZVW7Xbq1Am+vr44fPgwZsyYAT09Pfzxxx+QSCRwdnbm9GxsbODq6gpjY2OYmJjg8OHDCAwMrHa6RUO3d8V82K1bt3Jpb86HlWd71wa5b+Ln6uqKI0eO4N69e7h79y4WL14MNTU1eHh4AACOHDmCtLQ0rF69GkD5gWobNmzAtGnTkJSUxPX6CIVCFBbWft+asrLG3W3YUIw30cLxFcOhwldAOmlgc1h7/LllKUqK2bJ4RsNy9uxZREREwNnZGXPmzKl0f+nSpbh69So2bdoEAIiLi4OBgQGWL19eZXDTrVs3ZGRkwN/fH6WlpUhJSUFoaCgAoGvXrrC1tUW3bt24bvedO3di9OjRsLW1xZo1a97qL5/Ph729PVq1aoVr165h2rRpUFFRwYwZMyASifDo0SMsWrQIPj4+cHBwwIsXL3Dz5k2Ym5vDy8sL5ubm8PDwwJw5c6Crq4v4+HgMGTIE27ZtAwAsWrQI4eHhMr7MmjULqamp0NHRQVxcHFcPb85XepPz588jJCSkRp2qAsq6EBISgpkzZyImJgYdO3aEo6Mjbt26hd69e0MoFGLEiBHQ09ODpaUlV+erV6/GpUuXKtny9PSEVCqFkpISVFRU4OPjI/MhrSsdO3YEn8/HmTNn8OzZMwCQmfeybNkyuLi44OTJkwCAlStXYtiwYVi8eDEWLVpUyV5paSmcnJy466SkJJiYmGDy5Mk4ffo0CgsLIRaLoaysXGnO6OssWLAAKSkpXB4xMTHo1KkTXFxcsGHDBm7OWWRkJDZs2AAAePr0KRYtWgQLC4tqg5uGbu+a5sPq6ekBgFzbuzbIPbg5deoU2rdvjw0bNkBTUxMREREYPXo0Xrx4AaD8B6ys7H+9LPPnz4eysjK8vLxk7Dg5OclEwozK/PSNAVznGoOnoIBY6g7nAODUnhUok5bK2zVGPRCVlKDVpj1vV2yAfOuLg4MDrl27hh07dlS6p6+vz/XgVhAYGIjFixeDx+PJ/A4AwOnTp7F48WIkJCTg0qVL8PX1hY+PD6RSKfr06QMlJSXExsbKPKOsrFxpKOVNXFxcsGnTJqioqEAoFMLBwQG+vr7YuXMnHjx4AJHof4ftBgYGQlFREbq6unjx4gVu3LiBH374AUB5L83q1avRs2dPmJubo02bNuDz+QgMDAQAGBoaYtiwYdxQ+ev06NGDC25q0zstFAohFArfqvcuvP7RioqKQkhICJKTkzF58mQcOnQI+vr6SElJkZnDERwcXKWtJUuWwN/fH4qKitDW1oarqyuOHTuGb7/9tl6+PXjwAP7+/oiKioKfnx8uX76Mf/75B3l5eVBXV0fnzp25eq8gMDCwxlVNCxYswKxZs9CtWzc0a9YMAoEAERERdfJLX1+/Uh0EBgZCXV0dXbp04Xq9IiMjZXSeP3+ODh06VGv3Q7T325Bne9cGuQc3ALBv3z7s27evynvDhg2Tue7evfuHcKlJoaAA7Jg9CIvH9QYAhJX1gdP5NFz8c2edV6swGhfvEmjIg1u3bsHPzw9bt259527p1NRU6OrqYsSIERg5ciT279+P5cuXw8zMDM2bN0dpaSkGDhxYaXLn2z4K27dvx+HDhyEUCmv8q7wqrl+/jt27d0NbWxsGBga4ffs29PT0YG5ujtatW+PevXvchOjmzZtzvT5v8voHozY90h9qWOp1Xr16hdjYWGhra9f52YyMDMTHxwMAYmNjoa6ujr///htr167l0utCWVkZRo4ciSFDhmDUqFH46aefsHnzZhgbG781mK2KKVOmYMeOHbC3t0dwcDAKCgqwfPlyGBsb19lWbSh54/8xEYHHq35KbEO397vMh62K993etaFRBDeMhkNFoIij9l/C2rQ8KLxa9h/svZgA34OV/3JmMD4EK1euREREBGJiYmTSo6OjK80rMTU1RWxsbKVemwokEgkuXLiACxcuYN++fYiJiUGfPn0QHh4OJSUldOjQoc4/8FlZWVX+4EZHR2PmzJlQVVXlem9MTU0hlUq5skRFRSE3Nxdr165FREQECgsLcf36dTg4OKB169bcfBsAuH//PqytrZGUlPTOq2s+xLDUm6ipqaFHjx44duwYgPL66dq1KzQ1NbkP4ODBg2tlq6L8zZo1eyefgoKCEBQUhA0bNiA5ORnjx4/Hrl27kJaWBlNTU9y8eZPTNTU1xd27d6u0Y2pqiqCgIBw4cIBL69Gjh4xOcXGxzMTgqoiOjoa1tXUl2/n5+UhNTa1r8Tgaur1rMx+2MbR3TbDgpgnTtoUyvNeOgKmBBkqJBx8ahbNh2fjXvWHHOhmMmnj48CFOnDghs/oEKJ8TExoairVr13LLrxctWoQFCxZUacfGxgaKiooICQmBSCTC999/D5FIhOTkZOTk5OD48eM4evQo7O3tER4ejvbt28PCwgKRkZHw9fWts98nTpyAs7Mzjhw5AicnJ7Rv3x579+7FsWPHuGF0ALh58ya+++47bugtMjISysrKsLCwgKurK6e3b98+zJ07F56enti2bRtycnKgra2NqVOnYs6cOdUGdFXxrsMUfD4fBgYGAMpXmXXu3BmGhoYQCoVcoLd9+3b4+PggOTkZnTp1grOzs8xqMH9/f8TGxuLIkSNYvnw5WrRogc2bN1eZX6tWraChoQEejwcdHR2sX78eMTEx9do3BwAGDRoECwsLXL58GS9evICxsTHat2/P2du+fTucnZ0RHx+PiIgI2Nraol+/fvjuu++qtBcXF4cZM2Zg1KhRSExMxPTp02FkZITExP9tH5KUlARLS0v07NkT2dnZePXqVSU7+/fvx+LFi7F37164ublBV1cXzs7OcHV1fade8w/R3m+bDyvP9q4t9CmJuro6ERElb3OUuy8NKdqdWtCT361JemEWFZz7kTzO+dL8Pf+QcjM1ufvGpO6iq6tLoaGhpKurK3df6ioeHh7k7e0tk6alpUUSiYSo/BeekwkTJtDDhw+pqKiIkpKSyN7eXuZ+YmIi2dnZEQCysrKi4OBgysvLo4KCAgoKCqLhw4dzukpKSuTk5EQJCQlUVFREaWlp5OXlRb17967W19ftVyW9e/emq1evkkgkoqysLHJ3dyc1Ndn/U3Z2dkREZGlpyaV5e3tTcXFxJV1tbW3y8vKinJwcKiwspMePH5Orqyt3PyAggHbt2tXgbaSlpUVVERAQwOl4enpSWloaSSQSSklJIU9PT/r8889l7Ojo6NDNmzdJIpHQkydPaNSoUUREZGVlxem8jlQqpbS0NPL09KTu3btX8sfMzKxW75Wenh5dvHiRMjMzSSwW05MnT2jhwoWcroKCAq1fv55SUlKoqKiIwsPDZdqnIj9DQ0MCQAKBgA4dOkS5ubmUk5ND+/btoy1btlB4eDj3TLt27cjPz4/y8/M5X9+0A4C+/PJLCgkJIYlEQunp6bR161ZSVFSssY29vb3Jw8NDru0NgBYuXEhJSUkkkUjozp07NGjQoAZp79elpt+6iu+3urp6bcrZ8D9ujUk+heBmiH4HyjwxjaQXZlGG1zxyO3ed7A9doRbtNOTuG5P6yccc3DBhUlcxNzennJwcatWqldx9YfJh5X0FN2xYqokx0fQzHLH/EioCJcTlCXBB3QY5YgX8tWk+8rPqNjmSwWAw5MHYsWOxZcsW5OXlydsVxkcKC26aEEvH98b22YMAALefAYGd56JIysPp7T/jeULDjm0yGAzG+2LFihXydoHxkcOCmyaCtelnXGDzV5gIif1WgsCD7++bEBd26y1PMxgMBoPRdPioD85klNO+pQr2LSjfEtv9+gvE9loOAg+3z3gg9NIpOXvHYDAYDMaHhQU3TYB9C0zQvmUzPEoVIq3/cijx+XgUeBn+R3fL2zUGg8FgMD44LLj5yJnyZXdYm3ZHSWkZLvKtIGjeGs+eRODM7jVs92EGg8FgfJKw4OYjpmObZtg7r3w4yvelFiTt+iAnIxWem+1QWlz1MfYMBoPBYDR1WHDzkaLejI8LTqPQtoUKEl4p4VGHcSgSF+KvTT9BlJ8rb/cYDAaDwZAbn2xw8zEP2PCVePhnjQX6fd4W2aIy+DafjtIyBfyzcyVepjTMIWQMBoPBYHwsfLLBTSGv5gPPGisKCoDH4qEY0a8TCosJ//CnIg8tcfX4r4gNvSFv9xiMBiUxMRF2dnbydoNRS7S0tEBEMDQ0lLcrNWJmZgYiQsuWLRuFnY+VxlT+Tza4yXvLaa6NFRdbI3xr3gOlZcBZxQl4yeuEiGvncdvrkLxdYzCqxMPDA0QEBwcHmXQrK6s6T3o3MjLC77///j7dkyExMRFEBCKCUChEWFgYJk6c2GD5NRbmzJmDmzdvIicnBzk5Obhy5QqMjIwq6Tk7OyM9PR0ikQhXrlyBtrZ2nfKpCHYqpKioCHFxcVizZk2dfQ4ICMCuXbvq/Nz7oqr8g4KCoKmpWeUhmo2JefPm4cGDB3j16hVevXqFoKAgjB49WkZHWVkZbm5uyMrKQkFBAf755x906NChTvlUBDsVIhKJ8PDhQ8ydO/d9FqdKPtng5hXv4yu6nVUv2E/oAwC4AEs8lXbG5cO7cPbXdXL2jMGoGbFYDAcHB7Rq1eqd7GRlZUEsFr8fp6ph3bp10NTURP/+/REaGsqdUN4Y4PP5DWLX3Nwcnp6eGDZsGExMTJCSkoLLly+jU6dOnM6KFSvw888/Y968eTA2NkZhYSH8/PygrKxc5/wsLCygqakJHR0dODo6Ys2aNZg1a9b7LJJcKCkpQWZm4z/mJjU1FStXrsTAgQPxxRdf4Nq1azh37hx3UjgA7Nq1C19//TUmTZoEMzMzdOrUCWfOnKlXfj179oSmpiYMDAzg7u6OAwcOYPjw4e+rONUi94OyPqRUHLx17tdf5O5LXWTKl91JemEWSS/MosvnD9GSg37UVc9Q7n4x+TBS3WFyfOVmH1zq6ruHhwedP3+eHj9+TC4uLly6lZVVtaeCSyQSSkxMpKVLl8rcf/PUbkdHR0pOTiaJREJpaWm0Z88e7p5AIKDt27dTamoqCYVCunPnTo2nTFdlX1FRkYRCIW3ZsoWAmk8F79WrF0mlUmrXrh0BoNatW5NUKiVPT0/O3po1a+jWrVvcda9evcjX15cKCgooIyODjh49Sm3btuXuBwQE0N69e2nXrl308uVLunbt2gd533g8Hr169YqmT5/OpaWnp8uc0t6iRQsSi8U0ZcoULs3IyIju379PYrGYQkNDady4cTKnZFd1ajYAunLlCrm5udXJxzdP054/fz7FxsaSWCymjIwMOn36tMy7sGfPHu7U8Fu3btEXX3zB3TczMyMiopYtWxIAatOmDf3111+UmppKhYWFFBkZSVOnTpV5p99ES0urkp3avtOrVq2iP//8k/Lz8yk5OZnmzp37Qdr5dcnOzqZZs2ZxbVtUVETW1tbcfV1dXSIiMjY25tLGjBlDMTExJBKJ6Nq1a2RjYyNT/qrqAwDFxcXRsmXLqvSDHZz5CTHGuAeOLjMDANwt6wePO/k4++tiiIX5cvaMIU/4ys2w9lTIB89302RjlBTVrfdEKpVi9erV+Ouvv/Drr78iLS2tks6AAQNw6tQpODk54eTJkxgyZAj279+P7OxsHDlypJK+tbU1lixZgqlTp+LRo0fQ1NSUmdvh5uYGAwMDTJ06Fenp6Rg/fjwuXbqEPn364OnTp7X2u6SkBAKBAKqqqvDz80NwcDCMjIzQoUMHHDx4EG5ubrC1tcWjR4+QnZ0NMzMzeHl5YejQodx1BWZmZrh+/ToAoGXLlrh27RoOHjyIJUuWoFmzZnBxccGpU6dgYWHBPWNjY4MDBw7A1NS0Wj+nTZsGd3f3GssyZswY3L59u1blVlVVBZ/PR05ODgCge/fu6NixI/z9/Tmd/Px8hISEwMTEBCdPnoSamhouXLiAK1eu4Pvvv0f37t2xZ8+et+Y1cOBADBw4EEePHq2Vb9XZ+PXXXzF9+nQEBQWhTZs2GDp0KHd/27ZtsLa2ho2NDZKTk7FixQr4+flBW1sbubm5leypqKggLCwMLi4uyM/Px1dffYVjx44hPj4eoaGhsLOzQ8+ePfHw4UOsX78eAPDy5Ut89tlnMnZq+07b29tj3bp12LJlCyZOnIgDBw7gxo0biI2NrbK8q1atwurVq2usEwMDA6SkpLy17ng8HiZNmgQ1NTUEBwdz9SkQCGTaOyYmBsnJyTAxMUFISAi6dOmCM2fOYN++ffj999/xxRdfYOfOnW/Nz9LSEt26dUNISMP+drHgppEzb9JQ7JnRE0oKhEfSHrD/8y6Czh+Xt1sMRp05e/YsIiIi4OzsjDlz5lS6v3TpUly9ehWbNm0CAMTFxcHAwADLly+vMrjp1q0bMjIy4O/vj9LSUqSkpCA0NBQA0LVrV9ja2qJbt254/vw5AGDnzp0YPXo0bG1tazXHg8/nw97eHq1atcK1a9cwbdo0qKioYMaMGRCJRHj06BEWLVoEHx8fODg44MWLF7h58ybMzc3h5eUFc3NzeHh4YM6cOdDV1UV8fDyGDBmCbdu2AQAWLVqE8PBwGV9mzZqF1NRU6OjoIC4ujquHN+crvcn58+ff+rGoKqCsDhcXF6Snp3MfN01NTQCoNOSSmZnJ3Zs2bRp4PB5mz56NoqIiPH78GF26dMFvv/1WyX5QUBDKysogEAggEAjg7u6OY8eO1dq/N+nWrRsKCwtx4cIFCIVCPHv2DBEREQDKA7X58+dj5syZuHTpEgBg7ty5GDlyJGbPno0dO3ZUspeeni7zoXZzc4OlpSUmT56M0NBQ5Ofno7i4GCKRqMZhqNq+076+vjhw4ACA8rpfsmQJhg0bVm1w89tvv+HUqZqP1klPT6/xfu/evREcHAwVFRUIhUKMHz8e0dHlByxramqiqKio0tyh19t7/vz5iI+Px7JlywAAsbGx6NOnD1auXFkpr9TUVADl83h4PB7Wr1+PW7ca9sxDFtw0UlTU1LFnrS3m9BECIDwQd4H1ur+R+CRK3q4xGgklRWJsmmwsl3zri4ODA65du1blB0VfXx/nzp2TSQsMDMTixYvB4/FQVlYmc+/06dNYvHgxEhIScOnSJfj6+sLHxwdSqRR9+vSBkpJSpY+DsrIysrOza/TRxcUFmzZt4n70HRwc4Ovri507d+LBgwcQiUQy/ikqKkJXVxcvXrzAjRs38MMPPwAo76VZvXo1evbsCXNzc7Rp0wZ8Ph+BgYEAAENDQwwbNgwFBQWVfOjRowcX3ISFhdXoLwAIhUIIhcK36tUGBwcHTJ06Febm5igqqv1moPr6+oiMjJR5pqIn4E2mTJmC6Oho8Pl89O7dG3v37kVubi5WrVpVL5+vXLmC5ORk7l24dOkSvL29IRaL0aNHDwgEAq7eAaC0tBR3796Fvr5+lfZ4PB5Wr16NyZMno3PnzhAIBFBWVpZp+9pQ23c6MjJSRicjI6PGybu5ublV9jjVhZiYGPTr1w8tW7bExIkTceTIEZiZmXEBztvQ19evFFBX195Dhw5FQUEBlJWVMWjQILi5uSEnJ6fKwPd9wYKbRoaCggL6D7eC67z/YGizxwAA35RWmLx8F8TCyj+CjE+bdwk05MGtW7fg5+eHrVu34vDhw+9kKzU1Fbq6uhgxYgRGjhyJ/fv3Y/ny5TAzM0Pz5s1RWlqKgQMHQiqVyjz3tiBg+/btOHz4MIRCYZ0nh16/fh27d++GtrY2DAwMcPv2bejp6cHc3BytW7fGvXv3uAnRzZs353p93qSitwkACgsL35rv+xqWsre3x8qVKzFixAhERf3vD6mMjAwAgIaGBvfviuuKHpK6kJKSgvj48j25njx5gh49emDjxo1wcnKqU0BVgVAoxIABA2Bubo5Ro0Zhw4YNcHJyqnLFV21Yvnw57OzssHjxYkRFRaGwsBC7d++GQCCol723UVJSInNNRODVsOjlfQxLlZSUcG1w//59GBkZwc7ODvPmzUNGRgaUlZXRsmVLmd6bN9u/tiQmJnJ2Hj9+DGNjY6xZs4YFN58KnbQN8H8/rMRCvefozSsPbFwuZmD1PrbMm9F0WLlyJSIiIhATEyOTHh0dXWleiampKWJjYyv12lQgkUhw4cIFXLhwAfv27UNMTAz69OmD8PBwKCkpoUOHDrWeZ1JBVlYW96P/pn8zZ86Eqqoq9xe8qakppFIpV5aoqCjk5uZi7dq1iIiIQGFhIa5fvw4HBwe0bt2am28DlH9QrK2tkZSUVCkAqyvvY1hq+fLlWLNmDSwtLSv1FiUmJuL58+ewsLDAgwcPAADq6uowNjbmhlOio6Mxffp0KCsrcwHK4MGDa+W/VCoFn8+HQCCoV3BTYePq1au4evUqnJ2dkZeXh+HDh8PPzw9FRUUwNTXFs2fPAABKSkowMjLC7t27q7RlamqKc+fO4cSJEwDK/+js2bMnHj9+zOkUFxdD8S1bitTnna4N72NY6k14PB638i0sLAzFxcWwsLDgVkj17NkTWlpaXO9MdHQ0vvnmGxkbdWnvZs2a1cm/+vDBZ2XLUxrjaqlmzVvQ/81fSxu879Fjn00kvTCLis7b0nSLnnL3jUnjkJpWEDR28fDwIG9vb5m0I0eOkEgkklkt1b9/fyotLaW1a9eSjo4OzZgxgwoLC8nGxobTeX01k42NDc2aNYt69epF3bt3pw0bNlBhYSG1adOGANCxY8coISGBxo8fT5999hkZGRnRypUraezYsdX6+uZqqdelWbNmlJaWRqdPn6ZevXqRubk5PX36lDw8PGT0zpw5QyUlJbR161YCQAoKCpSdnU0lJSU0atQoTq9jx46UmZlJp06doi+++II+//xzGjVqFB06dIh4PB4BlVcENZSsWLGCJBIJTZgwgTQ0NDipWAlWoZOTk0Nff/019e7dm7y9vSk+Pp6UlZUJAKmpqdGLFy/o6NGjpK+vT2PGjKHY2NgqV0sNHz6cNDQ0qHPnzjR69GhKSUmhq1ev1snn1+vmq6++op9++okMDQ2pW7duNG/ePCotLSUDAwMCQLt27aLU1FSytLQkfX198vDwoOzsbGrVqhUBlVf17Ny5k5KTk8nExIT09PTo999/p7y8PJn32N3dnUJCQkhLS4vatm1LCgoKlezU9Z2ukPDwcHJ0dGyw9t6yZQsNHTqUtLS0qHfv3rRlyxaSSqU0YsQITmf//v2UlJRE5ubmNGDAAAoMDKTAwEDufteuXUkikdC2bduoZ8+e9O2331J6enqVq6V0dHRIQ0ODunXrRhMnTqRXr17Rn3/+WaVv72u1FBr6P01jk8YW3KioqdPCvWdo87n7FOPjTNILs0h4xoZGD+wid9+YNB5pasGNlpYWSSSSapeCFxUVUVJSkszSY0D2Q2BlZUXBwcGUl5dHBQUFFBQURMOHD+d0lZSUyMnJiRISEqioqIjS0tLIy8uLevfuXa2vNQU3QM1LwSvEzs6OiIgsLS25NG9vbyouLq6kq62tTV5eXpSTk0OFhYX0+PFjcnV15e5/qOAmMTGx0tJmIqr0gXV2dqbnz5+TWCymK1eukI6Ojsx9Y2NjCg8PJ4lEQvfv36fx48dXGdxUUFJSQs+ePSN3d3duCT3wv4+ilpZWtT6/XjempqYUEBBA2dnZVFhYSBERETRp0iROV1lZmfbs2UMvXryo1VLw1q1bk7e3N+Xn51NGRgZt2LCBDh8+LPMe6+joUFBQEBUWFtZqKXht3ukKaejg5uDBg5SYmEgSiYQyMzPpypUrMoFNRZ25ublRdnY2CYVC8vLyIg0NDRmdr776ilt+f+PGDZo5c2aVwU0FxcXFFB8fT9u2bSNVVdUqfWPBTT2lMQU3PEUlmu70G205F0YxZ1aS9MIsyv9nOg3r21HuvjFpXPIxBzdMmNRVZs6cSbGxsaSkpCR3X5h8WGH73DQBxv6wEgb9B2IKvKAleIF8UTH+z+kKAh83/h0uGQwGo6EYO3YsVq9ejdLSUnm7wvhIYcGNHFBVb4Uh420waPRETFTwhhYvA3nCIoxZfxl3Y1/K2z0Gg8GQK5MnT5a3C4yPHBbcfCB4ikrQGfgf9Bv+DXp+YQYlPh9fKgTjc14KCiUlGLnmEu7H17z/BoPBYDAYjLfDgpsPQOeeffDt6j1Qb92OS2v1/AaGdgkHAPy4N5AFNgwGg8FgvCdYcNPACFSaYeLSX6Deuh0Kcl4i8sa/eBnuBz8HQwAqOPBvNDxvJMjbTQaDwWAwmgwsuGlgRsxYjDYduyLv5XP8ZmeNvl2aYf+Pg9G2hQpCY19i6R8f/uBDBoPBYDCaMiy4aUB0B5nD9KuJ0EYceOnHscL9a3RoVb4rY05BEab8EoDi0vrvUslgMBgMBqMyLLhpADr20IfF9z9jzIBOGMM7ipYKBcCA1gCAPGER/O6nYbtXFJJfvJ+D7hgMBoPBYPwPFty8R9p3/RzDpy3CF0OGwFLhOnrxQgEAqVmFOHkzAf+GpiDwcSZKpSRnTxkMBoPBaLpUf+woo070Nf8/zN99Gr2GDMd03mn04sVCWkbY4RUF/R+9sOJQKG5EZbDAhsF4BxITE2FnZydvNxi1REtLC0QEQ0NDebtSI2ZmZiAitGzZslHY+VhpTO3Ngpv3wH8m2MJ6yRYoKvGhFHsR7RVykSsswuAl5+HgEQpREdtlk/Hp4uHhASKCg4ODTLqVlRXKj5aqPUZGRvj999/fp3syJCYmgohARBAKhQgLC8PEiRMbLL/Gwpw5c3Dz5k3k5OQgJycHV65cgZGRUSU9Z2dnpKenQyQS4cqVK9DW1q5TPhUfvwopKipCXFwc1qxZU2efAwICsGvXrjo/976oKv+goCBoamri1atXcvKqdgwdOhTnz59HWloaiAhWVlZV6jWm9q4rLLh5BxR4PIyduxIjbZYAAAK9j6BzxkUAwN83EtjeNQzGfxGLxXBwcECrVq3eyU5WVhbEYvH7caoa1q1bB01NTfTv3x+hoaE4efIkTExMGjTP2sLn8xvErrm5OTw9PTFs2DCYmJggJSUFly9fRqdOnTidFStW4Oeff8a8efNgbGyMwsJC+Pn5QVlZuc75WVhYQFNTEzo6OnB0dMSaNWswa9as91kkuVBSUoLMzMZ/fI6amhoePHiAhQsXVqvTFNpb7gdlfUh5XwdnKvEFNHnFDnI+F0nO5yLJ5JvvSU1FifL/mU7SC7PIWLe93MvKpOlIdYfJqSorfXCpq+8eHh50/vx5evz4Mbm4uHDpVlZW1Z4KLpFIKDExkZYuXSpz/80TlB0dHSk5OZkkEgmlpaXRnj17uHsCgYC2b99OqampJBQK6c6dO2RmZlajr2/aV1RUJKFQSFu2bCGg5lPBe/XqRVKplDvdunXr1iSVSsnT05Ozt2bNGrp16xZ33atXL/L19aWCggLKyMigo0ePUtu2bbn7AQEBtHfvXtq1axe9fPmSrl279kHeNx6PR69evaLp06dzaenp6TInWrdo0YLEYjFNmTKFSzMyMqL79++TWCym0NBQGjduXJWngldcV8iVK1fIzc2tTj6+eWL6/PnzuROqMzIy6PTp0zLvwp49eygzM7NWp4K3adOG/vrrL0pNTaXCwkKKjIykqVOnyrzTb/K2U8FreqdXrVpFf/75J+Xn51NycjLNnTv3g7QzACIisrKyqpQur/ZmB2fKEa1eA/HVD6uh8ZkOSkuKcWb3GjwLu4YzayygpsJHbNorhMSwM6IYDYuqshIKvGZ88HzVrY/WeahVKpVi9erV+Ouvv/Drr78iLS2tks6AAQNw6tQpODk54eTJkxgyZAj279+P7OxsHDlypJK+tbU1lixZgqlTp+LRo0fQ1NSUGet3c3ODgYEBpk6divT0dIwfPx6XLl1Cnz598PTp01r7XVJSAoFAAFVVVfj5+SE4OBhGRkbo0KEDDh48CDc3N9ja2uLRo0fIzs6GmZkZvLy8MHToUO66AjMzM1y/fh0A0LJlS1y7dg0HDx7EkiVL0KxZM7i4uODUqVOwsLDgnrGxscGBAwdgamparZ/Tpk2Du7t7jWUZM2YMbt++Xatyq6qqgs/nIycnBwDQvXt3dOzYEf7+/pxOfn4+QkJCYGJigpMnT0JNTQ0XLlzAlStX8P3336N79+7Ys2fPW/MaOHAgBg4ciKNHj9bKt+ps/Prrr5g+fTqCgoLQpk0bDB06lLu/bds2WFtbw8bGBsnJyVixYgX8/Pygra2N3NzcSvZUVFQQFhYGFxcX5Ofn46uvvsKxY8cQHx+P0NBQ2NnZoWfPnnj48CHWr18PAHj58iU+++wzGTu1faft7e2xbt06bNmyBRMnTsSBAwdw48YNxMbGVlneVatWYfXq1TXWiYGBAVJSUmpbhTI09vauDSy4qSMjbZbgPxNsAQCF+bk4vW05+DlPEPDLWPTv0RZCcQnmuwXK2UsGo/Fx9uxZREREwNnZGXPmzKl0f+nSpbh69So2bdoEAIiLi4OBgQGWL19eZXDTrVs3ZGRkwN/fH6WlpUhJSUFoaPkKxa5du8LW1hbdunXD8+fPAQA7d+7E6NGjYWtrW6sxfz6fD3t7e7Rq1QrXrl3DtGnToKKighkzZkAkEuHRo0dYtGgRfHx84ODggBcvXuDmzZswNzeHl5cXzM3N4eHhgTlz5kBXVxfx8fEYMmQItm3bBgBYtGgRwsPDZXyZNWsWUlNToaOjg7i4OK4e3pyv9Cbnz59HSEjNG4JWFVBWh4uLC9LT07mPm6amJgBUGnLJzMzk7k2bNg08Hg+zZ89GUVERHj9+jC5duuC3336rZD8oKAhlZWUQCAQQCARwd3fHsWPHau3fm3Tr1g2FhYW4cOEChEIhnj17hoiICADlgdr8+fMxc+ZMXLp0CQAwd+5cjBw5ErNnz8aOHTsq2UtPT8fOnTu5azc3N1haWmLy5MkIDQ1Ffn4+iouLIRKJahyGqu077evriwMHDgAor/slS5Zg2LBh1QY3v/32G06dOlVjnaSnp9d4vyYae3vXBhbc1IFm6i25wOau70lk3jqKXda6+MrIGjyeAjJzxfja+TLCnrK5NoyGR1RUCnXrhv3rp7p864uDgwOuXbtW5QdFX18f586dk0kLDAzE4sWLwePxUFYmu+Hl6dOnsXjxYiQkJODSpUvw9fWFj48PpFIp+vTpAyUlpUofB2VlZWRn1/z/08XFBZs2bYKKigqEQiEcHBzg6+uLnTt34sGDBxCJRDL+KSoqQldXFy9evMCNGzfwww8/ACjvpVm9ejV69uwJc3NztGnTBnw+H4GB5X/8GBoaYtiwYSgoKKjkQ48ePbjgJiwsrEZ/AUAoFEIofD/7Zjk4OGDq1KkwNzdHUVFRrZ/T19dHZGSkzDPBwcFV6k6ZMgXR0dHg8/no3bs39u7di9zcXKxatapePl+5cgXJycncu3Dp0iV4e3tDLBajR48eEAgEXL0DQGlpKe7evQt9ff0q7fF4PKxevRqTJ09G586dIRAIoKysLNP2taG273RkZKSMTkZGBjp06FCt3dzc3Cp7nD4k8mzv2sCCmzrQVbe8y/tlaiIen/0Vd3d/gzbq5ZOrfEKeYcnvIUjMrPxDxWA0FB/bSrxbt27Bz88PW7duxeHDh9/JVmpqKnR1dTFixAiMHDkS+/fvx/Lly2FmZobmzZujtLQUAwcOhFQqlXnubUHA9u3bcfjwYQiFwjpPDr1+/Tp2794NbW1tGBgY4Pbt29DT04O5uTlat26Ne/fucROimzdvzvX6vElFbxMAFBYWvjXf9zUsZW9vj5UrV2LEiBGIiori0jMyMgAAGhoa3L8rrit6SOpCSkoK4uPjAQBPnjxBjx49sHHjRjg5OdUpoKpAKBRiwIABMDc3x6hRo7BhwwY4OTlVueKrNixfvhx2dnZYvHgxoqKiUFhYiN27d0MgENTL3tsoKSmRuSYi8HjVr/dp6GGpxt7etYEFN3Wgz5djAADC+BB4r7NAG3Vl3I19CZudNxCbli9n7xiMj4OVK1ciIiICMTExMunR0dGV5pWYmpoiNja2Uq9NBRKJBBcuXMCFCxewb98+xMTEoE+fPggPD4eSkhI6dOhQ63kmFWRlZXE/xG/6N3PmTKiqqnJ/wZuamkIqlXJliYqKQm5uLtauXYuIiAgUFhbi+vXrcHBwQOvWrbn5NgBw//59WFtbIykpqVIAVlfex7DU8uXLsWbNGlhaWlbqLUpMTMTz589hYWGBBw8eAADU1dVhbGzMDadER0dj+vTpUFZW5j5YgwcPrpX/UqkUfD4fAoGg3h87qVSKq1ev4urVq3B2dkZeXh6GDx8OPz8/FBUVwdTUFM+ePQMAKCkpwcjICLt3767SlqmpKc6dO4cTJ04AABQUFNCzZ088fvyY0ykuLoaiomKNPtXnna4NDT0s9TG0d234YLOyG4PUZ7VU286f0fBpC2mzVxCdOX+SXv5dviIq9ehU6tRWVe5lYtL0paYVBI1dPDw8yNvbWybtyJEjJBKJZFZL9e/fn0pLS2nt2rWko6NDM2bMoMLCQrKxseF0Xl/NZGNjQ7NmzaJevXpR9+7dacOGDVRYWEht2rQhAHTs2DFKSEig8ePH02effUZGRka0cuVKGjt2bLW+vrla6nVp1qwZpaWl0enTp6lXr15kbm5OT58+JQ8PDxm9M2fOUElJCW3dupUAkIKCAmVnZ1NJSQmNGjWK0+vYsSNlZmbSqVOn6IsvvqDPP/+cRo0aRYcOHSIej0dA5RVBDSUrVqwgiURCEyZMIA0NDU4qVoJV6OTk5NDXX39NvXv3Jm9vb4qPjydlZWUCQGpqavTixQs6evQo6evr05gxYyg2NrbK1TPDhw8nDQ0N6ty5M40ePZpSUlLo6tWrdfL59br56quv6KeffiJDQ0Pq1q0bzZs3j0pLS8nAwIAA0K5duyg1NZUsLS1JX1+fPDw8KDs7m1q1akVA5dVSO3fupOTkZDIxMSE9PT36/fffKS8vT+Y9dnd3p5CQENLS0qK2bduSgoJCJTt1facrJDw8nBwdHRusvdXU1MjQ0JAMDQ2JiGjx4sVkaGhIXbt2lXt7v6/VUmjo/zSNTeoS3LRu1YJWrV9F/mfdKclnLZX4zCbphVkkvTCL7u7+hnp0rFUFM2HyztLUghstLS2SSCTVLgUvKiqipKQkmaWogOyHwMrKioKDgykvL48KCgooKCiIhg8fzukqKSmRk5MTJSQkUFFREaWlpZGXlxf17t27Wl9rCm6AmpeCV4idnR0REVlaWnJp3t7eVFxcXElXW1ubvLy8KCcnhwoLC+nx48fk6urK3f9QwU1iYmKlpc1EVOkD6+zsTM+fPyexWExXrlwhHR0dmfvGxsYUHh5OEomE7t+/T+PHj6/yY1dBSUkJPXv2jNzd3bkl9MD/gg0tLa1qfX69bkxNTSkgIICys7OpsLCQIiIiaNKkSZyusrIy7dmzh168eFGrpeCtW7cmb29vys/Pp4yMDNqwYQMdPnxY5j3W0dGhoKAgKiwsrNVS8Nq80xXS0MFNhZ9v8mag/qHa+3VhwU095W3BzdBeGvTrvMEUfmAyFb8WzFTIo9+syXFafxIo8eReFiafjnzMwQ0TJnWVmTNnUmxsLCkp1X1fJSYft7B9bhqAkf07wdfZEjyewn9TCHnSZgh8mA6fm4/hdz8Vz16+fXIfg8FgMOrP2LFjsXr1apSWflwT5hmNBxbc/Jf/G9QVJ1cOA4+ngIeZZYht/xXCEguxZ83PEAvZZGEGg8H4UEyePFneLjA+clhwA8C8jya81lhASZGH28+Af5WnQo064fbN3SywYTAYDAbjI+OTD240WzfD0WVmUFLk4WaaMm53/gFqUISksABPQgLk7R6DwWAwGIw68kkHNzyeAk6tGo7ObdXwJDUfdzquRBkUcePU77h95hCKxXXbjZLBaCgq9sRoqFOhGQwGozFQsXfQu+wDBADVb4H4CTCiXyeYGmggX1SCE5JRKIYAWWlJCPhrHwtsGI2Kil1C+/fvL2dPGAwGo+Ho0qULALzz8RKfdM/N98N6AADui7tBuftgiApewXOLHcq33mAwGg8FBQXw9vbGTz/9BAAIDw+vtGU7g8FgfMyoqKhg0aJFCAsLe+sZcG/jkw1u2quKMfrLzwEA8a3MUSQW4a9NPyErNVHOnjEYVbN161YAwM8//yxnTxgMBqNhEIlEmDdv3jt3MiigfMObTwZ1dXXk5+dD4vsTBCTCgzJ9+JAldv84FrkZqfJ2j8F4K82bN0fHjh1rPFiPwWAwPjZKS0vx7NmzanulK77fLVq0QEFBzYdUf7I9NwLFMmTkK+Jf5RG4d+k0C2wYHw1CoRBxcXHydoPBYDAaLY3iT78FCxYgMTERYrEYd+7ceesx9RMnTkR0dDTEYjEiIyMxZsyYeuWbpmKAMijiUdDlej3PYDAYDAaj8SH34Gby5MlwdXWFs7MzBgwYgAcPHsDPzw/t27evUt/ExASenp74888/0b9/f5w9exZnz55Fr1696px3AJUfRf/scfg7lYHBYDAYDEbjQq6HZN25c4f27t3LXSsoKFBqaio5ODhUqf/333+Tj4+PTFpwcDAdOHCgVvlVHLyVctGJnM9F0ogZ1Z8AzIQJEyZMmDBpHPLRHJzJ5/MxcOBAbhUIABAR/P39YWJiUuUzJiYmcHV1lUnz8/PDuHHjqtQXCARQVlbmrtXV1QEAYbxBCDz9G0LOHePSGAwGg8FgNE7q8q2Wa3DTrl07KCkpITMzUyY9MzMTenp6VT6jqalZpb6mpmaV+qtWrYKTk1OldKtRY2A1agyAffXyncFgMBgMxodHXV2drZbaunWrTE+Puro60tLS0Llz57dWDqP+sHr+cLC6/jCwev4wsHr+MHys9ayuro709PS36sk1uMnKykJpaSk0NDRk0jU0NLjt5t8kIyOjTvrFxcUoLi6ulF5QUPBRNejHCqvnDwer6w8Dq+cPA6vnD8PHVs+19VWuq6VKSkoQFhYGCwsLLk1BQQEWFhYIDg6u8png4GAZfQAYOXJktfoMBoPBYDA+PeQ6+3ny5MkkFotpxowZpKenR7/99hvl5ORQhw4dCAAdOXKEtmzZwumbmJhQcXExLV26lHR1dcnR0ZGKioqoV69e7322NZP6C6tnVtdNTVg9s3puSvIJ1LPcHaCFCxdSUlISSSQSunPnDg0aNIi7FxAQQB4eHjL6EydOpCdPnpBEIqGoqCgaM2ZMrfMSCATk6OhIAoFA7uVuysLqmdV1UxNWz6yem5I09Xr+5M6WYjAYDAaD0bSR+w7FDAaDwWAwGO8TFtwwGAwGg8FoUrDghsFgMBgMRpOCBTcMBoPBYDCaFE0yuFmwYAESExMhFotx584dGBkZ1ag/ceJEREdHQywWIzIyEmPGjPlAnn7c1KWe58yZg5s3byInJwc5OTm4cuXKW9uF8T/q+k5XMGXKFBARvL29G9jDpkFd67lly5Zwc3NDeno6JBIJYmJi2O9HLahrPdvZ2eHJkycQiUR49uwZXF1dZc4MZFRm6NChOH/+PNLS0kBEsLKyeuszZmZmCAsLg0QiQVxcHGxsbD6Apw2H3JdsvU+ZPHkySSQSmjlzJunr65O7uzvl5ORQ+/btq9Q3MTGhkpISWrZsGenp6dGGDRvqtG/Opyp1refjx4/T/PnzydDQkHR1denQoUOUm5tLnTp1kntZGrvUta4rREtLi1JSUujGjRvk7e0t93I0dqlrPfP5fLp79y5duHCBhgwZQlpaWvTll19S37595V6Wxix1redvv/2WxGIxffvtt6SlpUUjR46ktLQ02rlzp9zL0phl9OjRtHHjRho3bhwREVlZWdWo/9lnn5FQKKQdO3aQnp4eLVy4kEpKSmjUqFFyL0s9Re4OvFe5c+cO7d27l7tWUFCg1NRUcnBwqFL/77//Jh8fH5m04OBgOnDggNzL0pilrvX8pvB4PHr16hVNnz5d7mVp7FKfuubxeHT79m2aNWsWeXh4sOCmAer5xx9/pKdPn5KSkpLcff+YpK71vHfvXvL395dJ27FjB926dUvuZflYpDbBzS+//EJRUVEyaZ6ennTx4kW5+18faVLDUnw+HwMHDoS/vz+XRkTw9/eHiYlJlc+YmJjI6AOAn59ftfqM+tXzm6iqqoLP5yMnJ6eh3GwS1Leu169fjxcvXuDQoUMfws2PnvrU8zfffIPg4GDs27cPGRkZiIqKwqpVq8DjNamf1fdKfeo5KCgIAwcO5IauunfvjrFjx8LX1/eD+Pyp0NS+hU3qVPB27dpBSUkJmZmZMumZmZnQ09Or8hlNTc0q9TU1NRvMz4+d+tTzm7i4uCA9Pb3SfyaGLPWpa1NTU8yePRv9+vX7AB42DepTz59//jmGDx+OEydOYOzYsdDW1sb+/fvB5/OxYcOGD+H2R0d96tnT0xPt2rXD7du3oaCgAD6fjwMHDmDr1q0fwuVPhuq+hS1btoSKigokEomcPKsf7E8MxgfHwcEBU6dOxfjx41FUVCRvd5oUzZs3x7FjxzB37lxkZ2fL250mDY/Hw4sXL/DDDz/g/v37OHXqFDZv3ox58+bJ27UmhZmZGVavXo0FCxZgwIABGD9+PL766iusXbtW3q4xGjFNqucmKysLpaWl0NDQkEnX0NBARkZGlc9kZGTUSZ9Rv3quwN7eHitXrsSIESMQFRXVkG42Cepa1z169ED37t3h4+PDpVUMk5SUlEBXVxcJCQkN6/RHSH3e6efPn6OkpARlZWVcWnR0NDp27Ag+n4+SkpIG9fljpD71vHHjRhw7dgx//vknAODhw4dQU1PD77//js2bN4OIGtzvT4HqvoWvXr366HptgCbWc1NSUoKwsDBYWFhwaQoKCrCwsEBwcHCVzwQHB8voA8DIkSOr1WfUr54BYPny5Vi3bh1Gjx6NsLCwD+HqR09d6/rJkyfo3bs3+vXrx8n58+cREBCAfv36ISUl5UO6/9FQn3c6MDAQ2traUFBQ4NJ69uyJ9PR0FthUQ33qWVVVVSaABACpVMo9y3g/NMVvodxnNb9PmTx5MonFYpoxYwbp6enRb7/9Rjk5OdShQwcCQEeOHKEtW7Zw+iYmJlRcXExLly4lXV1dcnR0ZEvBG6CeV6xYQRKJhCZMmEAaGhqcqKmpyb0sjV3qWtdvClst1TD13KVLF3r16hX9+uuvpKOjQ2PHjqWMjAxavXq13MvSmKWu9ezo6EivXr2iKVOm0GeffUYjRoyguLg4+vvvv+VelsYsampqZGhoSIaGhkREtHjxYjI0NKSuXbsSANqyZQsdOXKE069YCu7i4kK6uro0f/58thS8scnChQspKSmJJBIJ3blzhwYNGsTdCwgIIA8PDxn9iRMn0pMnT0gikVBUVBSNGTNG7mX4GKQu9ZyYmEhV4ejoKPdyfAxS13f6dWHBTcPV8+DBgyk4OJjEYjE9ffqUVq1aRTweT+7laOxSl3pWVFSk9evXU1xcHIlEIkpOTiY3Nzdq2bKl3MvRmMXMzKzK39yKuvXw8KCAgIBKz9y/f58kEgk9ffqUbGxs5F6O+orCf//BYDAYDAaD0SRoUnNuGAwGg8FgMFhww2AwGAwGo0nBghsGg8FgMBhNChbcMBgMBoPBaFKw4IbBYDAYDEaTggU3DAaDwWAwmhQsuGEwGAwGg9GkYMENg8FgMBiMJgULbhiMJoiNjQ1yc3Pl7QaICFZWVvJ2o8F5H+V0dHREeHh4jToeHh7w9vbmrgMCArBr1y7uOjExEXZ2du/kB4PRFGDBDYPRSPHw8AARVZIePXrI2zUOFRUVZGdn4+XLlxAIBPJ25628Xo95eXm4ffs2hg0bJm+3ao2dnR1mzpxZ7X0jIyP8/vvv3PWnElwyGG/CghsGoxFz8eJFaGpqykhiYqK83eKwtrbGo0eP8OTJE4wbN+692+fz+e/d5syZM6GpqQlTU1NkZWXhwoUL6N69e5W6SkpK7z3/dyE/Px+vXr2q9n5WVhbEYvEH9IjBaJyw4IbBaMQUFRUhMzNTRsrKyrBkyRJERkZCKBTi2bNn2LdvH9TU1Kq107dvX1y7do37ON67dw8DBw7k7puamuLmzZsQiUR49uwZ9uzZA1VV1bf6N3v2bBw/fhzHjx/H7Nmz36r/yy+/ICYmBoWFhYiPj8eGDRtkAoiKoZnZs2cjISEBEokEQHkPxA8//AAfHx8UFhbi8ePHGDx4MHr06IGAgAAIhUIEBgbi888/f6sPeXl5yMzMxKNHjzB//nyoqqpi5MiRXD7z5s3DuXPnIBQKsWbNGgDAvHnz8PTpUxQVFeHJkyf4/vvvK9nt2LEjfH19IRKJEB8fD2tr6zqVvYIffvgBz549Q2FhIU6ePIkWLVpw994clnqT14elKoLgs2fPgoiQmJgILS0tSKVSmbYHynuEkpKSoKCg8Nb6YzA+Blhww2B8hJSVleHnn39Gr169YGNjg+HDh2Pbtm3V6p84cQKpqakwMjLCwIED8csvv6CkpAQA8Pnnn+PSpUvw8vJC3759MWXKFPznP/+Bm5tbjT58/vnnMDExwalTp3Dq1CkMHToU3bp1q/GZgoICzJw5EwYGBrCzs8PcuXOxZMkSGR1tbW1YW1tjwoQJ6NevH5e+bt06HD16FP369cOTJ0/w119/wd3dHVu3bsUXX3wBBQWFt/r8JhW9HK8PqTk5OcHb2xt9+vTBoUOHMG7cOOzZswc7d+5E79694e7uDg8PD5ibm8vY2rhxI7y8vGBoaIgTJ07g77//hp6eXp3LPnnyZHz99dcYPXo0+vfvj/3799epTBUYGRkB+F9PlZGREZKTk+Hv7w9bW1sZXVtbWxw+fBhE7BxlRtNB7keTM2HCpLJ4eHhQSUkJFRQUcHLq1Kkqda2trenly5fctY2NDeXm5nLXr169ohkzZlT57B9//EG//fabTJqpqSmVlpaSsrJytf5t2rSJzpw5w117e3uTo6OjjA4RkZWVVbU27O3tKTQ0lLt2dHSkoqIiateuXSU7GzZs4K6NjY2JiMjW1pZLmzJlColEohrr9HV/mjVrRm5ublRSUkJ9+vTh7ru6uso8c/v2bXJ3d5dJO3nyJF24cEHG7v79+2V0goODad++fXUqe0lJCXXq1IlLs7S0pNLSUtLQ0ODeCW9vb+5+QEAA7dq1i7tOTEwkOzu7Gut/0qRJlJ2dTQKBgABQ//79SSqVkpaWltzfeSZM3pewnhsGoxETEBCAfv36cfLzzz8DACwsLODv74/U1FTk5+fj2LFjaNeuHZo1a1alHVdXVxw8eBBXrlyBg4ODzPCNoaEhZs6ciYKCAk78/PygqKhY7VwUHo8HGxsbHD9+nEs7fvw4Zs6cWePQxuTJk3H79m08f/4cBQUF2LRpU6XenuTkZGRlZVV6NjIykvt3ZmYmACAqKkomrVmzZlBXV682fwDw9PTkymltbY3Zs2fL2Ll3756Mvr6+PgIDA2XSAgMDoa+vL5MWHBxc6fp1ndqU/dmzZ0hPT5exoaioCF1d3RrLVBfOnj0LqVSK8ePHAyjv2QkICEBycvJ7y4PBkDcsuGEwGjEV8zMqJCMjA1paWrhw4QIiIyNhbW2NgQMHYuHChQBQ7YolZ2dn9OrVC//++y+GDx+Ox48fcxOAmzdvDnd3d5kgytDQENra2oiPj6/SnqWlJbp06YKTJ0+ipKQEJSUl+Pvvv/HZZ5/BwsKiymcGDx6MEydOwNfXF//3f/+H/v37Y/PmzZV8LiwsrPL5imE0ANzwSVVpPF7NP2tLlixBv379oKmpiY4dO+Lo0aO1yv9dqG3ZPwQlJSU4evQobG1twefzMW3aNBw6dOiD+8FgNCSNaykAg8F4KwMHDgSPx4O9vT33QZ88efJbn4uLi8Pu3buxe/du/PXXX7C1tcXZs2dx//59GBgYVBvIVMXs2bPh6emJzZs3y6SvWbMGs2fPhr+/f6VnhgwZguTkZGzZsoVL09LSqnWe74uMjIw6lTU6OhqmpqYyQZCpqSkeP34sozd48GAcO3ZM5rpi35ralr1bt27o2LEjnj9/ztmQSqWIiYmptb+vU1xcDEVFxUrpBw8exMOHD7FgwQIoKSnhzJkz9bLPYDRWWHDDYHxkPH36FAKBAD/99BN8fHxgamqKefPmVauvoqKC7du3459//kFiYiK6dOkCIyMjeHl5AQBcXFxw584d7N27FwcPHkRhYSEMDAwwcuRI/PTTT5XstWvXDl9//TW++eYbPHr0SObe0aNH4e3tjdatW1faRDAuLg7dunXDlClTEBoaiq+++oobGmnMbN++HadOnUJ4eDj8/f3x9ddfY8KECRgxYoSM3qRJk3Dv3j3cvn0b3333HQYNGsStIKtt2SUSCY4cOYJly5ahRYsW+PXXX3Hq1CluGK6uJCUlwcLCAoGBgSgqKkJeXh4A4MmTJ7hz5w5cXFxw6NAhblUag9FUYMNSDMZHRmRkJJYsWQIHBwc8fPgQ3333HVatWlWtvlQqRdu2bXH06FHExsbi1KlTuHjxIhwdHQGUz1sxMzNDz549cevWLYSHh2PDhg0ycz9eZ8aMGSgsLMTVq1cr3bt69SrEYnGVS6V9fHywa9cuuLm5ISIiAkOGDMHGjRvrWQsfjnPnzsHOzg7Lli3Do0eP8OOPP8LW1hY3btyQ0XN0dMTUqVMRGRmJGTNm4Ntvv0V0dDSA2pf96dOnOHPmDHx9fXH58mVERkZiwYIF9fbd3t4eI0eOREpKSqXdj//8808oKyuzISlGk0QB5TOLGQwGg/EJsXbtWkyaNAmGhobydoXBeO+wnhsGg8H4hFBTU0OvXr2waNEi7N27V97uMBgNAgtuGAwG4xPCzc0NYWFhuH79OhuSYjRZ2LAUg8FgMBiMJgXruWEwGAwGg9GkYMENg8FgMBiMJgULbhgMBoPBYDQpWHDDYDAYDAajScGCGwaDwWAwGE0KFtwwGAwGg8FoUrDghsFgMBgMRpOCBTcMBoPBYDCaFP8P5AFWIP03c5QAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -162,7 +166,8 @@ "result = simulation.run()\n", "\n", "# Visualize the ROC\n", - "_ = result.plot()" + "_ = result.plot()\n", + "plt.show()" ] }, { @@ -246,7 +251,18 @@ "cell_type": "code", "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHgCAYAAABZ+0ykAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABbIElEQVR4nO3deVgVZf8G8PuwbwdcQDYFEQVcEZGU3FLUzEpzQ83ctczyVbMyzdI0K99Scyv1VXHJTHPfF8xdcMENFxQQUPZN9h2e3x/k+XUClYPAwHB/ruu5Xs5znpn5zugrdzPPzCgACBARERHJhJbUBRARERFVJIYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiqnBhYWHw8fGRZNv29vYQQmD06NGSbL+6mDt3LoTgA+ipdmK4IaoCo0ePhhBC1fLz8xEZGQkfHx/Y2NhUyja7deumts1/t6FDh1bKdqvK8OHDMXXqVMm2HxYWpnY8MzIycOnSJYwcOVKyml5k1qxZ6N+/v9RlEFU6HakLIKpNvvrqK4SFhcHAwAAdO3bEmDFj0LlzZ7Rq1Qq5ubmVss1ly5bhypUrJfr9/PwqZXtV5d1330WrVq2wbNkytf6IiAgYGBggPz+/0mu4fv06Fi9eDACwtrbGhAkTsHnzZujr62PdunWVvn1NzZ49Gzt37sS+ffukLoWoUjHcEFWhI0eOICAgAACwfv16JCYm4osvvkC/fv3w559/Vso2z507h127dlXKuqurygqK/xYVFYWtW7eqPm/cuBEPHz7E9OnTq2W4IaoteFmKSELnzp0DADg6Oqr6unfvjrNnzyIjIwNPnjzB3r174eLiUmJZGxsbrFu3DlFRUcjJycHDhw/xyy+/QFdXV6MaAgMD8ddff5XoVygUiIyMVAtdM2bMwIULF5CYmIisrCxcvXoVgwYNeuE2njX/4+nlOnt7e1Vfv379cPDgQdV+hYSEYM6cOdDS+v9/rk6dOoW33noLjRs3Vl0WCgsLA/DsOTdlOa5P63R0dISPjw+ePHmClJQUbNiwAYaGhi/cz8TERAQFBan9eQLFx3Lq1Km4ffs2srOzERsbi9WrV6NOnTpq49zd3XH06FEkJCQgKysLDx8+xPr161XfP73U2K1bN7XlyjLPSAgBExMTjBkzRnXMpJoXRVTZeOaGSEKNGzcGADx58gQA4OXlhSNHjuDhw4eYN28eDA0NMWXKFFy4cAHt2rVDREQEgOJLIJcvX0adOnWwdu1aBAUFwdbWFoMHD4aRkRFSU1NV21Aqlahfv36JbSclJQEAtm/fjnnz5sHS0hJxcXGq7zt37gxbW1v88ccfqr6pU6di//792Lp1K/T09DBs2DDs3LkTb775Jg4fPlwhx2TMmDHIyMjAkiVLkJGRgR49emDBggUwNTXF559/DgBYuHAhzMzM0LBhQ0yfPh0AkJGR8cx1lvW4PrVjxw6EhYVh1qxZaNeuHSZOnIj4+Hh88cUXz61dW1sbDRs2VP15PrVmzRqMGTMGPj4+WL58ORwcHPDxxx/Dzc0NnTp1QkFBASwsLHD8+HEkJCTghx9+QEpKCho3boyBAweW5zCW8N5772HdunW4fPky1q5dCwAIDQ2tkHUTVUeCjY2tctvo0aOFEEL06NFD1K9fX9ja2oqBAweKuLg4kZ2dLWxtbQUAce3aNREbGyvq1q2rWrZ169aioKBAbNy4UdW3ceNGUVBQINzd3Z+5zW7duonnsbS0FABEs2bNhBBCfPTRR2rLr1y5UqSlpQkDAwNV3z9/BiB0dHTErVu3hK+vr1p/WFiY8PHxUX2eO3euEMWnbko9Lvb29s/cBgDx66+/ioyMDKGnp6fqO3DggAgLCysx1t7eXgghxOjRo1V9ZT2uT+tct26d2jp37dolEhISSuzj0aNHRf369UX9+vVFy5YtxaZNm4QQQqxYsUI1rlOnTkIIIYYPH662fO/evdX6+/fvL4QQZfoz7dat2wv3ubRjnp6ervbnwsYm18YzN0RV6OTJk2qfw8LC8N577yEqKgpWVlZwc3PDokWL1P7LPzAwECdOnEDfvn0BFF/ieOedd3DgwAHV/J3n+eabb1SXv/4pOTkZABAcHIzr169j6NChWLVqFQBAS0sLgwcPxoEDB5CTk6Na5p8/16lTB9ra2jh37hyGDx+uwVF4vn9uw8TEBPr6+jh37hwmTZoEFxcX3Lp1S6P1lfW4/tPq1avVPp87dw4DBw6EUqlEenq6qv/1119HYmKi2tgNGzbgs88+U30eMmQIUlJScOLECbUzaAEBAUhPT0f37t2xbds2pKSkAADeeust3Lx5EwUFBRrtJxH9P4Yboio0efJkPHjwAGZmZhg3bhy6du2qmvz6dN7J/fv3Syx379499OnTB0ZGRjAxMYGZmRlu375dpm0GBgaWCFX/tn37dnz33XewsbFBdHQ0XnvtNVhaWmL79u1q4958803MmTMHbdu2hYGBgaq/qKioTLWURYsWLfDtt9+iR48eMDMzU/vu35/LoqzHNSsrS9X/6NEjtXFPQ1HdunXVwo2/vz/mzJkDbW1ttGrVCnPmzEHdunWRl5enGtOsWTPUqVMHCQkJpdbXoEEDAMCZM2ewc+dOzJs3D9OnT8fp06exd+9e/P7772rrI6IXY7ghqkKXL19WnW3Zu3cvzp8/j99//x3Ozs6S1rV9+3b88MMPGDJkCJYtWwZvb2+kpKTg6NGjqjGdO3fG/v37cfbsWUyePBkxMTHIz8/H2LFjMWLEiOeu/1kPk9PW1lb7bGZmhjNnziAtLQ1ff/01QkNDkZOTg3bt2uG///2v2qTiylRYWFhqv0KhUPucmJioCo7Hjx9HUFAQDh06hKlTp2Lp0qUAis+CxcXFPfMY/TP0DBkyBB06dMDbb7+N119/HT4+PpgxYwY6duyIzMzMMh9HotqO4YZIIkVFRZg1axZOnz6Njz/+GJs2bQKAUoOOi4uL6g6a7OxspKamolWrVhVWS3h4OC5duoShQ4di5cqVGDhwIPbu3at2xmDQoEHIycnB66+/rtY/duzYF67/6ZkPMzMztcnO/7xLCgBee+01mJubY+DAgWqX0hwcHEqss6xP3306WfhFx7UiHD58GKdPn8bs2bOxZs0aZGVlITQ0FD179sSFCxfULrk9y6VLl3Dp0iXMmTMHw4cPx++//45hw4Zh/fr1quP477us/n0cn4VPLKbagreCE0nozJkzuHTpEqZNm4YnT57g+vXrGD16tNrll5YtW6J3796qu5GEENi7dy/efvttuLu7V1gt27dvh6enJ8aNGwcLC4sSl6QKCwshhFA7S2Bvb4933nnnhet+eldO165dVX1GRkYlbl1+esbkn2dIdHV1MXny5BLrzMzMLNNlqtjY2DId14qyaNEimJubY+LEiQCK77zS0dHBV199VWKstra2qqZ/BxYAuHHjBgBAX18fQHFQKygoUDuOAEo9PqXJzMwsdTtEcsMzN0QS+/HHH7Fz506MGTMGn332GY4cOQI/Pz+sX79edctyamoq5s2bp1pm9uzZ6N27N86cOYO1a9fi3r17sLa2xpAhQ9C5c2e1syNdunRRmx/z1K1btxAYGKj6vGPHDvz000/46aefkJSUBF9fX7Xxhw4dwowZM3D06FH8/vvvaNCgAT766COEhITA1dX1uft4/PhxREREYP369fjxxx9RWFiIcePGISEhQe2sw8WLF5GcnIxNmzZh+fLlEEJg5MiRJS4HAcUTcocNG4bFixfjypUryMjIwMGDB0vdflmPa0U4evQoAgMD8cknn2DVqlU4e/YsVq9ejdmzZ6Nt27Y4fvw48vPz0axZMwwZMgRTp07Frl27MHr0aEyePBl79uxBaGgolEolJk6ciNTUVFUAS0tLw59//okpU6ZACIHQ0FC89dZbqnk7LxIQEICePXti+vTpiI6ORlhYGC5fvlyh+09UXUh+yxYbm9zb01ueS7vNV6FQiODgYBEcHCy0tLREjx49xLlz50RmZqZISUkR+/btEy4uLiWWa9Sokdi4caPqdvKQkBCxYsUKoaurK4AX3wo+d+7cEus8d+6cEEKItWvXlrofY8eOFffv3xfZ2dni7t27YvTo0aXecvzvW8EBCDc3N+Hn5ydycnJEeHi4mDZtWqm3gnt6eoqLFy+KzMxMERkZKX744QfRq1evErdAGxkZid9++00kJycLIYTqtvDSbosGUKbj+nRf6tevX+qf3z/rDAsLEwcOHCj1OI0aNapEDRMmTBBXrlwRmZmZIjU1Vdy8eVP88MMPwsrKSgAQbdu2FVu3bhXh4eEiOztbxMbGiv3794t27dqprbt+/frizz//FBkZGSIpKUn8+uuvokWLFmW6FdzJyUmcPn1aZGZmCiEEbwtnk21T/P0DERERkSxwzg0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJio7UBUjBxsYG6enpUpdBREREGlAqlYiOjn7huFoXbmxsbBAVFSV1GURERFQOtra2Lww4tS7cPD1jY2try7M3RERENYRSqURUVFSZfnfXunDzVHp6OsMNERGRDHFCMREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyQrDDREREckKww0RERHJCsMNERERyYqk4aZLly7Yv38/oqKiIIRA//79X7hMt27dEBAQgJycHAQHB2P06NFVUCkRERHVFJKGG2NjY9y8eRMfffRRmcY3btwYhw4dwqlTp9C2bVv8/PPPWLduHXr37l3JlRIREVFNoSPlxo8ePYqjR4+WefykSZMQFhaGTz/9FAAQFBSEzp07Y/r06Th+/HhllUlERFQjaelow7qpI+rZWpf6fejV68hKTaviqiqfpOFGU56envD19VXrO3bsGH7++ednLqOnpwd9fX3VZ6VSWVnlERERScLQ1BSO7dvC1MIcSvP6UJrXg1UTB9g2d4aeocEzl1sx8gOE37hVhZVWjRoVbqysrBAXF6fWFxcXBzMzMxgYGCAnJ6fEMrNmzcK8efOqqEIiIqKqYWBijFY9uqFtHy84dXwF2rql/0rPTktHfFgEigoLS3yXm5VZ2WVKokaFm/L4/vvvsWTJEtVnpVKJqKgoCSsiIiJ6Pm1dXdRvaIO6NtYwMjOFgbExDJTGMDAxgYGJMerZWMPJ0wM6enqqZWJDHiI+/BHSE5OQnpSM5KgYPL59FwnhjyCEkHBvql6NCjexsbGwtLRU67O0tERqamqpZ20AIC8vD3l5eVVRHhERkcb0jYzQrKMHnF99BQ0c7FG/kS3MLBtAS+vF9/zEhobh5lFf3Dh2EvFhEVVQbc1Qo8KNn58f+vbtq9bXq1cv+Pn5SVQRERGR5uraWKHla53RomsnOHq0UzsD81RuVhaSIqOR+SQFORmZyMnIQHZ6BnIzs5CVmoYHfpcRG/JQguqrP0nDjbGxMZo2bar67ODgAFdXVyQnJ+Px48f47rvvYGtrq3qWzerVq/Hxxx9j0aJF2LBhA3r06AFvb2+8+eabUu0CERHRc2npaKOBQ2PYOjeDbXMnOHm+AutmjmpjEh9F4u6ZC3h89x6SHkchKTIKGUlPJKq45pM03LRv3x6nT59WfV66dCkAYOPGjRg7diysra1hZ2en+j48PBxvvvkmli5diqlTpyIyMhITJkzgbeBERFQtKOvXQ4MmjWHj1BQ2Ls1g49QMVk0dSpyZKSwoQNj1W7h35gLunr3AS0oVTAGgVs0yUiqVSEtLg6mpKdLT06Uuh4iIahhtXV2Y2zVEAwd7NGhsjwYO9rBobIcGDvYwVJqUukx2egai7wcj+n4wIm7eRtCFS8hOk9/zZSqTJr+/a9ScGyIioqqio6+PRi1dYNmksVqAqWdjDS1t7VKXKSosRHJ0DGKDQxEVFIzo+yGIvv8AyVExVVx97cZwQ0REhOLnxjRu2xpN3N3QxL0tGrVqDh1d3VLHZqdnID4sAgnhjxAfFoH48OKfEx9FooB36EqO4YaIiGolk3p14eDWRhVmbJybljgjkxqfgOj7wYj/O8QkhEUgPiwC6UnJElVNZcFwQ0REtUIdK0s0ad8WTdq1RRP3trBs0rjEmMRHkXgYcAMPA67jYcBNJEXyoa81EcMNERHJjkKhQIMmjeHg1gYObq5o4t621JdHxgSHFoeZq9fx8NpNpCUkSlAtVTSGGyIiqvF09PVh16o5GrdtAwe3NmjctjWMzEzVxhQWFCDy7n2EXbuJhwHXEXb9lizfiE0MN0REVAOZ1KurCjIObm1g28K5xOTf3KxsPAq8g/AbgXgYcB3hN24jLztbooqpKjHcEBFRtafQ0kKLbp3QqkdXOLi5wsK+UYkxqfEJCL8RiLDrtxB+/Rai7j9AUUHJN2GT/DHcEBFRtaVnaACP/m+iy3tD1QJNUVER4kLDVEEm7PpNPkuGVBhuiIio2jG1MEen4YPxqvcA1dyZrLQ0XNl7CA/8ryDi5m1kp/Ep81Q6hhsiIqo2rJ2aotuo4XDr20s1hybxcSTObtmOK3sPcc4MlQnDDRERSUqhUMC5Uwd0G/0unDp6qPofBtzAmc1/4M7pcxBFRRJWSDUNww0REUlCR08P7m+9jq6jhsPK0QFA8e3at06cwpnNf+Dx7bsSV0g1FcMNERFVKZN6dfGq9wC8OmwQlPXrAQByMjLhv2sfzm/9E09iYiWukGo6hhsiIqpUCi0t1G9oA2unpnDp1BHub/eBrr4+ACA5Ogbntu7A5d0HkJORKXGlJBcMN0REVGGMzExh3cwR1k5NYePUFNZOTWHp6AB9I0O1cY8C7+LMpt9xy/c0igr5LBqqWAw3RESkMW0dHTRoYq8KMtZOTWHTrCnMLC1KHZ+fk4uYkFBEBwXj6v7DCLt+q4orptqE4YaIiJ7LtIEFbJz+DjF/hxlLh8bQ1i39V0hSZBRiHoQg+kHo3/8bgqTHUbzjiaoMww0REQEonhvTwMEe9q1bwsalmSrIGNcxK3V8dnoGYh6EICY4FNEPQhDzIASxwQ+Rm5VVxZUTqWO4ISKqpZT168GuTUvYtW4J+9Yt0ahVcxiYGJcYV1RYiPjwR8VB5sH/B5mU2DgJqiZ6MYYbIqJaQEdfHw2bO8OuTQvYt24JuzYtUc/GusS43KxsRN4NQuTdIETfLw4xcQ/DUZCXJ0HVROXDcENEJDMKhQLm9o1g36YV7Fq3gF2blrBp1rTEHJmnL598FHgXjwLvIOLWHcSFhvHuJarxGG6IiGo44zpmsPv7bIx96xZo1LoFjExNS4xLS0zCo1u3EXGrOMw8vnMPuZmcH0Pyw3BDRFRDKBQK1GtoC1uXZrBxaQYbp2awdWmGOlaWJcbm5+Qi8m4QIgLvFJ+ZuXWHT/6lWoPhhoioGtI10IdVU8fiIONc3KydHGFgXHLCLwDEh0Ug4tYdRNy6jUeBdxATHIqiAl5eotqJ4YaISGLK+vVg4+IEG+emsHVuBhsXJ1jYN4KWtnaJsf98GF70/b/bgxBeXiL6B4YbIqIqoqWtDQv7RsVnYlyawda5Gaydm8HUvH6p49OTkhEd9ADR90MQdT8Y0UEPkBDxmBN+iV6A4YaIqBLoGxnB2qmp+mWlZo7QNdAvMbaoqAgJ4Y9UZ2Ki/j4rk56YJEHlRDUfww0RUQVq4t4Wnd8dglY9ukJbp+Q/sblZWYh5EIqooAeqMBMb8hB52TkSVEskTww3REQvSUdfH+3e6IXOI4bA1sVJ1Z8SF4/ooGBE3S++tBQd9KD4HUtCSFgtkfwx3BARlVMdywbwHDoQnoP7w7huHQDFT/gNOHAE57ftRFxomLQFEtVSDDdERBpycGuDziO80dqrm+rSU1JkNC5s24nLew8iOy1d4gqJajeGGyKiMtDR04PbGz3R+V1vNGzhrOoP9r+Kc7/vwN0zFyCKiiSskIieYrghInoO0wYWeHXoAHgOfgcm9eoCAPKycxBw6CjO/74TscGhEldIRP/GcENEVIrGrq3RecQQtOnZXfXCyeToGFz8Yxcu7T6ArNQ0iSskomdhuCEi+pu2ri7a9umJLiOGoFHL5qr+kCvXcH7rDtw5fZ4P0COqARhuiKjWM7Uwh6f3AHgOeQfK+vUAFL/m4NqhYzj3+5+IeRAicYVEpAmGGyKqtezatESXEd5w7dVDdekpJTYOF/7YhUu79iMzJVXiComoPBhuiKjWUNavB8f2bmjS3g1NX3GHZZPGqu9CA67j/NY/cfuvs7z0RFTDMdwQkWwpzevDsb0bHD3aoalHOzRwsFf7Pj83F9cPn8D53/9EVNADiaokoorGcENEsmHawOLvMOMGR3e3EmGmqKgIMfdDEHL1Gh5evY7Qq9f5wD0iGWK4IaIaq45lAzT5O8g4erSDhX0jte+LiooQFfSgOMhcuYaH124yzBDVAgw3RFRj1LGyhKNHO9XZGfNGDdW+LyosRFTQA4ReuY6QK9cQdv0mctIzJKqWiKTCcENE1VZdGys4tm9XfJmpvRvqN7RV+76osBCRd+8j9Mo1hF69XhxmMjIlqpaIqguGGyKqNvQMDdGsY3u4dPaE86sdUL+hjdr3hQUFiLwThNCA4stMYddvITczS6Jqiai6YrghIklZNW0Cl04d4dLZEw7urtDR1VV9V5hfgMd37iH07zkz4TcCkZvFMENEz8dwQ0RVSt/YCM06eMClS0e4dOqIutZWat8nPo5E0Hl/BJ3zQ+jV68jLzpaoUiKqqRhuiKjSWTs5wqWzJ1w6dYSDm6vqacBA8WsOQq5eQ9A5PwSd90Pio0gJKyUiOWC4IaIKZ2BijGYdPdC8syecO3dEHcsGat8nhD/CvfN+CDrvj9Cr11GQmytRpUQkRww3RFQhbJybFZ+d6dIRjV1bQ1vn//95ycvOQciVANXlpqTIKAkrJSK5Y7ghonIxNFXCyfMVuHTqCOdOHWDWwELt+/iwiOKzM+f88DDgBgry8iSqlIhqG4YbIiozfSMjuPbuAfe3+8Chnava2ZncrGyEXLqKe+f9cP+CP5KjYiSslIhqM4YbInouhUKBph3ao32/N9Da6zXoGxmqvosNDUPQ33NnHgbcQGF+voSVEhEVY7gholKZ2zeCR7++cH+7j9rt2vFhEbiy7zCuHzmOJ9GxElZIRFQ6hhsiUjFQmqBtn57w6NcXjdu2VvVnpaXhxhFfXNl3CI8C70pYIRHRizHcENVyCi0tOHm+Ao/+fdGqR1fo6usDKH7Vwf2Ll3Bl32HcPX2eE4KJqMaQPNxMnjwZn332GaysrHDz5k1MmTIFV65ceeb4qVOn4sMPP4SdnR0SExOxc+dOzJo1C7l8TgaRRiwdHeDRry/avfW62p1OMcGhuLL3EK4dOob0pGQJKyQiKh9Jw423tzeWLFmCSZMm4dKlS5g2bRqOHTsGZ2dnJCQklBg/fPhw/PDDDxg3bhwuXrwIJycnbNy4EUIIzJgxQ4I9IKpZjMxM4fZGL7Tv3xd2rVqo+jOfpODa4eO4su8Qou49kLBCIqKXpwAgpNq4v78/rly5gilTphQXo1Dg8ePHWLFiBRYtWlRi/IoVK9C8eXP07NlT1ffTTz+hQ4cO6NKlS5m2qVQqkZaWBlNTU6Snp1fMjhBVY1o62nDp5AmP/n3R4rXOqhdTFuYX4N65C7iy7zDunb2IwoICiSslIno2TX5/S3bmRldXF+7u7vj+++9VfUII+Pr6wtPTs9RlLl68iPfeew8eHh64cuUKHBwc0LdvX2zZsuWZ29HT04P+33MIgOKDQ1QbWDs1hUf/vmj35utQ1q+n6o+8ex9X9h3C9SMnkPkkRboCiYgqiWThxtzcHDo6OoiLi1Prj4uLg4uLS6nLbNu2Debm5jh//jwUCgV0dXXx66+/qgWkf5s1axbmzZtXkaUTVVvaOjpo92ZvdBkxFLbNnVT9aYlJuHboGK7uP4yYB6ESVkhEVPkkn1CsiW7dumH27NmYPHkyLl26hKZNm2LZsmWYM2cOvv3221KX+f7777FkyRLVZ6VSiagovteG5EXP0BAdB/dHt1HDUMfKEgBQkJeHO6fP48reQ7h/8RKKCgslrpKIqGpIFm4SExNRUFAAS0tLtX5LS0vExpb+YLAFCxZgy5YtWL9+PQDg9u3bMDY2xtq1a7Fw4UIIUXL6UF5eHvJ4CyvJlHHdOugywhudhg2CkZkpACA1PgHnftsO/10HkJ2WJnGFRERVT7Jwk5+fj4CAAHh5eWHfvn0AiicUe3l5YeXKlaUuY2RkhKKiIrW+wr//a1ShUJQabojkqJ6tNbqNfhcdBrwNXYPiOWXxYRE4vXErrh44ytcgEFGtJullqSVLlmDTpk24evUqLl++jGnTpsHY2Bg+Pj4AgE2bNiEqKgqzZ88GABw4cACffPIJrl+/rrostWDBAhw4cKBE6CGSI2unpugxfiRce/dQvbTyUeBd/LVhC27/dRaC/z8gIpI23OzYsQMWFhaYP38+rKyscOPGDfTp0wfx8fEAADs7O7XQ8u2330IIgW+//Ra2trZISEjAgQMH8OWXX0q1C0RVwrG9G3qMHwWXzh1VfUHn/fHXhi0IvXJNwsqIiKofSZ9zIwU+54ZqCoVCgVY9uqL7uJGwb9MSAFBUWIibx07ilM9WRAXxYXtEVHvUiOfcEFHptHV10f7tPnhtzAg0cLAHAOTn5OLy3oM4vel3JEdGS1whEVH1xnBDVE3oGRri1aED0XXkUNW7nrLS0nDhj104v/VPZCQ/kbhCIqKageGGSGI6+vroNHQgeowfCZN6dQEAKXHxOLN5Gy7t3I/crCyJKyQiqlkYbogkoq2ri46D+8NrwijVmZqEiMc4uW4Trh08xnc9ERGVE8MNURXT0tGGR7++6DVpHOpaWwEAkqNicGL1Blw9cIRPEiYiekkMN0RVRKGlhXZ9e6P35PEwb9QQAJAal4ATa31wefcBnqkhIqogGocbBwcHhIWFVUYtRLKkUCjg2rsHek+eAMsmjQEA6UnJOLluM/z+3IuC3FxpCyQikhmNw01ISAjOnDmD9evXY+fOncjlP8xEz9Syexf0+WgibJybAQCyUtPw14YtuLBtJ/KycySujohInjR+iJ+rqyvGjh2L4cOHQ09PD9u3b8f69etx5cqVSiqxYvEhflTZFFpaaNW9C3pMGAW7Vi0AANnpGTi7eRvO/rYdORmZEldIRFTzaPL7u9xPKNbW1ka/fv0wZswY9OnTBw8ePMCGDRuwZcsWJCYmlmeVVYLhhiqLvpERXhnwFrq85436DW0BALlZWTi39U+c3vg739BNRPQSqiTcPKWnp4fJkyfj+++/h56eHvLy8rBjxw7MnDkTsbGxL7PqSsFwQxWtjpUluozwRodB/WCoNAEAZKakwu/PvTj323Y+fI+IqAJUyesX3N3dMW7cOAwbNgyZmZn46aefsH79ejRs2BBz587Fvn370KFDh/Kunqjas2vdAl1HDkObXt1Vb+iOD4vA2S3bcfXAYeTncD4aEZEUNA4306dPx9ixY+Hs7IzDhw9j1KhROHz4MIQoPgEUHh6OMWPGIDw8vKJrJZKclrY2WvXoiq4jh8HBrY2qP9j/Ks5s3oag836q/y8QEZE0NA43H374ITZs2ICNGzc+87JTfHw8xo8f/9LFEVUX+sZG6DCwHzq/OwT1G9oAAAry83H98HGc2fwHYh6ESFwhERE9pfGcG3t7ezx69KjU/zpt1KgRHj9+XFG1VQrOuSFN1LWxQud3h6DjoP4wMDEGAGQ+ScHFHXtw4Y9dSE9MkrhCIqLaoVLn3ISGhsLa2hoJCQlq/fXq1UNYWBh0dPjQY6r57F1bFc+n6fkatLS1AQBxD8NxdssfuHrgKB+8R0RUjWmcRBQKRan9JiYmyMnhQ8mo5tLS0UZrr9fQdeRQNHZtreq/f/ESzm75A/cvXOJ8GiKiGqDM4Wbx4sUAACEE5s+fj6ysLNV32tra6NChA27cuFHhBRJVNtMGFug4qB86DuoPM8vit3MX5OUh4OAxnP1tO2KDQyWukIiINFHmcOPm5gag+MxN69atkZeXp/ouLy8PN2/exE8//VTxFRJVkmYd2uPVoQPRsnsX1a3c6UnJuLh9Ny7u2I2MJD6fhoioJipzuOnRowcAYMOGDZg6dSon41KNZGiqRPt+ffGq9wA0cLBX9YdevY6L23cj0Pc0385NRFTDaTznZty4cZVRB1GlatjCBa8OHQi3N3pBz9AAAJCTkYmrB47Ab8cexIY8lLhCIiKqKGUKN7t27cKYMWOQnp6OXbt2PXfsoEGDKqQwopela6CPtn164lXvgbBr3ULVH30/GBe278b1Q8eR+4+5Y0REJA9lCjepqamqu0RSU1MrtSCil2Vu3wiveg+AR/83YWRmCqB4gvDN43/h4vY9CL9xS+IKiYioMr30izNrGj7ET560tLXRoltndBo2EE6er6j6kyKj4ffnHlzecxCZT1KkK5CIiF5Klbw4k6g6MLUwR4dB/dBxcH/UsWwAACgqKkLQOT9c2L6r+Nk0RUUSV0lERFWpTOHm2rVrZX54mbu7+0sVRPQiCoUCTTu0h+eQd9Cqe1do6/7/bdyX9xyE/869SI6KkbhKIiKSSpnCzd69eyu5DKIXM7Uwh0f/N/HKwLdg3qihqj/s2k1c2L4bt06cQmF+voQVEhFRdcA5N1StaWlrw7lTR3Qc3A/Nu7yqethednoGrh06Br8/9yDmAZ8gTEQkd5xzQzVeXRsrdBjYDx7vvKmaSwMUn6Xx37UfN4+fRH4OX15JREQllSncJCUlwcnJCUlJSUhOTn7u/Jv69etXWHFUu2jr6KBlj67oOKgfmnX0gJaWFgAg80kKruw/jEu79iM+LELiKomIqLorU7iZPn266hTQtGnTKrMeqoUsGtuhw8B+aN/vDSjr11P1P/C7DP9d+3H7r7OcS0NERGXGOTckCR19fbj26o4Og/vB0d1N1Z8an4DLew/i8p6DSI6MlrBCIiKqTip9zo2WlhYGDBiA5s2bAwDu3r2Lffv2obCwsDyro1pEz9AAr3oPxGtjR6jO0hQVFuLe2Yu4tHs/7p3zQxH/HhER0UvQONy0aNEC+/fvh5WVFe7fvw8AmDlzJhISEvD222/jzp07FV4k1Xx6hoboNGwguo1+VxVqkqNjcGnXflzeewhp8QkSV0hERHKhcbhZt24d7ty5g/bt2yMlJQUAUKdOHWzcuBFr165Fp06dKrpGqsH0jYzQafggdBs1HCb16gIAEh9Fwvd/GxFw8CiKCniWhoiIKpbG4aZt27ZqwQYAUlJS8OWXX+LKlSsVWRvVYPrGRug8fAi6jRoG47p1AAAJEY/hu3Yjrh06xktPRERUaTQONw8ePIClpSXu3r2r1t+gQQOEhIRUWGFUM+kbG6Hzu0PQbdRwGNcxAwAkhD/CiTU+uH7kBEMNERFVujKFG6VSqfp51qxZWL58OebNmwd/f38AQMeOHfH1119j5syZlVMlVXsGJsboPMIb3UYOg5GZKQAgPiwCJ9b64MYRX4YaIiKqMmW6FbywsFDtwX0KhQIAVH3//KyjU70fesxbwSuWnqEBuo1+F11HDoWRaXGoiXsYjhNrfHDjqC/fyE1ERBWiwm8F7969e4UURvLSvGsnDPxyBurZWAMAYkMe4sQaH9w8/hdDDRERSaZM4ebs2bOVXQfVIKYNLPDOzGlw7d0DAJAcFYNDS1cVh5rnvJqDiIioKpT7GpKhoSHs7Oygp6en1h8YGPjSRVH1pNDSwqtDB6LvfybBwMQYhQUFOLN5G06s3oC87BypyyMiIgJQjnBjbm4OHx8fvPHGG6WvsJrPuaHysXFuhiFzv4Bd6xYAgIibt/Hn/B8Q8yBU4sqIiIjUaZxEfv75Z9SpUwcdOnTA6dOnMWDAAFhaWmLOnDmYMWNGZdRIEtIzNMTrkyegy3ve0NbRQXZaOg79/Cv8d+7lJSgiIqqWNA43PXr0QP/+/REQEICioiJERETA19cXaWlpmDVrFg4fPlwZdZIEWnTrjIFfzkBdaysAwPUjJ7Dvv8uQnpgkcWVERETPpnG4MTY2Rnx8PADgyZMnsLCwQHBwMAIDA9GuXbsKL5CqnmkDCwz4Yjra9Cq+Sy4pMhq7F/6IoPP+EldGRET0YhqHm/v378PZ2RkRERG4efMmPvjgA4SHh2PSpEmIiYmpjBqpiii0tNBp2EC8MeUfE4Y3/Y7jqzcgPydX6vKIiIjKRONws2zZMlhbFz/X5JtvvsHRo0cxYsQI5OXlYcyYMRVdH1URWxcnDJ47E3atiicMh98MxM75izhhmIiIapwyPaH4eQwNDeHi4oJHjx4hKan6z8XgE4rV6Rkaos/HE9FlhDe0tLU5YZiIiKqlCn9C8fNkZ2fj+vXrL7sakkD9Rg3xwdqfUb+hLQBOGCYiInnQKs9C48aNQ2BgIHJycpCTk4PAwECMHz++omujSmRu3wgf+fyC+g1tkRwVg7WTpuO3z79msCEiohpP4zM333zzDT755BOsWLECfn5+AABPT08sXboUdnZ2mDt3boUXSRWrgYM9Ply/EqYW5ogJDsXqiVOQkfRE6rKIiIgqjNCkxcfHi2HDhpXoHzZsmEhISNBoXVI0pVIphBBCqVRKXosUzappEzHv9CGxONBPzNi1RRjXrSN5TWxsbGxsbC9qmvz+1viylK6uLq5evVqiPyAggK9eqOasnRzx4fqVUNavh6h7D7B6/MfIfJIidVlEREQVSuNws2XLFnz44Ycl+t9//31s3bq1Qoqiimfr4oQP16+CSb26eHznHn6dMAWZKalSl0VERFThynSqZfHixaqfhRCYMGECevfuDX//4ifWdujQAXZ2dti8eXPlVEkvpWELF3zwv2UwMjVFxK07WDtpGnLSM6Qui4iIqFKU6cyNm5ubqrVu3RoBAQFISEiAo6MjHB0dkZiYiGvXrqFly5YaFzB58mSEhYUhOzsb/v7+8PDweO54MzMzrFy5EtHR0cjJycH9+/ef+YZyAuxat8Ck/y2Hkakpwm8EYu0HUxlsiIhI1sp05qZHjx6VsnFvb28sWbIEkyZNwqVLlzBt2jQcO3YMzs7OSEhIKDFeV1cXJ06cQHx8PAYPHoyoqCjY29sjJSWlUuqr6Rq7tsbE1UthYGKM0IDrWD/5U+RmZUldFhERUaUr98xlW1tbYWtrW+7l/f39xYoVK1SfFQqFiIyMFDNnzix1/AcffCBCQkKEjo5Olcy2rsnNoZ2rWOjvKxYH+okP168UeoYGktfExsbGxsZW3lapd0spFAp89dVXSElJQUREBCIiIvDkyRPMmTMHCoWizOvR1dWFu7s7fH19VX1CCPj6+sLT07PUZfr16wc/Pz+sWrUKsbGxCAwMxKxZs6Cl9ezd0NPTg1KpVGty19i1NSb+ugQGxsZ44H8F6z6agbzsHKnLIiIiqhIa37u9cOFCjB8/Hl988QUuXLgAAOjcuTPmzZsHAwMDzJkzp0zrMTc3h46ODuLi4tT64+Li4OLiUuoyTZo0QY8ePbB161b07dsXTZs2xS+//AJdXV3Mnz+/1GVmzZqFefPmlX0Ha7iGLVww4dcl0Dcywv2Ll7DhPzNRkMs3ehMRUe2i0WmhqKgo8fbbb5fo79evn4iMjCzzeqytrYUQQnTs2FGtf9GiRcLf37/UZe7fvy8iIiKElpaWqm/69OkiOjr6mdvR09MTSqVS1WxsbGR7WcraqalYcP5Y8aWoDauEroG+5DWxsbGxsbFVRNPkspTGZ27q1auHoKCgEv1BQUGoV69emdeTmJiIgoICWFpaqvVbWloiNja21GViYmKQn5+PoqIiVd+9e/dgbW0NXV1d5Ofnl1gmLy8PeXl5Za6rprJs0hgfrF0GI7Piu6I2fPwZ8nN4xoaIiGofjefc3Lx5Ex9//HGJ/o8//hg3b94s83ry8/MREBAALy8vVZ9CoYCXl5fqnVX/duHCBTRt2lRtbo+TkxOio6NLDTa1Rf1GDfHB/5ZDWb8eHt8Nwv8mf8K7ooiIqFbT6LRQ165dRXp6urhz545Yt26dWLdunbhz545IS0sTnTt31mhd3t7eIjs7W4waNUq4uLiI1atXi+TkZNGgQQMBQGzatEl89913qvENGzYUqampYvny5aJZs2aib9++IjY2VsyePbtSTmvVhFbX2kp8eWy36l1RRmamktfExsbGxsZW0a1SL0udPXsWTk5O+Oijj1QTf3fv3o1ffvkFMTExGq1rx44dsLCwwPz582FlZYUbN26gT58+iI+PBwDY2dmpXYKKjIzE66+/jqVLl+LWrVuIiorCsmXLsGjRIk13QxZMG1hg0voVqGdjjbiH4Vjz/n+QlZomdVlERESSUqA45ZSJjo4Ojh49ikmTJiEkJKQSy6o8SqUSaWlpMDU1RXp6utTllJtJ/br4yOdXNHCwR+LjSKwaMxlp8SUffEhERCQHmvz+1mjOTUFBAdq0afNSxdHLMzIzxQdrl6OBgz2So2OwevwUBhsiIqK/aTyh+LfffsP48eMroxYqAwOlCd5fuww2Tk2RGp+A1RP+gycxpd9dRkREVBtpPOdGR0cH48aNQ8+ePREQEIDMzEy172fMmFFhxZE6PUNDTPx1CRq1cEF6UjJWT5iCpMeRUpdFRERUrWgcblq1aoVr164BKL4N+5+EKPP0HSqHfp//B41dWyMrNQ1r3p+K+LAIqUsiIiKqdjQON5X1hnB6vqavuMNz8DsAgI3TZyHmQc2c0E1ERFTZNAo33t7e6NevH/T09HDy5EmsWbOmsuqif9AzNMCQeV8AAC5u343QK9ckroiIiKj6KnO4mTRpElatWoXg4GBkZ2dj4MCBcHR0xOeff16Z9RGAPh+/D/NGDfEkJhYHl66SuhwiIqJqr0xPBrx9+7b4+uuvVZ9HjBghMjIyJH9ioaatpj2h2K5NS/HjzQticaCfcOncUfJ62NjY2NjYpGia/P4u863gTZo0waZNm1Sff//9d+jo6MDKyqqsqyANaevqYuj8L6GlpYWr+48g6Ly/1CURERFVe2UON/r6+mq3fQshkJeXB0NDw0opjIBeH4yFlaMD0pOSse+/P0tdDhERUY2g0YTiBQsWIOsfb5vW09PDl19+idTUVFUfn3NTMaydmqLHuJEAgN0Lf+I7o4iIiMqozOHm7NmzcHZ2Vuu7ePEimjRpovrM59xUDC1tbQydPxvaujq45Xsat06ckrokIiKiGqPM4aZ79+6VWQf9Q7fRw9GoZXNkpaVh98KfpC6HiIioRtH43VJUuSwa2+H1yRMAAPv/uwzpiUkSV0RERFSzMNxUIzp6ehg6/0vo6usj6Lw/ruw7LHVJRERENQ7DTTWhb2yEiauXwsGtDXIyM7Fz/iKpSyIiIqqRNH63FFU8k3p1MeHvt33nZGRi/ZTP8CQmVuqyiIiIaiSGG4nVtbbCB2uXwaKxHdKTkvG/SdMRFfRA6rKIiIhqrHKFGzMzM7zyyito0KABtLTUr2xt2bKlQgqrDSybNMb7a5ehjmUDJEfHYM37U5EY8VjqsoiIiGo0jcPNW2+9ha1bt8LExARpaWlqz7YRQjDclJFd6xaY8MsSGNcxQ2zIQ6ydNA2pcQlSl0VERFTjaTyhePHixdiwYQNMTExQt25d1KtXT9Xq169fGTXKjpOnByatWwHjOmaIuHkbq8Z8yGBDRERUQTQON7a2tli+fDmys7Mrox7Za9O7B8avWgx9IyPcv3gJqyf+h69WICIiqkAah5tjx46hffv2lVGL7HUc8g5G/rgAOrq6uHHsJNZ//BnyGBKJiIgqlMZzbg4dOoQff/wRLVq0QGBgIPLz89W+P3DgQIUVJyeur3thyNczAQAXd+zB7oU/QRQVSVwVERGR/CgAaPS2y8LCwmd+J4SAjk71vrtcqVQiLS0NpqamSE9Pr7LtfrB2GZw8X8GFP3bxfVFEREQa0uT3t8ZJRFtbu9yF1VZ6hoZo4t4WAHBu6w5piyEiIpI5vn6hCjh6tIOOnh6SIqOREP5I6nKIiIhkrVzhpmvXrti/fz+Cg4MRHByMffv2oXPnzhVdm2w07+IJAAg67ydxJURERPKncbgZMWIEfH19kZWVheXLl6tuCz958iSGDx9eGTXWeC6dOwIAgs77S1wJERFR7SA0aXfv3hXTpk0r0T99+nRx9+5djdYlRVMqlUIIIZRKZZVsz6KxnVgc6CcWBZwReoYGku8/GxsbGxtbTWya/P7W+MxNkyZNSr3de//+/XBwcNB0dbLn0rn4ktTDgBvIy86RuBoiIiL50zjcPH78GF5eXiX6e/bsiceP+dLHf2v+9yWpe5xvQ0REVCU0vhV88eLFWL58Odq2bYuLFy8CADp16oQxY8Zg6tSpFV5gTaZroI8m7d0AAPc534aIiKhKaBxuVq9ejdjYWMyYMQPe3t4AgHv37mHo0KHYv39/hRdYkzX1cIeuvj6So2MQ9zBc6nKIiIhqhXI9Tnjv3r3Yu3dvBZciPy27dwHAu6SIiIiqEh/iV0katnDGKwPeAgAE+p6SuBoiIqLao0xnbpKSkuDk5ISkpCQkJydDCPHMsfXr16+w4moqbV1dDPv2K2jr6ODGsZN44HdF6pKIiIhqjTKFm+nTp6teUjV9+vTnhhsCek8aB+tmjkhPSuZLMomIiKqYxm8Fr+kq+63gjVo2x3+2/g9a2trYOH0WAn1PV/g2iIiIahtNfn9rPOemoKAAFhYWJfrr1auHgoICTVcnKzp6ehi28CtoaWvj2uHjDDZEREQS0DjcKBSKUvv19fWRl5f30gXVZK9PHg8rRwekJSZhz3eLpS6HiIioVirzreBTpkwBAAghMGHCBGRkZKi+09bWRteuXREUFFTxFdYQdm1a4rUxIwAAO+cvQlZqmsQVERER1U5lDjfTp08HUHzmZtKkSSgsLFR9l5eXh/DwcEyaNKniK6wBFAoFBn35GbS0tXH1wBHcOXVO6pKIiIhqrTKHmyZNmgAA/vrrLwwcOBApKSmVVVON49a3Fxq2cEZORib2/7hc6nKIiIhqNY2fUNyjR4/KqKPG0tbVxRtTis9Y/bV+CzKfpEhbEBERUS2n8YTinTt34vPPPy/R/9lnn2HHjh0VUlRN0mn4INSztUZqXALO/vaH1OUQERHVehqHm65du+Lw4cMl+o8cOYKuXbtWSFE1haGpEr3eHwsAOLrqf8jPyZW4IiIiItI43JiYmJR6y3d+fj5MTU0rpKiaosf4kTAyM0VMcCiu7i8Z+IiIiKjqaRxuAgMDMXTo0BL9w4YNw927dyukqJqgjpUluozwBgAc+vlXFP3j7jEiIiKSjsYTihcsWIDdu3fD0dERf/31FwDAy8sLw4cPx5AhQyq8wOqqz8cToauvj5Ar13Dv7AWpyyEiIqK/aRxuDh48iHfeeQezZ8/G4MGDkZ2djVu3bqFnz544e/ZsZdRY7Vg7NYX7228AAA4uWSVxNURERPRPGocbADh8+HCpk4pri7emfwQtLS3cOOqLx7drz6U4IiKimkDjOTcAYGZmhvHjx2PhwoWoW7cuAMDNzQ02NjYVWlx11KyjB1w6d0RBfj4OL1stdTlERET0LxqfuWndujV8fX2RmpqKxo0bY926dXjy5AkGDhwIOzs7jB49ujLqrBb0DA0w+OviZ/z47diDpMgoiSsiIiKif9P4zM2SJUuwceNGODk5IScnR9V/+PBh2T/n5s1pk2HeqCGexMTiyIo1UpdDREREpdA43Hh4eGDNmpK/2KOiomBlZVUhRVVHjh7t0Pnd4rvBdsz9DrmZWRJXRERERKXRONzk5uaW+rA+JycnJCQkVEhR1VH/z6cCAC7u2IMHflckroaIiIieReNws3//fnz99dfQ0SmeriOEQKNGjbBo0SLs2rWrXEVMnjwZYWFhyM7Ohr+/Pzw8PMq03NChQyGEwJ49e8q13bJq1LI5bF2ckJ+by0nERERE1ZzG4WbGjBkwMTFBfHw8DA0NcebMGYSEhCA9PR1ffvmlxgV4e3tjyZIl+Oabb9CuXTvcvHkTx44dg4WFxXOXs7e3x08//VQlz9bpMKgfAODWiVPITkur9O0RERFR+SkAiPIs+Oqrr8LV1RUmJia4du0aTp48Wa4C/P39ceXKFUyZMqW4IIUCjx8/xooVK7Bo0aJSl9HS0sLZs2exYcMGdOnSBXXq1MGAAQNKHaunpwd9fX3VZ6VSiaioKJiamiI9Pf2F9ekZGmLuqQMwMDbGqrGT8fDq9XLsJREREb0MpVKJtLS0Mv3+1vjMzciRI6Gnp4eLFy/i119/xY8//oiTJ09CV1cXI0eO1Ghdurq6cHd3h6+vr6pPCAFfX194eno+c7mvv/4a8fHx2LBhwwu3MWvWLKSlpalaVJRmt2+7vt4DBsbGSIh4zGBDRERUA2gcbnx8fGBmZlaiX6lUwsfHR6N1mZubQ0dHB3FxcWr9cXFxz7zzqlOnThg/fjwmTpxYpm18//33MDU1VTVbW1uNauwwsPiS1KXd+zVajoiIiKSh8UP8FAoFhCh5Jathw4ZITU2tkKKexcTEBFu2bMHEiRORlJRUpmXy8vKQl5dXru1ZOjrAwa0NCvMLcHVf7X3dBBERUU1S5nBz7do1CCEghMDJkydRUFCg+k5bWxsODg44evSoRhtPTExEQUEBLC0t1fotLS0RGxtbYryjoyMcHBxw4MABVZ+WVvHJp/z8fDg7O+Phw4ca1fA8HQa+DQC4c+Y80pOSK2y9REREVHnKHG727t0LAGjbti2OHTuGjIwM1Xd5eXkIDw/X+Fbw/Px8BAQEwMvLC/v27QNQfGbIy8sLK1euLDE+KCgIrVq1Uuv79ttvoVQqMXXqVDx+/Fij7T+Plo423N/qA4CXpIiIiGqSMoeb+fPnAwDCw8Oxfft25ObmVkgBS5YswaZNm3D16lVcvnwZ06ZNg7GxsWr+zqZNmxAVFYXZs2cjNzcXd+7cUVs+JSUFAEr0vyxnzw4wqVcXaYlJeHDxcoWum4iIiCqPxnNuNm/eDDMzM7z33ntwdHTEjz/+iCdPnsDNzQ1xcXGIjo7WaH07duyAhYUF5s+fDysrK9y4cQN9+vRBfHw8AMDOzg5FRUWalvnS2r3ZGwBw44gvigoLq3z7REREVH5Ck9a6dWsRFxcnHjx4IPLy8oSDg4MAIBYsWCA2bdqk0bqkaEqlUgghhFKpfOYYPUND8d2lv8TiQD/RqFULyWtmY2NjY2Or7a0sv7+fNo1vBV+6dKns3wresnsX6BsZIiHiMR7fvit1OURERKQBjS9LtW/fHu+//36Jfjm9FfzpJanrh49LXAkRERFpim8F/xcjM1M4v9oBAHCN4YaIiKjGqRZvBa9O7Nq0hLaODuIehiMh/JHU5RAREZGGJH8reHVj3cwRABAd9EDiSoiIiKg8NJ5zk5aWht69e6NTp05o06bNS78VvLp5Gm5igivuScdERERUdTQON09duHABFy5cqMhaqoX/DzehEldCRERE5aFRuFEoFBgzZgwGDhyIxo0bQwiBsLAw7Ny5E1u2bKmsGquMlo42GjjYAwBiQxhuiIiIaiKN5tzs378f69atg62tLQIDA3Hnzh3Y29tj48aN2LNnT2XVWGUs7BpBR08POZmZeBJd8sWdREREVP2V+czNmDFj0LVrV3h5eeH06dNq33Xv3h179+7FyJEja/QZnKeXpGJDHkIIIXE1REREVB5lPnMzfPhwfPfddyWCDQCcOnUKP/zwA0aMGFGRtVU5KyfOtyEiIqrpyhxu2rRpg6NHjz7z+yNHjsDV1bVCipJKwxYuAIDooGCJKyEiIqLyKnO4qVevHuLi4p75fVxcHOrWrVshRUmlYXNnAMDjO0ESV0JERETlVeZwo62tjYKCgmd+X1hYqHpqcU1Ux8oSyvr1UJhfgJgHIVKXQ0REROVU5jSiUCiwceNG5Obmlvq9vr5+hRUlhaeXpGJDHqIgL0/iaoiIiKi8yhxuNm3a9MIxmzdvfqlipNSoZXG4ibzLS1JEREQ1WZnDzbhx4yqzDsk9PXPD+TZEREQ1m8YvzpQrnrkhIiKSB4YbAOb2jWBctw7yc3MRfZ+3gRMREdVkDDcAHNq2BgBE3glC4XPuCCMiIqLqj+EGgL1rcbgJv3lb4kqIiIjoZTHcAHBs7wYAiLgZKHElRERE9LJqfbgxt2+EBg72KMjPR/Clq1KXQ0RERC+p1oebVt27AgBCr1xDTkamxNUQERHRy2K46VEcbm7/dVbiSoiIiKgi1OpwY1y3DuxdWwEA7pw+J3E1REREVBFqdbhxcGsDLS0txASHIjUuQepyiIiIqALU6nDT+Okt4Dd4lxQREZFc1Opw8/SSFG8BJyIiko9aG260dLTRqGVzAHx4HxERkZzU2nBjbGoGXQN9FBUVITHisdTlEBERUQWpteFGz8QIAJCbmQUhhMTVEBERUUWpteHGwMgQAJCblSVxJURERFSRam240Tc2BgA+lZiIiEhmanG4+fuyFMMNERGRrNTecGP0d7jhZSkiIiJZqb3h5u8zN7wsRUREJC+1NtwYPA03mQw3REREclJrw43SvD4AICslTeJKiIiIqCLV2nBj6+IEAIi6/0DiSoiIiKgi1dpwY92sKQDg8e17EldCREREFanWhhs9QwNkp2fw1QtEREQyU2vDDQBE3gniqxeIiIhkplaHm6ggzrchIiKSm1odbqIfhEhdAhEREVWwWh1uYhhuiIiIZKfWhpvCggLEPQyXugwiIiKqYLU23CQ+jkRhfr7UZRAREVEFq7XhJic9Q+oSiIiIqBLU2nBDRERE8sRwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREslItws3kyZMRFhaG7Oxs+Pv7w8PD45ljJ0yYgLNnzyI5ORnJyck4ceLEc8cTERFR7SJ5uPH29saSJUvwzTffoF27drh58yaOHTsGCwuLUse/9tpr2LZtG7p37w5PT088fvwYx48fh42NTRVXTkRERNWVkLL5+/uLFStWqD4rFAoRGRkpZs6cWabltbS0RGpqqhg5cmSZxiuVSiGEEJ9u2yDpfrOxsbGxsbGVvT39/a1UKl84VtIzN7q6unB3d4evr6+qTwgBX19feHp6lmkdRkZG0NXVRXJycqnf6+npQalUqjUiIiKSL0nDjbm5OXR0dBAXF6fWHxcXBysrqzKtY9GiRYiOjlYLSP80a9YspKWlqVpUVNRL101ERETVl+Rzbl7GzJkzMWzYMAwYMAC5ubmljvn+++9hamqqara2tlVcJREREVUlHSk3npiYiIKCAlhaWqr1W1paIjY29rnLzpgxA1988QV69uyJwMDAZ47Ly8tDXl5ehdRLRERE1Z+kZ27y8/MREBAALy8vVZ9CoYCXlxf8/Pyeudxnn32Gr776Cn369EFAQEBVlEpEREQ1hKRnbgBgyZIl2LRpE65evYrLly9j2rRpMDY2ho+PDwBg06ZNiIqKwuzZswEAn3/+OebPn493330X4eHhqrM+GRkZyMzMlGw/iIiIqHqQPNzs2LEDFhYWmD9/PqysrHDjxg306dMH8fHxAAA7OzsUFRWpxn/44YfQ19fHrl271NYzb948fPPNN1VaOxEREVU/ChTfE15rKJVKpKWlYcq6lVg5cYrU5RAREVEZPP39bWpqivT09OeOrdF3S72M1PgEqUsgIiKiSsBwQ0RERLJSa8NNWly81CUQERFRJai14SYnM0vqEoiIiKgS1NpwQ0RERPLEcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLJSLcLN5MmTERYWhuzsbPj7+8PDw+O54wcPHox79+4hOzsbt27dwhtvvFFFlRIREVF1J3m48fb2xpIlS/DNN9+gXbt2uHnzJo4dOwYLC4tSx3t6emLbtm1Yv3493NzcsHfvXuzduxctW7as4sqJiIiouhJSNn9/f7FixQrVZ4VCISIjI8XMmTNLHf/HH3+IAwcOqPX5+fmJX3/9tUzbUyqVQgghOr79hqT7zcbGxsbGxlb29vT3t1KpfOFYHUhIV1cX7u7u+P7771V9Qgj4+vrC09Oz1GU8PT2xZMkStb5jx47hnXfeKXW8np4e9PX1VZ+VSiUAwMjQUPUzERERVW+a/M6WNNyYm5tDR0cHcXFxav1xcXFwcXEpdRkrK6tSx1tZWZU6ftasWZg3b16J/pPbd5WvaCIiIpKMUqlEenr6c8dIGm6qwvfff692pkepVCIqKgq2trYvPDhUfjzOVYfHumrwOFcNHueqUVOPs1KpRHR09AvHSRpuEhMTUVBQAEtLS7V+S0tLxMbGlrpMbGysRuPz8vKQl5dXoj89Pb1G/YHWVDzOVYfHumrwOFcNHueqUdOOc1lrlfRuqfz8fAQEBMDLy0vVp1Ao4OXlBT8/v1KX8fPzUxsPAL169XrmeCIiIqp9JJ397O3tLbKzs8WoUaOEi4uLWL16tUhOThYNGjQQAMSmTZvEd999pxrv6ekp8vLyxCeffCKcnZ3F3LlzRW5urmjZsmWFz7ZmK3/jceaxllvjceZxllOrBcdZ8gLERx99JMLDw0VOTo7w9/cXr7zyiuq7U6dOCR8fH7XxgwcPFkFBQSInJ0cEBgaKN94o+23denp6Yu7cuUJPT0/y/ZZz43HmsZZb43HmcZZTk/txVvz9AxEREZEsSP6EYiIiIqKKxHBDREREssJwQ0RERLLCcENERESyIstwM3nyZISFhSE7Oxv+/v7w8PB47vjBgwfj3r17yM7Oxq1bt/DGG29UUaU1mybHecKECTh79iySk5ORnJyMEydOvPDPhf6fpn+nnxo6dCiEENizZ08lVygPmh5nMzMzrFy5EtHR0cjJycH9+/f570cZaHqcp06diqCgIGRlZeHRo0dYsmSJ2jsDqaQuXbpg//79iIqKghAC/fv3f+Ey3bp1Q0BAAHJychAcHIzRo0dXQaWVR/JbtiqyeXt7i5ycHDFmzBjRvHlzsWbNGpGcnCwsLCxKHe/p6Sny8/PFp59+KlxcXMT8+fM1em5ObW2aHufffvtNfPjhh8LV1VU4OzuLDRs2iCdPnggbGxvJ96W6N02P9dNmb28vHj9+LM6cOSP27Nkj+X5U96bpcdbV1RWXL18WBw8eFK+++qqwt7cXXbt2FW3atJF8X6pz0/Q4Dx8+XGRnZ4vhw4cLe3t70atXLxEVFSUWL14s+b5U59anTx+xYMEC8c477wghhOjfv/9zxzdu3FhkZGSIn376Sbi4uIiPPvpI5Ofni969e0u+L+VskhdQoc3f31+sWLFC9VmhUIjIyEgxc+bMUsf/8ccf4sCBA2p9fn5+4tdff5V8X6pz0/Q4/7tpaWmJ1NRUMXLkSMn3pbq38hxrLS0tcf78eTFu3Djh4+PDcFMJx/mDDz4QISEhQkdHR/Laa1LT9DivWLFC+Pr6qvX99NNP4ty5c5LvS01pZQk3P/zwgwgMDFTr27Ztmzhy5Ijk9ZenyeqylK6uLtzd3eHr66vqE0LA19cXnp6epS7j6empNh4Ajh079szxVL7j/G9GRkbQ1dVFcnJyZZUpC+U91l9//TXi4+OxYcOGqiizxivPce7Xrx/8/PywatUqxMbGIjAwELNmzYKWlqz+Wa1Q5TnOFy9ehLu7u+rSlYODA/r27YvDhw9XSc21hdx+F8rqreDm5ubQ0dFBXFycWn9cXBxcXFxKXcbKyqrU8VZWVpVWZ01XnuP8b4sWLUJ0dHSJ/zORuvIc606dOmH8+PFo27ZtFVQoD+U5zk2aNEGPHj2wdetW9O3bF02bNsUvv/wCXV1dzJ8/vyrKrnHKc5y3bdsGc3NznD9/HgqFArq6uvj111/x/fffV0XJtcazfheamZnBwMAAOTk5ElVWPvxPDKpyM2fOxLBhwzBgwADk5uZKXY6smJiYYMuWLZg4cSKSkpKkLkfWtLS0EB8fj/fffx/Xrl3Djh07sHDhQkyaNEnq0mSlW7dumD17NiZPnox27dphwIABePPNNzFnzhypS6NqTFZnbhITE1FQUABLS0u1fktLS8TGxpa6TGxsrEbjqXzH+akZM2bgiy++QM+ePREYGFiZZcqCpsfa0dERDg4OOHDggKrv6WWS/Px8ODs74+HDh5VbdA1Unr/TMTExyM/PR1FRkarv3r17sLa2hq6uLvLz8yu15pqoPMd5wYIF2LJlC9avXw8AuH37NoyNjbF27VosXLgQQohKr7s2eNbvwtTU1Bp31gaQ2Zmb/Px8BAQEwMvLS9WnUCjg5eUFPz+/Upfx8/NTGw8AvXr1euZ4Kt9xBoDPPvsMX331Ffr06YOAgICqKLXG0/RYBwUFoVWrVmjbtq2q7d+/H6dOnULbtm3x+PHjqiy/xijP3+kLFy6gadOmUCgUqj4nJydER0cz2DxDeY6zkZGRWoAEgMLCQtWyVDHk+LtQ8lnNFdm8vb1Fdna2GDVqlHBxcRGrV68WycnJokGDBgKA2LRpk/juu+9U4z09PUVeXp745JNPhLOzs5g7dy5vBa+E4/z555+LnJwcMXDgQGFpaalqxsbGku9LdW+aHut/N94tVTnHuWHDhiI1NVUsX75cNGvWTPTt21fExsaK2bNnS74v1blpepznzp0rUlNTxdChQ0Xjxo1Fz549RXBwsPjjjz8k35fq3IyNjYWrq6twdXUVQggxbdo04erqKho1aiQAiO+++05s2rRJNf7preCLFi0Szs7O4sMPP+St4NWtffTRRyI8PFzk5OQIf39/8corr6i+O3XqlPDx8VEbP3jwYBEUFCRycnJEYGCgeOONNyTfh5rQNDnOYWFhojRz586VfD9qQtP07/Q/G8NN5R3njh07Cj8/P5GdnS1CQkLErFmzhJaWluT7Ud2bJsdZW1tbfP311yI4OFhkZWWJiIgIsXLlSmFmZib5flTn1q1bt1L/zX16bH18fMSpU6dKLHPt2jWRk5MjQkJCxOjRoyXfj/I2xd8/EBEREcmCrObcEBERETHcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BDJ0OjRo/HkyROpy4AQAv3795e6jEpXEfs5d+5cXL9+/bljfHx8sGfPHtXnU6dOYenSparPYWFhmDp16kvVQSQHDDdE1ZSPjw+EECWao6Oj1KWpGBgYICkpCQkJCdDT05O6nBf653FMSUnB+fPn0b17d6nLKrOpU6dizJgxz/zew8MDa9euVX2uLeGS6N8YboiqsSNHjsDKykqthYWFSV2WyqBBg3Dnzh0EBQXhnXfeqfD16+rqVvg6x4wZAysrK3Tq1AmJiYk4ePAgHBwcSh2ro6NT4dt/GWlpaUhNTX3m94mJicjOzq7CioiqJ4YbomosNzcXcXFxaq2oqAjTp0/HrVu3kJGRgUePHmHVqlUwNjZ+5nratGmDv/76S/XL8erVq3B3d1d936lTJ5w9exZZWVl49OgRli1bBiMjoxfWN378ePz222/47bffMH78+BeO/+GHH3D//n1kZmYiNDQU8+fPVwsQTy/NjB8/Hg8fPkROTg6A4jMQ77//Pg4cOIDMzEzcvXsXHTt2hKOjI06dOoWMjAxcuHABTZo0eWENKSkpiIuLw507d/Dhhx/CyMgIvXr1Um1n0qRJ2LdvHzIyMvDll18CACZNmoSQkBDk5uYiKCgI7733Xon1Wltb4/Dhw8jKykJoaCgGDRqk0b4/9f777+PRo0fIzMzE9u3bYWpqqvru35el/u2fl6WehuC9e/dCCIGwsDDY29ujsLBQ7c8eKD4jFB4eDoVC8cLjR1QTMNwQ1UBFRUX4z3/+g5YtW2L06NHo0aMH/vvf/z5z/NatWxEZGQkPDw+4u7vjhx9+QH5+PgCgSZMmOHr0KHbt2oU2bdpg6NCh6Ny5M1auXPncGpo0aQJPT0/s2LEDO3bsQJcuXWBnZ/fcZdLT0zFmzBi0aNECU6dOxcSJEzF9+nS1MU2bNsWgQYMwcOBAtG3bVtX/1VdfYfPmzWjbti2CgoLw+++/Y82aNfj+++/Rvn17KBSKF9b8b0/Pcvzzktq8efOwZ88etG7dGhs2bMA777yDZcuWYfHixWjVqhXWrFkDHx8fvPbaa2rrWrBgAXbt2gVXV1ds3boVf/zxB1xcXDTed29vb7z99tvo06cP3Nzc8Msvv2i0T095eHgA+P8zVR4eHoiIiICvry/Gjh2rNnbs2LHYuHEjhOB7lEk+JH81ORsbW8nm4+Mj8vPzRXp6uqrt2LGj1LGDBg0SCQkJqs+jR48WT548UX1OTU0Vo0aNKnXZ//3vf2L16tVqfZ06dRIFBQVCX1//mfV9++23Yvfu3arPe/bsEXPnzlUbI4QQ/fv3f+Y6ZsyYIa5cuaL6PHfuXJGbmyvMzc1LrGf+/Pmqzx06dBBCCDF27FhV39ChQ0VWVtZzj+k/6zE0NBQrV64U+fn5onXr1qrvlyxZorbM+fPnxZo1a9T6tm/fLg4ePKi23l9++UVtjJ+fn1i1apVG+56fny9sbGxUfa+//rooKCgQlpaWqr8Te/bsUX1/6tQpsXTpUtXnsLAwMXXq1Oce/yFDhoikpCShp6cnAAg3NzdRWFgo7O3tJf87z8ZWUY1nboiqsVOnTqFt27aq9p///AcA4OXlBV9fX0RGRiItLQ1btmyBubk5DA0NS13PkiVLsG7dOpw4cQIzZ85Uu3zj6uqKMWPGID09XdWOHTsGbW3tZ85F0dLSwujRo/Hbb7+p+n777TeMGTPmuZc2vL29cf78ecTExCA9PR3ffvttibM9ERERSExMLLHsrVu3VD/HxcUBAAIDA9X6DA0NoVQqn7l9ANi2bZtqPwcNGoTx48errefq1atq45s3b44LFy6o9V24cAHNmzdX6/Pz8yvx+Z9jyrLvjx49QnR0tNo6tLW14ezs/Nx90sTevXtRWFiIAQMGACg+s3Pq1ClERERU2DaIpMZwQ1SNPZ2f8bTFxsbC3t4eBw8exK1btzBo0CC4u7vjo48+AoBn3rH0zTffoGXLljh06BB69OiBu3fvqiYAm5iYYM2aNWohytXVFU2bNkVoaGip63v99dfRsGFDbN++Hfn5+cjPz8cff/yBxo0bw8vLq9RlOnbsiK1bt+Lw4cN466234ObmhoULF5aoOTMzs9Tln15GA6C6fFJan5bW8/9Zmz59Otq2bQsrKytYW1tj8+bNZdr+yyjrvleF/Px8bN68GWPHjoWuri7effddbNiwocrrIKpM1etWACJ6IXd3d2hpaWHGjBmqX+je3t4vXC44OBg///wzfv75Z/z+++8YO3Ys9u7di2vXrqFFixbPDDKlGT9+PLZt24aFCxeq9X/55ZcYP348fH19Syzz6quvIiIiAt99952qz97evszbrCixsbEa7eu9e/fQqVMntRDUqVMn3L17V21cx44dsWXLFrXPT59bU9Z9t7Ozg7W1NWJiYlTrKCwsxP3798tc7z/l5eVBW1u7RP+6detw+/ZtTJ48GTo6Oti9e3e51k9UXTHcENUwISEh0NPTw5QpU3DgwAF06tQJkyZNeuZ4AwMD/Pjjj9i5cyfCwsLQsGFDeHh4YNeuXQCARYsWwd/fHytWrMC6deuQmZmJFi1aoFevXpgyZUqJ9Zmbm+Ptt99Gv379cOfOHbXvNm/ejD179qBu3bolHiIYHBwMOzs7DB06FFeuXMGbb76pujRSnf3444/YsWMHrl+/Dl9fX7z99tsYOHAgevbsqTZuyJAhuHr1Ks6fP48RI0bglVdeUd1BVtZ9z8nJwaZNm/Dpp5/C1NQUy5cvx44dO1SX4TQVHh4OLy8vXLhwAbm5uUhJSQEABAUFwd/fH4sWLcKGDRtUd6URyQUvSxHVMLdu3cL06dMxc+ZM3L59GyNGjMCsWbOeOb6wsBD169fH5s2b8eDBA+zYsQNHjhzB3LlzARTPW+nWrRucnJxw7tw5XL9+HfPnz1eb+/FPo0aNQmZmJk6ePFniu5MnTyI7O7vUW6UPHDiApUuXYuXKlbhx4wZeffVVLFiwoJxHoers27cPU6dOxaeffoo7d+7ggw8+wNixY3HmzBm1cXPnzsWwYcNw69YtjBo1CsOHD8e9e/cAlH3fQ0JCsHv3bhw+fBjHjx/HrVu3MHny5HLXPmPGDPTq1QuPHz8u8fTj9evXQ19fn5ekSJYUKJ5ZTEREtcicOXMwZMgQuLq6Sl0KUYXjmRsiolrE2NgYLVu2xMcff4wVK1ZIXQ5RpWC4ISKqRVauXImAgACcPn2al6RItnhZioiIiGSFZ26IiIhIVhhuiIiISFYYboiIiEhWGG6IiIhIVhhuiIiISFYYboiIiEhWGG6IiIhIVhhuiIiISFb+Dx1Msg748MxzAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "from os import path\n", "\n", @@ -255,7 +271,8 @@ "roc = ReceiverOperatingCharacteristic.From_HDF(path.join(hardware_loop.results_dir, 'drops.h5'))\n", "\n", "# Visualize the result\n", - "_ = roc.visualize()" + "roc.visualize()\n", + "plt.show()" ] } ], diff --git a/docssource/scripts/examples/channel.py b/docssource/scripts/examples/channel.py index 877b1c99..96f633a9 100644 --- a/docssource/scripts/examples/channel.py +++ b/docssource/scripts/examples/channel.py @@ -15,7 +15,7 @@ beta_device = SimulatedDevice() # Create a channel between the two devices -channel = Channel(alpha_device=alpha_device, beta_device=beta_device) +channel = Channel() # Configure communication link between the two devices link = SimplexLink(alpha_device, beta_device) @@ -32,8 +32,8 @@ # Propagate the transmissions over the channel channel_realization = channel.realize() -alpha_propagation = channel.propagate(alpha_transmission, alpha_device, beta_device) -beta_propagation = channel.propagate(beta_transmission, beta_device, alpha_device) +alpha_propagation = channel_realization.sample(alpha_device, beta_device).propagate(alpha_transmission) +beta_propagation = channel_realization.sample(beta_device, alpha_device).propagate(beta_transmission) # Receive the transmissions at both devices alpha_reception = alpha_device.receive(beta_propagation) diff --git a/docssource/scripts/examples/radar_evaluators_RootMeanSquareError.py b/docssource/scripts/examples/radar_evaluators_RootMeanSquareError.py index 395160c0..37e2abba 100644 --- a/docssource/scripts/examples/radar_evaluators_RootMeanSquareError.py +++ b/docssource/scripts/examples/radar_evaluators_RootMeanSquareError.py @@ -19,7 +19,7 @@ simulation.scenario.set_channel(device, device, target) # Create a new detection probability evaluator -simulation.add_evaluator(RootMeanSquareError(radar, target)) +simulation.add_evaluator(RootMeanSquareError(radar, radar, target)) # Sweep over the target's SNR during the simulation simulation.new_dimension('noise_level', dB(0, -5, -10, -20, -30), device) diff --git a/hermespy/channel/cdl/cluster_delay_lines.py b/hermespy/channel/cdl/cluster_delay_lines.py index 28aa2744..9af37110 100644 --- a/hermespy/channel/cdl/cluster_delay_lines.py +++ b/hermespy/channel/cdl/cluster_delay_lines.py @@ -6,7 +6,7 @@ from enum import Enum, IntEnum from functools import cache, cached_property from math import ceil, sin, cos, sqrt -from typing import Generator, Generic, Literal, List, Set, Tuple, TypeVar, TYPE_CHECKING +from typing import Generator, Generic, Literal, List, Set, Tuple, TypeVar import matplotlib.pyplot as plt import numpy as np @@ -44,9 +44,6 @@ ConsistentSample, ) -if TYPE_CHECKING: - from hermespy.simulation import SimulatedDevice # pragma: no cover - __author__ = "Jan Adler" __copyright__ = "Copyright 2024, Barkhausen Institut gGmbH" __credits__ = ["Jan Adler"] @@ -2016,8 +2013,6 @@ class ClusterDelayLineBase(Channel[CDLRT, ClusterDelayLineSample], Generic[CDLRT def __init__( self, - alpha_device: SimulatedDevice | None = None, - beta_device: SimulatedDevice | None = None, gain: float = 1.0, delay_normalization: DelayNormalization = DelayNormalization.ZERO, oxygen_absorption: bool = True, @@ -2027,12 +2022,6 @@ def __init__( """ Args: - alpha_device (SimulatedDevice, optional): - First device linked by the :class:`.ClusterDelayLineBase` instance that generated this realization. - - beta_device (SimulatedDevice, optional): - Second device linked by the :class:`.ClusterDelayLineBase` instance that generated this realization. - gain (float, optional): Linear gain factor a signal amplitude experiences when being propagated over this realization. :math:`1.0` by default. @@ -2047,10 +2036,13 @@ def __init__( expected_state (LSST, optional): Expected large-scale state of the channel. If `None`, the state is randomly generated during each sample of the channel's realization. + + \**kwargs: + Additional keyword arguments passed to the base class. """ # Initialize base class - Channel.__init__(self, alpha_device, beta_device, gain, **kwargs) + Channel.__init__(self, gain, **kwargs) # Initialize class attributes self.delay_normalization = delay_normalization diff --git a/hermespy/channel/cdl/indoor_factory.py b/hermespy/channel/cdl/indoor_factory.py index 45f7e3e6..48017ec1 100644 --- a/hermespy/channel/cdl/indoor_factory.py +++ b/hermespy/channel/cdl/indoor_factory.py @@ -448,8 +448,6 @@ def __init__( surface: float, factory_type: FactoryType, clutter_height: float = 0.0, - alpha_device=None, - beta_device=None, gain: float = 1.0, **kwargs: Any, ) -> None: @@ -469,19 +467,16 @@ def __init__( Height of the clutter in the factory hall in meters above the floor. Zero by default, meaning virtually no clutter. - alpha_device (SimulatedDevice, optional): - First device linked by the :class:`.ClusterDelayLine` instance. - - beta_device (SimulatedDevice, optional): - Second device linked by the :class:`.ClusterDelayLine` instance. - gain (float, optional): Linear power gain factor a signal experiences when being propagated over this realization. :math:`1.0` by default. + + \**kwargs: + Additional arguments passed to the base class. """ # Initialize base class - ClusterDelayLineBase.__init__(self, alpha_device, beta_device, gain, **kwargs) + ClusterDelayLineBase.__init__(self, gain, **kwargs) # Initialize class attributes self.volume = volume diff --git a/hermespy/channel/cdl/indoor_office.py b/hermespy/channel/cdl/indoor_office.py index 5cfdc49c..fd228e4d 100644 --- a/hermespy/channel/cdl/indoor_office.py +++ b/hermespy/channel/cdl/indoor_office.py @@ -396,7 +396,7 @@ class IndoorOffice(ClusterDelayLineBase[IndoorOfficeRealization, LOSState], Seri __office_type: OfficeType - def __init__(self, *args, office_type: OfficeType = OfficeType.MIXED, **kwargs) -> None: + def __init__(self, office_type: OfficeType = OfficeType.MIXED, **kwargs) -> None: """ Args: @@ -404,10 +404,13 @@ def __init__(self, *args, office_type: OfficeType = OfficeType.MIXED, **kwargs) office_type (OfficeType, optional): Type of the modeled office. If not specified, a mixed office is assumed. + + \**kwargs: + Additional arguments passed to the base class. """ # Initialize base class - ClusterDelayLineBase.__init__(self, *args, **kwargs) + ClusterDelayLineBase.__init__(self, **kwargs) # Initialize class attributes self.__office_type = office_type diff --git a/hermespy/channel/channel.py b/hermespy/channel/channel.py index de452cb2..8a61543b 100644 --- a/hermespy/channel/channel.py +++ b/hermespy/channel/channel.py @@ -2,7 +2,7 @@ from __future__ import annotations from abc import ABC, abstractmethod -from typing import Callable, Generic, Optional, Set, Tuple, TypeVar, TYPE_CHECKING +from typing import Callable, Generic, Optional, Set, TypeVar, TYPE_CHECKING import numpy as np from h5py import Group @@ -623,11 +623,11 @@ def to_HDF(self, group: Group) -> None: class Channel(ABC, RandomNode, Serializable, Generic[CRT, CST]): """Abstract base class of all channel models. - The channel model represents the basic configuration of two linked :doc:`SimulatedDevices` - :meth:`alpha_device<.alpha_device>` and :meth:`beta_device<.beta_device>` exchanging electromagnetic :doc:`Signals`. + The channel model represents the basic configuration of two linked :doc:`SimulatedDevices` + :meth:`alpha_device<.alpha_device>` and :meth:`beta_device<.beta_device>` exchanging electromagnetic :doc:`Signals`. Each invokation of :meth:`.propagate` and :meth:`.realize` will generate a new :doc:`channel.channel.ChannelRealization` instance by internally calling :meth:`._realize`. - In the case of a :meth:`propagate` call the generated :doc:`channel.channel.ChannelRealization` will additionally be wrapped in a :doc:`channel.channel.ChannelPropagation`. + In the case of a :meth:`propagate` call the generated :doc:`hermespy.channel.channel.ChannelRealization` will additionally be wrapped in a :doc:`hermespy.channel.channel.ChannelPropagation`. The channel model represents the matrix function of time :math:`t` and delay :math:`\\tau` .. math:: @@ -637,7 +637,7 @@ class Channel(ABC, RandomNode, Serializable, Generic[CRT, CST]): the dimensionality of which depends on the number of transmitting antennas :math:`N_{\\mathrm{Tx}}` and number of receiving antennas :math:`N_{\\mathrm{Rx}}`. The vector :math:`\\mathbf{\\zeta}` represents the channel model's paramteres as random variables. Realizing the channel model is synonymous with realizing and "fixing" these random parameters by drawing a sample from their respective - distributions, so that a :doc:`channel.channel.ChannelRealization` represents the deterministic function + distributions, so that a :doc:`hermespy.channel.channel.ChannelRealization` represents the deterministic function .. math:: @@ -645,49 +645,20 @@ class Channel(ABC, RandomNode, Serializable, Generic[CRT, CST]): """ - __alpha_device: SimulatedDevice | None - __beta_device: SimulatedDevice | None __scenario: SimulationScenario __gain: float __interpolation_mode: InterpolationMode __sample_hooks: Set[ChannelSampleHook[CST]] - def __init__( - self, - alpha_device: SimulatedDevice | None = None, - beta_device: SimulatedDevice | None = None, - gain: float = 1.0, - interpolation_mode: InterpolationMode = InterpolationMode.NEAREST, - devices: Tuple[SimulatedDevice, SimulatedDevice] | None = None, - seed: Optional[int] = None, - ) -> None: + def __init__(self, gain: float = 1.0, seed: Optional[int] = None) -> None: """ Args: - alpha_device (SimulatedDevice, optional): - First device linked by this channel. - Initializes the :meth:`alpha_device` property. - If not specified the channel is considered floating, - meaning a call to :meth:`realize` will raise an exception. - - beta_device (SimulatedDevice, optional): - Second device linked by this channel. - Initializes the :meth:`beta_device` property. - If not specified the channel is considered floating, - meaning a call to :meth:`realize` will raise an exception. - gain (float, optional): Linear channel power gain factor. Initializes the :meth:`gain` property. :math:`1.0` by default. - interpolation_mode (InterpolationMode, optional): - Interpolation behaviour of the channel realization's delay components with respect to the proagated signal's sampling rate. - :attr:`NEAREST` by default, meaning no resampling is required. - - devices (Tuple[SimulatedDevice, SimulatedDevice], optional): - Tuple of devices connected by this channel model. - seed (int, optional): Seed used to initialize the pseudo-random number generator. """ @@ -701,56 +672,9 @@ def __init__( self.__alpha_device = None self.__beta_device = None self.gain = gain - self.interpolation_mode = interpolation_mode self.__scenario = None self.__sample_hooks = set() - if alpha_device is not None: - self.alpha_device = alpha_device - - if beta_device is not None: - self.beta_device = beta_device - - if devices is not None: - if self.alpha_device is not None or self.beta_device is not None: - raise ValueError( - "Can't use 'devices' initialization argument in combination with specifying a alpha / beta devices" - ) - - self.alpha_device = devices[0] - self.beta_device = devices[1] - - @property - def alpha_device(self) -> SimulatedDevice | None: - """First device linked by this channel. - - Referred to as :math:`\\alpha` in the respective equations. - - If not specified, i.e. :py:obj:`None`, the channel is considered floating, - meaning a call to :meth:`realize` will raise an exception. - """ - - return self.__alpha_device - - @alpha_device.setter - def alpha_device(self, value: SimulatedDevice) -> None: - self.__alpha_device = value - - @property - def beta_device(self) -> SimulatedDevice | None: - """Second device linked by this channel. - - Referred to as :math:`\\beta` in the respective equations. - - If not specified, i.e. :py:obj:`None`, the channel is considered floating, - meaning a call to :meth:`realize` will raise an exception. - """ - return self.__beta_device - - @beta_device.setter - def beta_device(self, value: SimulatedDevice) -> None: - self.__beta_device = value - @property def scenario(self) -> SimulationScenario | None: """Simulation scenario the channel belongs to. @@ -809,16 +733,6 @@ def gain(self, value: float) -> None: self.__gain = value - @property - def interpolation_mode(self) -> InterpolationMode: - """Interpolation behaviour of the channel realization's delay components with respect to the proagated signal's sampling rate.""" - - return self.__interpolation_mode - - @interpolation_mode.setter - def interpolation_mode(self, value: InterpolationMode) -> None: - self.__interpolation_mode = value - @property def sample_hooks(self) -> Set[ChannelSampleHook[CST]]: """Hooks to be called after a channel sample is generated.""" @@ -910,8 +824,8 @@ def realization(self) -> CRT | None: def propagate( self, signal: DeviceOutput | Signal, - transmitter: SimulatedDevice | None = None, - receiver: SimulatedDevice | None = None, + transmitter: SimulatedDevice, + receiver: SimulatedDevice, timestamp: float = 0.0, interpolation_mode: InterpolationMode = InterpolationMode.NEAREST, ) -> Signal: @@ -942,13 +856,11 @@ def propagate( signal (DeviceOutput | Signal): Signal models emitted by `transmitter` associated with this wireless channel model. - transmitter (Device, optional): + transmitter (SimulatedDevice): Device transmitting the `signal` to be propagated over this realization. - If not specified :meth:`alpha_device<.alpha_device>` will be assumed. - receiver (Device, optional): + receiver (SimulatedDevice): Device receiving the propagated `signal` after propagation. - If not specified :meth:`beta_device<.beta_device>` will be assumed. timestamp (float, optional): Time at which the signal is propagated in seconds. @@ -960,16 +872,12 @@ def propagate( Returns: The channel propagation resulting from the signal propagation. """ - # Infer parameters - _transmitter = self.alpha_device if transmitter is None else transmitter - _receiver = self.beta_device if receiver is None else receiver - # Generate a new realization realization = self.realize() # Sample the channel realization sample: ChannelSample = realization.sample( - _transmitter, _receiver, timestamp, signal.carrier_frequency, signal.sampling_rate + transmitter, receiver, timestamp, signal.carrier_frequency, signal.sampling_rate ) # Propagate the provided signal diff --git a/hermespy/channel/delay/delay.py b/hermespy/channel/delay/delay.py index eceaca6d..ccd6eca2 100644 --- a/hermespy/channel/delay/delay.py +++ b/hermespy/channel/delay/delay.py @@ -1,7 +1,7 @@ # -*- coding: utf-8 -*- from __future__ import annotations -from typing import Generic, Set, TypeVar, TYPE_CHECKING +from typing import Generic, Set, TypeVar import numpy as np from h5py import Group @@ -18,9 +18,6 @@ InterpolationMode, ) -if TYPE_CHECKING: - from hermespy.simulation import SimulatedDevice # pragma: no cover - __author__ = "Jan Adler" __copyright__ = "Copyright 2024, Barkhausen Institut gGmbH" __credits__ = ["Jan Adler"] @@ -203,37 +200,24 @@ class DelayChannelBase(Generic[DCRT], Channel[DCRT, DelayChannelSample]): __model_propagation_loss: bool - def __init__( - self, - alpha_device: SimulatedDevice | None = None, - beta_device: SimulatedDevice | None = None, - gain: float = 1.0, - model_propagation_loss: bool = True, - **kwargs, - ) -> None: + def __init__(self, model_propagation_loss: bool = True, gain: float = 1.0, **kwargs) -> None: """ Args: - alpha_device (SimulatedDevice, optional): - First device linked by the :class:`.DelayChannelBase` instance that generated this realization. - - beta_device (SimulatedDevice, optional): - Second device linked by the :class:`.DelayChannelBase` instance that generated this realization. + model_propagation_loss (bool, optional): + Should free space propagation loss be modeled? + Enabled by default. gain (float, optional): Linear power gain factor a signal experiences when being propagated over this realization. :math:`1.0` by default. - model_propagation_loss (bool, optional): - Should free space propagation loss be modeled? - Enabled by default. - - **kawrgs: + \**kawrgs: :class:`Channel` base class initialization arguments. """ # Initialize base class - Channel.__init__(self, alpha_device, beta_device, gain, **kwargs) + Channel.__init__(self, gain, **kwargs) # Initialize class attributes self.__model_propagation_loss = model_propagation_loss diff --git a/hermespy/channel/delay/random.py b/hermespy/channel/delay/random.py index 0f44bd66..510fe80e 100644 --- a/hermespy/channel/delay/random.py +++ b/hermespy/channel/delay/random.py @@ -123,7 +123,6 @@ def __init__( self, delay: float | Tuple[float, float], decorrelation_distance: float = float("inf"), - *args, **kwargs, ) -> None: """ @@ -138,15 +137,12 @@ def __init__( Distance in meters at which the channel decorrelates. By default, the channel is assumed to be static in space. - *args: - :class:`.Channel` base class initialization parameters. - **kwargs: :class:`.Channel` base class initialization parameters. """ # Initialize base class - DelayChannelBase.__init__(self, *args, **kwargs) + DelayChannelBase.__init__(self, **kwargs) # Store attributes self.delay = delay diff --git a/hermespy/channel/fading/correlation.py b/hermespy/channel/fading/correlation.py index 9f2ebbd7..d57451d3 100644 --- a/hermespy/channel/fading/correlation.py +++ b/hermespy/channel/fading/correlation.py @@ -5,7 +5,7 @@ import numpy as np -from hermespy.core import FloatingError, Serializable, SerializableEnum +from hermespy.core import AntennaArrayState, AntennaMode, Serializable, SerializableEnum from .fading import AntennaCorrelation __author__ = "Tobias Kronauer" @@ -50,40 +50,20 @@ class StandardAntennaCorrelation(Serializable, AntennaCorrelation): yaml_tag = "StandardCorrelation" """YAML serialization tag""" - __device_type: DeviceType # The assumed device __correlation: CorrelationType # The assumed correlation - def __init__( - self, - device_type: DeviceType | int | str, - correlation: Union[CorrelationType, str], - **kwargs, - ) -> None: + def __init__(self, correlation: Union[CorrelationType, str], **kwargs) -> None: """ Args: - device_type (Union[DeviceType, int, str]): - The assumed device. - correlation (Union[CorrelationType, str]): The assumed correlation. """ - self.device_type = DeviceType.from_parameters(device_type) self.correlation = CorrelationType.from_parameters(correlation) AntennaCorrelation.__init__(self, **kwargs) - @property - def device_type(self) -> DeviceType: - """Assumed 3GPP device type.""" - - return self.__device_type - - @device_type.setter - def device_type(self, value: DeviceType) -> None: - self.__device_type = value - @property def correlation(self) -> CorrelationType: """Assumed 3GPP standard correlation type.""" @@ -94,15 +74,17 @@ def correlation(self) -> CorrelationType: def correlation(self, value: CorrelationType) -> None: self.__correlation = value - @property - def covariance(self) -> np.ndarray: - if self.device is None: - raise FloatingError( - "Error trying to compute the covariance matrix of an unknown device" - ) + def sample_covariance(self, antennas: AntennaArrayState, mode: AntennaMode) -> np.ndarray: + + device_type = DeviceType.TERMINAL if mode == AntennaMode.RX else DeviceType.BASE_STATION + num_antennas = ( + antennas.num_receive_antennas + if mode == AntennaMode.RX + else antennas.num_transmit_antennas + ) - f = self.__correlation.value[self.__device_type.value] - n = self.device.num_antennas + f = self.__correlation.value[device_type.value] + n = num_antennas if n == 1: return np.ones((1, 1), dtype=complex) diff --git a/hermespy/channel/fading/cost259.py b/hermespy/channel/fading/cost259.py index 077f2647..64e5a92a 100644 --- a/hermespy/channel/fading/cost259.py +++ b/hermespy/channel/fading/cost259.py @@ -1,7 +1,7 @@ # -*- coding: utf-8 -*- from __future__ import annotations -from typing import Any, Optional, Type, TYPE_CHECKING +from typing import Any, Optional, Type import numpy as np from ruamel.yaml import SafeRepresenter, MappingNode @@ -9,9 +9,6 @@ from hermespy.core import SerializableEnum from .fading import MultipathFadingChannel -if TYPE_CHECKING: - from hermespy.simulation import SimulatedDevice # pragma: no cover - __author__ = "Tobias Kronauer" __copyright__ = "Copyright 2024, Barkhausen Institut gGmbH" __credits__ = ["Tobias Kronauer", "Jan Adler"] @@ -44,8 +41,6 @@ class Cost259(MultipathFadingChannel): def __init__( self, model_type: Cost259Type = Cost259Type.URBAN, - alpha_device: SimulatedDevice | None = None, - beta_device: SimulatedDevice | None = None, gain: float = 1.0, los_angle: Optional[float] = None, doppler_frequency: Optional[float] = None, @@ -58,12 +53,6 @@ def __init__( model_type (Cost259Type): The model type. - alpha_device (SimulatedDevice, optional): - First device linked by the :class:`.MultipathFadingCost259` instance that generated this realization. - - beta_device (SimulatedDevice, optional): - Second device linked by the :class:`.MultipathFadingCost259` instance that generated this realization. - gain (float, optional): Linear power gain factor a signal experiences when being propagated over this realization. :math:`1.0` by default. @@ -210,8 +199,6 @@ def __init__( # Init base class with pre-defined model parameters MultipathFadingChannel.__init__( self, - alpha_device=alpha_device, - beta_device=beta_device, gain=gain, delays=delays, power_profile=power_profile, diff --git a/hermespy/channel/fading/exponential.py b/hermespy/channel/fading/exponential.py index 69650e6a..17f525eb 100644 --- a/hermespy/channel/fading/exponential.py +++ b/hermespy/channel/fading/exponential.py @@ -1,15 +1,12 @@ # -*- coding: utf-8 -*- from __future__ import annotations -from typing import Any, TYPE_CHECKING +from typing import Any import numpy as np from .fading import MultipathFadingChannel -if TYPE_CHECKING: - from hermespy.simulation import SimulatedDevice # pragma: no cover - __author__ = "Tobias Kronauer" __copyright__ = "Copyright 2024, Barkhausen Institut gGmbH" __credits__ = ["Tobias Kronauer", "Jan Adler"] @@ -30,13 +27,7 @@ class Exponential(MultipathFadingChannel): __rms_delay: float def __init__( - self, - tap_interval: float, - rms_delay: float, - alpha_device: SimulatedDevice | None = None, - beta_device: SimulatedDevice | None = None, - gain: float = 1.0, - **kwargs: Any, + self, tap_interval: float, rms_delay: float, gain: float = 1.0, **kwargs: Any ) -> None: """ Args: @@ -47,17 +38,11 @@ def __init__( rms_delay (float): Root-Mean-Squared delay in seconds. - alpha_device (SimulatedDevice, optional): - First device linked by the :class:`.Exponential` instance that generated this realization. - - beta_device (SimulatedDevice, optional): - Second device linked by the :class:`.Exponential` instance that generated this realization. - gain (float, optional): Linear power gain factor a signal experiences when being propagated over this realization. :math:`1.0` by default. - kwargs (Any): + \**kwargs (Any): `MultipathFadingChannel` initialization parameters. Raises: @@ -89,8 +74,6 @@ def __init__( # Init base class with pre-defined model parameters MultipathFadingChannel.__init__( self, - alpha_device=alpha_device, - beta_device=beta_device, gain=gain, delays=delays, power_profile=power_profile, diff --git a/hermespy/channel/fading/fading.py b/hermespy/channel/fading/fading.py index c6fd0507..46bad45f 100644 --- a/hermespy/channel/fading/fading.py +++ b/hermespy/channel/fading/fading.py @@ -1,8 +1,8 @@ # -*- coding: utf-8 -*- from __future__ import annotations -from abc import abstractmethod, ABC -from typing import Any, Generator, Set, Tuple, TYPE_CHECKING, List +from abc import ABC +from typing import Any, Generator, Set, Tuple, List import matplotlib.pyplot as plt import numpy as np @@ -12,6 +12,8 @@ from sparse import GCXS # type: ignore from hermespy.core import ( + AntennaArrayState, + AntennaMode, ChannelStateInformation, ChannelStateFormat, HDFSerializable, @@ -29,9 +31,6 @@ ) from ..consistent import ConsistentUniform, ConsistentGenerator, ConsistentRealization -if TYPE_CHECKING: - from hermespy.simulation import SimulatedDevice # pragma: no cover - __author__ = "Andre Noll Barreto" __copyright__ = "Copyright 2024, Barkhausen Institut gGmbH" __credits__ = ["Andre Noll Barreto", "Tobias Kronauer", "Jan Adler"] @@ -46,18 +45,29 @@ class AntennaCorrelation(ABC): """Base class for statistical modeling of antenna array correlations.""" __channel: Channel | None - __device: SimulatedDevice | None - def __init__( - self, channel: Channel | None = None, device: SimulatedDevice | None = None - ) -> None: + def __init__(self, channel: Channel | None = None) -> None: + """ + + Args: + + channel (Channel, optional): + Channel this correlation model configures. + `None` if the model is currently considered floating. + """ + self.channel = channel - self.device = device - @property - @abstractmethod - def covariance(self) -> np.ndarray: - """Antenna covariance matrix. + def sample_covariance(self, antennas: AntennaArrayState, mode: AntennaMode) -> np.ndarray: + """Sample the covariance matrix of a given antenna array. + + Args: + + antennas (AntennaArrayState): + State of the antenna array. + + mode (AntennaMode): + Mode of the antenna array, i.e. transmit or receive. Returns: Two-dimensional numpy array representing the covariance matrix. """ @@ -78,21 +88,6 @@ def channel(self) -> Channel | None: def channel(self, value: Channel | None) -> None: self.__channel = value - @property - def device(self) -> SimulatedDevice | None: - """The device this correlation model is based upon. - - Returns: - Handle to the device. - `None` if the device is currently unknown. - """ - - return self.__device - - @device.setter - def device(self, value: SimulatedDevice | None) -> None: - self.__device = value - class CustomAntennaCorrelation(Serializable, AntennaCorrelation): """Customizable antenna correlations.""" @@ -112,15 +107,21 @@ def __init__(self, covariance: np.ndarray) -> None: self.covariance = covariance + def sample_covariance(self, antennas: AntennaArrayState, mode: AntennaMode) -> np.ndarray: + num_antennas = ( + antennas.num_transmit_antennas + if mode == AntennaMode.TX + else antennas.num_receive_antennas + ) + + if self.__covariance_matrix.shape[0] < num_antennas: + raise ValueError("Antenna correlation matrix does not match the number of antennas") + + return self.__covariance_matrix[:num_antennas, :num_antennas] + @property def covariance(self) -> np.ndarray: - if ( - self.device is not None - and self.device.num_antennas != self.__covariance_matrix.shape[0] - ): - raise RuntimeError( - f"Device with {self.device.num_antennas} antennas does not match covariance matrix of magnitude {self.__covariance_matrix.shape[0]}" - ) + """Postive definte square antenna covariance matrix.""" return self.__covariance_matrix @@ -419,8 +420,7 @@ def __init__( nlos_gains: np.ndarray, los_doppler: float, nlos_doppler: float, - alpha_correlation: AntennaCorrelation | None, - beta_correlation: AntennaCorrelation | None, + antenna_correlation: AntennaCorrelation | None, sample_hooks: Set[ChannelSampleHook[MultipathFadingSample]], gain: float, ) -> None: @@ -441,8 +441,7 @@ def __init__( self.__nlos_gains = nlos_gains self.__los_doppler = los_doppler self.__nlos_doppler = nlos_doppler - self.__alpha_correlation = alpha_correlation - self.__beta_correlation = beta_correlation + self.__antenna_correlation = antenna_correlation def _sample(self, state: LinkState) -> MultipathFadingSample: @@ -459,11 +458,16 @@ def _sample(self, state: LinkState) -> MultipathFadingSample: : state.transmitter.antennas.num_transmit_antennas, ] - # Apply antenna array correlation models - if self.__alpha_correlation is not None: - spatial_response = spatial_response @ self.__alpha_correlation.covariance - if self.__beta_correlation is not None: - spatial_response = self.__beta_correlation.covariance @ spatial_response + if self.__antenna_correlation is not None: + spatial_response = ( + self.__antenna_correlation.sample_covariance( + state.receiver.antennas, AntennaMode.RX + ) + @ spatial_response + @ self.__antenna_correlation.sample_covariance( + state.transmitter.antennas, AntennaMode.TX + ) + ) # Sample multipath components los_angles = ( @@ -511,8 +515,7 @@ def From_HDF( nlos_angles_variable: ConsistentUniform, los_phases_variable: ConsistentUniform, nlos_phases_variable: ConsistentUniform, - alpha_correlation: AntennaCorrelation | None, - beta_correlation: AntennaCorrelation | None, + antenna_correlation: AntennaCorrelation | None, sample_hooks: Set[ChannelSampleHook[MultipathFadingSample]], ) -> MultipathFadingRealization: @@ -539,8 +542,7 @@ def From_HDF( nlos_gains, los_doppler, nlos_doppler, - alpha_correlation, - beta_correlation, + antenna_correlation, sample_hooks, gain, ) @@ -582,22 +584,20 @@ class MultipathFadingChannel( __los_gains: np.ndarray __doppler_frequency: float __los_doppler_frequency: float | None - __alpha_correlation: AntennaCorrelation | None - __beta_correlation: AntennaCorrelation | None + __antenna_correlation: AntennaCorrelation | None def __init__( self, delays: np.ndarray | List[float], power_profile: np.ndarray | List[float], rice_factors: np.ndarray | List[float], - gain: float = 1.0, correlation_distance: float = float("inf"), num_sinusoids: int | None = None, los_angle: float | None = None, doppler_frequency: float | None = None, los_doppler_frequency: float | None = None, - alpha_correlation: AntennaCorrelation | None = None, - beta_correlation: AntennaCorrelation | None = None, + antenna_correlation: AntennaCorrelation | None = None, + gain: float = 1.0, **kwargs: Any, ) -> None: """ @@ -615,15 +615,9 @@ def __init__( Rice factor balancing line of sight and multipath in each individual channel tap. Denoted by :math:`K_{\\ell}` within the respective equations. - alpha_device (Device, optional): - First device linked by the :class:`.MultipathFadingChannel` instance that generated this realization. - - beta_device (Device, otional): - Second device linked by the :class:`.MultipathFadingChannel` instance that generated this realization. - - gain (float, optional): - Linear power gain factor a signal experiences when being propagated over this realization. - :math:`1.0` by default. + correlation_distance (float, optional): + Distance at which channel samples are considered to be uncorrelated. + :math:`\\infty` by default, i.e. the channel is considered to be fully correlated in space. num_sinusoids (int, optional): Number of sinusoids used to sample the statistical distribution. @@ -636,15 +630,15 @@ def __init__( Doppler frequency shift of the statistical distribution. Denoted by :math:`\\omega_{\\ell}` within the respective equations. - alpha_correlation(AntennaCorrelation, optional): - Antenna correlation model at the first device. + antenna_correlation (AntennaCorrelation, optional): + Antenna correlation model. By default, the channel assumes ideal correlation, i.e. no cross correlations. - beta_correlation(AntennaCorrelation, optional): - Antenna correlation model at the second device. - By default, the channel assumes ideal correlation, i.e. no cross correlations. + gain (float, optional): + Linear power gain factor a signal experiences when being propagated over this realization. + :math:`1.0` by default. - **kwargs (Any, optional): + \**kwargs (Any, optional): Channel base class initialization parameters. Raises: @@ -689,8 +683,7 @@ def __init__( raise ValueError("Rice factors must be greater or equal to zero") # Initialize base class - self.__alpha_correlation = None - self.__beta_correlation = None + self.__antenna_correlation = None Channel.__init__(self, gain=gain, **kwargs) # Sort delays @@ -726,8 +719,7 @@ def __init__( self.__non_los_gains[rice_inf_pos] = 0.0 # Update correlations (required here to break dependency cycle during init) - self.alpha_correlation = alpha_correlation - self.beta_correlation = beta_correlation + self.antenna_correlation = antenna_correlation self.correlation_distance = correlation_distance self.__rng = ConsistentGenerator(self) @@ -897,66 +889,29 @@ def _realize(self) -> MultipathFadingRealization: self.__non_los_gains, self.los_doppler_frequency, self.doppler_frequency, - self.alpha_correlation, - self.beta_correlation, + self.antenna_correlation, self.sample_hooks, self.gain, ) @property - def alpha_correlation(self) -> AntennaCorrelation | None: - """Antenna correlation at the first device. + def antenna_correlation(self) -> AntennaCorrelation | None: + """Antenna correlations. Returns: Handle to the correlation model. :py:obj:`None`, if no model was configured and ideal correlation is assumed. """ - return self.__alpha_correlation + return self.__antenna_correlation - @alpha_correlation.setter - def alpha_correlation(self, value: AntennaCorrelation | None) -> None: + @antenna_correlation.setter + def antenna_correlation(self, value: AntennaCorrelation | None) -> None: if value is not None: value.channel = self - value.device = self.alpha_device self.__alpha_correlation = value - @property - def beta_correlation(self) -> AntennaCorrelation | None: - """Antenna correlation at the second device. - - Returns: - Handle to the correlation model. - :py:obj:`None`, if no model was configured and ideal correlation is assumed. - """ - - return self.__beta_correlation - - @beta_correlation.setter - def beta_correlation(self, value: AntennaCorrelation | None) -> None: - if value is not None: - value.channel = self - value.device = self.beta_device - - self.__beta_correlation = value - - @Channel.alpha_device.setter # type: ignore - def alpha_device(self, value: SimulatedDevice) -> None: - Channel.alpha_device.fset(self, value) # type: ignore - - # Register new device at correlation model - if self.alpha_correlation is not None: - self.alpha_correlation.device = value - - @Channel.beta_device.setter # type: ignore - def beta_device(self, value: SimulatedDevice) -> None: - Channel.beta_device.fset(self, value) # type: ignore - - # Register new device at correlation model - if self.beta_correlation is not None: - self.beta_correlation.device = value - def recall_realization(self, group: Group) -> MultipathFadingRealization: return MultipathFadingRealization.From_HDF( group, @@ -966,7 +921,6 @@ def recall_realization(self, group: Group) -> MultipathFadingRealization: self.__nlos_angles_variable, self.__los_phases_variable, self.__nlos_phases_variable, - self.__alpha_correlation, - self.__beta_correlation, + self.antenna_correlation, self.sample_hooks, ) diff --git a/hermespy/channel/fading/tdl.py b/hermespy/channel/fading/tdl.py index 1282d52c..12d00725 100644 --- a/hermespy/channel/fading/tdl.py +++ b/hermespy/channel/fading/tdl.py @@ -1,16 +1,12 @@ # -*- coding: utf-8 -*- from __future__ import annotations -from typing import Any, TYPE_CHECKING import numpy as np from hermespy.core import SerializableEnum from .fading import MultipathFadingChannel -if TYPE_CHECKING: - from hermespy.simulation import SimulatedDevice # pragma: no cover - __author__ = "Tobias Kronauer" __copyright__ = "Copyright 2024, Barkhausen Institut gGmbH" __credits__ = ["Tobias Kronauer", "Jan Adler"] @@ -41,12 +37,10 @@ def __init__( self, model_type: TDLType = TDLType.A, rms_delay: float = 0.0, - alpha_device: SimulatedDevice | None = None, - beta_device: SimulatedDevice | None = None, gain: float = 1.0, doppler_frequency: float | None = None, los_doppler_frequency: float | None = None, - **kwargs: Any, + **kwargs, ) -> None: """ Args: @@ -71,17 +65,13 @@ def __init__( If not specified the channel is considered floating, meaning a call to :meth:`realize` will raise an exception. - gain (float, otional): - Linear power gain factor a signal experiences when being propagated over this realization. - :math:`1.0` by default. - num_sinusoids (int, optional): Number of sinusoids used to sample the statistical distribution. doppler_frequency (float, optional) Doppler frequency shift of the statistical distribution. - kwargs (Any): + \***kwargs (Any): Additional `MultipathFadingChannel` initialization parameters. Raises: @@ -380,8 +370,6 @@ def __init__( # Init base class with pre-defined model parameters MultipathFadingChannel.__init__( self, - alpha_device=alpha_device, - beta_device=beta_device, gain=gain, delays=delays, power_profile=power_profile, diff --git a/hermespy/channel/radar/multi.py b/hermespy/channel/radar/multi.py index 9dc9062a..a69fd44e 100644 --- a/hermespy/channel/radar/multi.py +++ b/hermespy/channel/radar/multi.py @@ -425,7 +425,7 @@ def __init__( self, attenuate: bool = True, interference: bool = True, - decorrelation_distance: float = 30.0, + decorrelation_distance: float = float("inf"), *args, **kwargs, ) -> None: @@ -439,6 +439,10 @@ def __init__( interference (bool, optional): Should the channel model consider interference between the linked devices? Enabled by default. + + decorrelation_distance (float, optional): + Distance at which the channel's random variable realizations are considered uncorrelated. + :math:`\\infty` by default, meaning the channel is static in space. """ # Initialize base classes diff --git a/hermespy/core/scenario.py b/hermespy/core/scenario.py index 9d628fcd..ca20caa0 100644 --- a/hermespy/core/scenario.py +++ b/hermespy/core/scenario.py @@ -11,7 +11,7 @@ from enum import IntEnum from itertools import chain from os import path, remove -from typing import Generic, List, Optional, overload, Set, Type, TypeVar, Union +from typing import Generic, overload, Type, TypeVar, Union from h5py import File, Group @@ -77,18 +77,18 @@ class Scenario(ABC, RandomNode, TransformableBase, Generic[DeviceType]): serialized_attributes = {"devices"} @classmethod - def _arg_signature(cls: Type[Scenario]) -> Set[str]: + def _arg_signature(cls: Type[Scenario]) -> set[str]: return {"seed", "devices"} __mode: ScenarioMode # Current scenario operating mode - __devices: List[DeviceType] # Registered devices within this scenario. + __devices: list[DeviceType] # Registered devices within this scenario. __drop_duration: float # Drop duration in seconds. - __file: Optional[File] # HDF5 file handle + __file: File | None # HDF5 file handle __drop_counter: int # Internal drop counter __campaign: str # Measurement campaign name def __init__( - self, seed: Optional[int] = None, devices: Optional[Sequence[DeviceType]] = None + self, seed: int | None = None, devices: Sequence[DeviceType] | None = None ) -> None: """ Args: @@ -96,7 +96,7 @@ def __init__( seed (int, optional): Random seed used to initialize the pseudo-random number generator. - devices (List[Device], optional): + devices (Sequence[Device], optional): Devices to be added to the scenario during initialization. """ @@ -107,7 +107,7 @@ def __init__( # Initialize attributes self.__mode = ScenarioMode.DEFAULT - self.__devices = [] + self.__devices = list() self.drop_duration = 0.0 self.__file = None self.__drop_counter = 0 @@ -206,10 +206,10 @@ def device_index(self, device: DeviceType) -> int: return self.devices.index(device) @property - def devices(self) -> List[DeviceType]: + def devices(self) -> list[DeviceType]: """Devices registered in this scenario. - Returns: List of devices. + Returns: list of devices. """ return self.__devices.copy() @@ -225,14 +225,14 @@ def num_devices(self) -> int: return len(self.__devices) @property - def transmitters(self) -> List[Transmitter]: + def transmitters(self) -> list[Transmitter]: """All transmitting operators within this scenario. Returns: - List[Transmitter]: List of all transmitting operators. + list[Transmitter]: list of all transmitting operators. """ - transmitters: List[Transmitter] = [] + transmitters: list[Transmitter] = [] for device in self.__devices: transmitters.extend(device.transmitters) @@ -240,14 +240,14 @@ def transmitters(self) -> List[Transmitter]: return transmitters @property - def receivers(self) -> List[Receiver]: + def receivers(self) -> list[Receiver]: """All receiving operators within this scenario. Returns: - List[Receiver]: List of all transmitting operators. + list[Receiver]: list of all transmitting operators. """ - receivers: List[Receiver] = [] + receivers: list[Receiver] = [] for device in self.__devices: receivers.extend(device.receivers) @@ -283,13 +283,13 @@ def num_transmitters(self) -> int: return num @property - def operators(self) -> Set[Operator]: + def operators(self) -> set[Operator]: """All operators within this scenario. Returns: A set containing all unique operators within this scenario """ - operators: Set[Operator] = set() + operators: set[Operator] = set() # Iterate over all devices and collect operators for device in self.devices: @@ -648,21 +648,21 @@ def transmit_operators(self) -> Sequence[Sequence[Transmission]]: return transmissions def generate_outputs( - self, transmissions: Optional[List[List[Transmission]]] = None + self, transmissions: list[list[Transmission]] | None = None ) -> Sequence[DeviceOutput]: """Generate signals emitted by devices. Args: - transmissions ([List[List[Transmission]], optional): + transmissions (list[list[Transmission]], optional): Transmissions by operators. If none were provided, cached operator transmissions are assumed. - Returns: List of device outputs. + Returns: list of device outputs. """ # Assume cached operator transmissions if none were provided - _transmissions: List[None] | List[List[Transmission]] = ( + _transmissions: list[None] | list[list[Transmission]] = ( [None] * self.num_devices if not transmissions else transmissions ) @@ -677,7 +677,7 @@ def generate_outputs( def transmit_devices(self) -> Sequence[DeviceTransmission]: """Generated information transmitted by all registered devices. - Returns: List of generated information transmitted by each device. + Returns: list of generated information transmitted by each device. """ transmissions = [device.transmit() for device in self.devices] @@ -708,13 +708,13 @@ def process_inputs( Args: impinging_signals (Sequence[DeviceInput | Signal | Sequence[Signal]]): - List of signals impinging onto the devices. + list of signals impinging onto the devices. cache (bool, optional): Cache the operator inputs at the registered receive operators for further processing. Enabled by default. - Returns: List of the processed device input information. + Returns: list of the processed device input information. Raises: @@ -761,7 +761,7 @@ def receive_operators( Cache the generated received information at the device's receive operators. Enabled by default. - Returns: List of information generated by receiving over the device's operators. + Returns: list of information generated by receiving over the device's operators. Raises: @@ -808,14 +808,14 @@ def receive_devices( Args: - impinging_signals (List[Union[DeviceInput, Signal, Iterable[Signal]]]): - List of signals impinging onto the devices. + impinging_signals (list[Union[DeviceInput, Signal, Iterable[Signal]]]): + list of signals impinging onto the devices. cache (bool, optional): Cache the operator inputs at the registered receive operators for further processing. Enabled by default. - Returns: List of the processed device input information. + Returns: list of the processed device input information. Raises: diff --git a/hermespy/core/signal_model.py b/hermespy/core/signal_model.py index 3a8ceffd..666ffdd2 100644 --- a/hermespy/core/signal_model.py +++ b/hermespy/core/signal_model.py @@ -979,7 +979,7 @@ def __getitem__(self, key: Any) -> np.ndarray: b = self._blocks[b_stop] w_start = res.shape[1] - s11 + b.offset w_stop = min(w_start + b.shape[1], res.shape[1]) - res[:, w_start:w_stop] = b[:, :w_stop-w_start] + res[:, w_start:w_stop] = b[:, : w_stop - w_start] # Apply stream slicing and the samples step. diff --git a/hermespy/radar/evaluators.py b/hermespy/radar/evaluators.py index e997933d..0933bc45 100644 --- a/hermespy/radar/evaluators.py +++ b/hermespy/radar/evaluators.py @@ -118,7 +118,9 @@ class RadarEvaluator(Evaluator, ABC): __transmitting_device: SimulatedDevice _channel_sample: RadarChannelSample | None - def __init__(self, receiving_radar: Radar, radar_channel: RadarChannelBase) -> None: + def __init__( + self, transmitting_radar: Radar, receiving_radar: Radar, radar_channel: RadarChannelBase + ) -> None: """ Args: @@ -130,28 +132,21 @@ def __init__(self, receiving_radar: Radar, radar_channel: RadarChannelBase) -> N ValueError: If the receiving radar is not an operator of the radar_channel receiver. """ - if radar_channel.alpha_device is None or radar_channel.beta_device is None: - raise ValueError("Radar channel must be configured within a simulation scenario") + if transmitting_radar.device is None: + raise ValueError( + "Transmitting radar must be assigned a device within a simulation scenario" + ) if receiving_radar.device is None: - raise ValueError("Radar must be assigned a device within a simulation scenario") + raise ValueError( + "Transmitting radar must be assigned a device within a simulation scenario" + ) + self.__transmitting_device = transmitting_radar.device # type: ignore + self.__receiving_device = receiving_radar.device # type: ignore self.__receiving_radar = receiving_radar self.__radar_channel = radar_channel - if receiving_radar.device is radar_channel.alpha_device: - self.__receiving_device = radar_channel.alpha_device - self.__transmitting_device = radar_channel.beta_device - - elif receiving_radar.device is radar_channel.beta_device: - self.__receiving_device = radar_channel.beta_device - self.__transmitting_device = radar_channel.alpha_device - - else: - raise ValueError( - "Recieving radar to be evaluated must be assigned to the radar channel" - ) - # Initialize base class Evaluator.__init__(self) @@ -517,7 +512,7 @@ def __init__(self, radar: Radar, radar_channel: RadarChannelBase, num_thresholds """ # Initialize base class - RadarEvaluator.__init__(self, receiving_radar=radar, radar_channel=radar_channel) + RadarEvaluator.__init__(self, radar, radar, radar_channel) # Initialize class attributes self.__num_thresholds = num_thresholds diff --git a/hermespy/simulation/drop.py b/hermespy/simulation/drop.py index cf2f1f63..fb0523b2 100644 --- a/hermespy/simulation/drop.py +++ b/hermespy/simulation/drop.py @@ -5,7 +5,7 @@ from h5py import Group -from hermespy.channel import Channel, ChannelRealization +from hermespy.channel import ChannelRealization from hermespy.core import Drop from .simulated_device import SimulatedDeviceReception, SimulatedDeviceTransmission @@ -61,8 +61,6 @@ def channel_realizations(self) -> Sequence[ChannelRealization]: return self.__channel_realizations def to_HDF(self, group: Group) -> None: - num_devices = self.num_device_transmissions - # Serialize attributes group.attrs["timestamp"] = self.timestamp group.attrs["num_transmissions"] = self.num_device_transmissions @@ -76,12 +74,9 @@ def to_HDF(self, group: Group) -> None: for r, reception in enumerate(self.device_receptions): reception.to_HDF(self._create_group(group, f"reception_{r:02d}")) - i = 0 - for d_out in range(num_devices): - for d_in in range(d_out + 1): - realization_group = self._create_group(group, f"channel_realization_{i:02d}") - self.channel_realizations[i].to_HDF(realization_group) - i += 1 + for cr, channel_realization in enumerate(self.channel_realizations): + realization_group = self._create_group(group, f"channel_realization_{cr:02d}") + channel_realization.to_HDF(realization_group) @classmethod def from_HDF( @@ -115,14 +110,8 @@ def from_HDF( ] channel_realizations: List[ChannelRealization] = [] - i = 0 - for device_beta_idx in range(num_devices): - for device_alpha_idx in range(device_beta_idx + 1): - - # Recall the channel realization - channel: Channel = scenario.channels[device_beta_idx, device_alpha_idx] - realization = channel.recall_realization(group[f"channel_realization_{i:02d}"]) - channel_realizations.append(realization) - i += 1 + for c, channel in enumerate(scenario.channels): + realization = channel.recall_realization(group[f"channel_realization_{c:02d}"]) + channel_realizations.append(realization) return SimulatedDrop(timestamp, transmissions, channel_realizations, receptions) diff --git a/hermespy/simulation/scenario.py b/hermespy/simulation/scenario.py index 8337a961..9974737e 100644 --- a/hermespy/simulation/scenario.py +++ b/hermespy/simulation/scenario.py @@ -2,7 +2,7 @@ from __future__ import annotations from time import time -from typing import List, Sequence, Tuple, overload +from typing import Sequence, Tuple, overload import matplotlib.pyplot as plt import numpy as np @@ -55,7 +55,7 @@ def __init__( self, figure: plt.Figure | None, axes: VAT, - device_frames: List[Line3DCollection], + device_frames: list[Line3DCollection], device_frame_scale: float, ) -> None: @@ -129,7 +129,7 @@ def _prepare_visualization( _ax.set_zlim3d(minimal_limit, maximal_limit) device_frame_scale = 0.1 * (maximal_limit - minimal_limit) - device_frames: List[Line3DCollection] = [] + device_frames: list[Line3DCollection] = [] for _ in self.__scenario.devices: # Draw wire coordinate frames @@ -184,12 +184,15 @@ class SimulationScenario(Scenario[SimulatedDevice]): yaml_tag = "SimulationScenario" - __channels: np.ndarray # Channel matrix linking devices + __default_channel: Channel # Initial channel to be assumed for device links + __channels: set[Channel] # Set of unique channel model instances + __links: dict[frozenset[SimulatedDevice], Channel] __noise_level: NoiseLevel | None # Global noise level of the scenario __noise_model: NoiseModel | None # Global noise model of the scenario def __init__( self, + default_channel: Channel | None = None, noise_level: NoiseLevel | None = None, noise_model: NoiseModel | None = None, *args, @@ -198,6 +201,10 @@ def __init__( """ Args: + default_channel (Channel, optional): + Default channel model to be assumed for all device links. + If not specified, the `default_channel` is set to an ideal distortionless channel model. + noise_level (NoiseLevel, optional): Global noise level of the scenario assumed for all devices. If not specified, the noise configuration is device-specific. @@ -207,13 +214,17 @@ def __init__( If not specified, the noise configuration is device-specific. """ + # Prepare channel matrices for device links + self.__default_channel = default_channel if default_channel is not None else IdealChannel() + self.__channels = {self.__default_channel} + self.__links = dict() + # Initialize base class Scenario.__init__(self, *args, **kwargs) # Initialize class attributes self.noise_level = noise_level self.noise_model = noise_model - self.__channels = np.ndarray((0, 0), dtype=object) self.__visualizer = _ScenarioVisualizer(self) def new_device(self, *args, **kwargs) -> SimulatedDevice: @@ -233,38 +244,22 @@ def add_device(self, device: SimulatedDevice) -> None: Scenario.add_device(self, device) device.scenario = self - if self.num_devices == 1: - self.__channels = np.array([[IdealChannel(device, device)]], dtype=object) - - else: - # Create new channels from each existing device to the newly added device - new_channels = np.array([[IdealChannel(device, rx)] for rx in self.devices]) - - # Complete channel matrix by the newly created channels - self.__channels = np.append(self.__channels, new_channels[:-1], axis=1) - self.__channels = np.append(self.__channels, new_channels.T, axis=0) - @property - def channels(self) -> np.ndarray: - """Channel matrix between devices. - - Returns: - np.ndarray: - An `MxM` matrix of channels between devices. - """ + def channels(self) -> set[Channel]: + """Unique channel model instances interconnecting devices within this scenario.""" return self.__channels - def channel(self, transmitter: SimulatedDevice, receiver: SimulatedDevice) -> Channel: + def channel(self, alpha_device: SimulatedDevice, beta_device: SimulatedDevice) -> Channel: """Access a specific channel between two devices. Args: - transmitter (SimulatedDevice): - The device transmitting into the channel. + alpha_device (SimulatedDevice): + First device linked by the requested channel. - receiver (SimulatedDevice): - the device receiving from the channel + beta_device (SimulatedDevice): + Second device linked by the requested channel. Returns: Channel: @@ -272,134 +267,94 @@ def channel(self, transmitter: SimulatedDevice, receiver: SimulatedDevice) -> Ch Raises: ValueError: - Should `transmitter` or `receiver` not be registered with this scenario. + Should `alpha_device` or `beta_device` not be registered with this scenario. """ - devices = self.devices - - if transmitter not in devices: - raise ValueError("Provided transmitter is not registered with this scenario") + if alpha_device not in self.devices: + raise ValueError("Provided alpha device is not registered with this scenario") - if receiver not in devices: - raise ValueError("Provided receiver is not registered with this scenario") + if beta_device not in self.devices: + raise ValueError("Provided beta device is not registered with this scenario") - index_transmitter = devices.index(transmitter) - index_receiver = devices.index(receiver) + return self.__links.get(frozenset((alpha_device, beta_device)), self.__default_channel) - return self.__channels[index_transmitter, index_receiver] - - def departing_channels( - self, transmitter: SimulatedDevice, active_only: bool = False - ) -> List[Channel]: - """Collect all channels departing from a transmitting device. + def device_channels(self, device: SimulatedDevice, active_only: bool = False) -> set[Channel]: + """Collect all channels to which a specific device is linked. Args: - transmitter (SimulatedDevice): - The transmitting device. - - active_only (bool, optional): - Consider only active channels. - A channel is considered active if its gain is greater than zero. - - Returns: A list of departing channels. - - Raises: - - ValueError: Should `transmitter` not be registered with this scenario. - """ - - devices = self.devices - - if transmitter not in devices: - raise ValueError("The provided transmitter is not registered with this scenario.") - - transmitter_index = devices.index(transmitter) - channels: List[Channel] = self.__channels[:, transmitter_index].tolist() - - if active_only: - channels = [channel for channel in channels if channel.gain > 0.0] - - return channels - - def arriving_channels( - self, receiver: SimulatedDevice, active_only: bool = False - ) -> List[Channel]: - """Collect all channels arriving at a device. - - Args: - receiver (Receiver): - The receiving modem. + device (SimulatedDevice): + The device in question. active_only (bool, optional): Consider only active channels. A channel is considered active if its gain is greater than zero. + Disabled by default, so all channels are considered. - Returns: A list of arriving channels. + Returns: A set of unique channel instances. Raises: - ValueError: Should `receiver` not be registered with this scenario. + ValueError: Should `device` is not registered within this scenario. """ - devices = self.devices - - if receiver not in devices: - raise ValueError("The provided transmitter is not registered with this scenario.") + if device not in self.devices: + raise ValueError("Provided device is not registered with this scenario") - receiver_index = devices.index(receiver) - channels: List[Channel] = self.__channels[receiver_index,].tolist() + device_channels: set[Channel] = set() + link_entries = 0 + for linked_devices, channel in self.__links.items(): + if device in linked_devices: + if not active_only or channel.gain > 0: + device_channels.add(channel) + link_entries += 1 - if active_only: - channels = [channel for channel in channels if channel.gain > 0.0] + # Append the default channel if required + if link_entries < self.num_devices: + device_channels.add(self.__default_channel) - return channels + return device_channels def set_channel( - self, - beta_device: int | SimulatedDevice, - alpha_device: int | SimulatedDevice, - channel: Channel | None, + self, alpha_device: SimulatedDevice, beta_device: SimulatedDevice, channel: Channel ) -> None: """Specify a channel within the channel matrix. Args: - beta_device (int | SimulatedDevice): - Index of the receiver within the channel matrix. + alpha_device (SimulatedDevice): + First device to be linked by `channel`. - alpha_device (int | SimulatedDevice): - Index of the transmitter within the channel matrix. + beta_device (SimulatedDevice): + Second device to be linked by `channel`. - channel (Channel | None): - The channel instance to be set at position (`transmitter_index`, `receiver_index`). + channel (Channel): + The channel instance to link `alpha_device` and `beta_device`. Raises: - ValueError: - If `transmitter_index` or `receiver_index` are greater than the channel matrix dimensions. + ValueError: If `alpha_device` or `beta_device` are not registered with this scenario. """ - if isinstance(beta_device, SimulatedDevice): - beta_device = self.devices.index(beta_device) - - if isinstance(alpha_device, SimulatedDevice): - alpha_device = self.devices.index(alpha_device) + if alpha_device not in self.devices: + raise ValueError("Alpha device is not registered with this scenario") - if self.__channels.shape[0] <= alpha_device or 0 > alpha_device: - raise ValueError("Alpha device index greater than channel matrix dimension") + if beta_device not in self.devices: + raise ValueError("Beta device is not registered with this scenario") - if self.__channels.shape[1] <= beta_device or 0 > beta_device: - raise ValueError("Beta Device index greater than channel matrix dimension") + # Update the link + link_key = frozenset((alpha_device, beta_device)) + old_channel = self.__links.get(link_key, None) + self.__links[frozenset((alpha_device, beta_device))] = channel - # Update channel field within the matrix - self.__channels[alpha_device, beta_device] = channel - self.__channels[beta_device, alpha_device] = channel + # Remove the old channel from the set of device channels and unique channel instances + # if it is not linked to any other device + if old_channel is not None: + if old_channel not in self.__links.values(): + self.__channels.remove(old_channel) - if channel is not None: - # Set proper receiver and transmitter fields - channel.alpha_device = self.devices[alpha_device] - channel.beta_device = self.devices[beta_device] - channel.scenario = self + # Update the set of unique channel instances + self.__channels.add(channel) + channel.scenario = self @register(first_impact="receive_devices", title="Scenario Noise Level") # type: ignore[misc] @property @@ -441,9 +396,9 @@ def realize_triggers(self) -> Sequence[TriggerRealization]: """ # Collect unique triggers - triggers: List[TriggerModel] = [] - unique_realizations: List[TriggerRealization] = [] - device_realizations: List[TriggerRealization] = [] + triggers: list[TriggerModel] = [] + unique_realizations: list[TriggerRealization] = [] + device_realizations: list[TriggerRealization] = [] for device in self.devices: device_realization: TriggerRealization @@ -463,11 +418,11 @@ def realize_triggers(self) -> Sequence[TriggerRealization]: def generate_outputs( self, - transmissions: List[List[Transmission]] | None = None, + transmissions: list[list[Transmission]] | None = None, trigger_realizations: Sequence[TriggerRealization] | None = None, ) -> Sequence[SimulatedDeviceOutput]: # Assume cached operator transmissions if none were provided - _transmissions: List[None] | List[List[Transmission]] = ( + _transmissions: list[None] | list[list[Transmission]] = ( [None] * self.num_devices if not transmissions else transmissions ) @@ -510,15 +465,17 @@ def transmit_devices(self, cache: bool = True) -> Sequence[SimulatedDeviceTransm trigger_realizations = self.realize_triggers() # Transmit devices - transmissions: List[SimulatedDeviceTransmission] = [ + transmissions: list[SimulatedDeviceTransmission] = [ d.transmit(cache=cache, trigger_realization=t) for d, t in zip(self.devices, trigger_realizations) ] return transmissions def propagate( - self, transmissions: Sequence[DeviceOutput] - ) -> Tuple[List[List[Signal]], List[ChannelRealization]]: + self, + transmissions: Sequence[DeviceOutput], + interpolation_mode: InterpolationMode = InterpolationMode.NEAREST, + ) -> Tuple[list[list[Signal]], list[ChannelRealization]]: """Propagate device transmissions over the scenario's channel instances. Args: @@ -526,9 +483,13 @@ def propagate( transmissions (Sequence[DeviceOutput]) Sequence of device transmissisons. + interpolation_mode (InterpolationMode, optional): + Interpolation mode for the channel samples. + Defaults to `InterpolationMode.NEAREST`. + Returns: - Matrix of signal propagations between devices. - - List of lists of unique channel realizations linking the devices. + - list of lists of unique channel realizations linking the devices. Raises: @@ -544,41 +505,44 @@ def propagate( # Initialize the propagated signals propagation_matrix = np.empty((self.num_devices, self.num_devices), dtype=np.object_) - # Loop over each channel within the channel matrix and propagate the signals over the respective channel model - channel_realizations: List[ChannelRealization] = [] + # Realize all channel instances + channel_realizations: dict[Channel, ChannelRealization] = { + c: c.realize() for c in self.channels + } + + # Propagate signals over all linking channels for device_alpha_idx, alpha_device in enumerate(self.devices): for device_beta_idx, beta_device in enumerate(self.devices[: 1 + device_alpha_idx]): - # Select and realize the channel linking device alpha and device beta - channel: Channel[ChannelRealization, ChannelSample] = self.channels[ - device_alpha_idx, device_beta_idx - ] - channel_realization: ChannelRealization[ChannelSample] = channel.realize() - channel_realizations.append(channel_realization) + # Find the correct channel realization for the propagation between device alpha and device beta + linking_channel = self.channel(alpha_device, beta_device) + channel_realization = channel_realizations[linking_channel] # Sample the channel realization for a propagation from device alpha to device beta - alpha_beta_sample = channel_realization.sample(alpha_device, beta_device) - - # Sample the reciprocal channel realization for a propagation from device beta to device alpha - beta_alpha_sample = channel_realization.reciprocal_sample( - alpha_beta_sample, beta_device, alpha_device + alpha_beta_sample: ChannelSample = channel_realization.sample( + alpha_device, beta_device ) # Propagate signal emitted from device alpha to device beta over the linking channel - alpha_propagation = alpha_beta_sample.propagate( - transmissions[device_alpha_idx], InterpolationMode.NEAREST + propagation_matrix[device_beta_idx, device_alpha_idx] = alpha_beta_sample.propagate( + transmissions[device_alpha_idx], interpolation_mode ) - # Propagate signal emitted from device beta to device alpha over the linking channel - beta_propagation = beta_alpha_sample.propagate( - transmissions[device_beta_idx], InterpolationMode.NEAREST + # Abort if we're on the self-interference diagonal to avoid redundant calculations + if device_alpha_idx == device_beta_idx: + continue + + # Sample the reciprocal channel realization for a propagation from device beta to device alpha + beta_alpha_sample: ChannelSample = channel_realization.reciprocal_sample( + alpha_beta_sample, beta_device, alpha_device ) - # Store propagtions in their respective coordinates within the propagation matrix - propagation_matrix[device_alpha_idx, device_beta_idx] = beta_propagation - propagation_matrix[device_beta_idx, device_alpha_idx] = alpha_propagation + # Propagate signal emitted from device beta to device alpha over the linking channel + propagation_matrix[device_alpha_idx, device_beta_idx] = beta_alpha_sample.propagate( + transmissions[device_beta_idx], interpolation_mode + ) - return propagation_matrix.tolist(), channel_realizations + return propagation_matrix.tolist(), list(channel_realizations.values()) @overload def process_inputs( @@ -586,7 +550,7 @@ def process_inputs( impinging_signals: Sequence[DeviceInput], cache: bool = True, trigger_realizations: Sequence[TriggerRealization] | None = None, - ) -> List[ProcessedSimulatedDeviceInput]: ... # pragma: no cover + ) -> list[ProcessedSimulatedDeviceInput]: ... # pragma: no cover @overload def process_inputs( @@ -594,7 +558,7 @@ def process_inputs( impinging_signals: Sequence[Signal], cache: bool = True, trigger_realizations: Sequence[TriggerRealization] | None = None, - ) -> List[ProcessedSimulatedDeviceInput]: ... # pragma: no cover + ) -> list[ProcessedSimulatedDeviceInput]: ... # pragma: no cover @overload def process_inputs( @@ -602,20 +566,20 @@ def process_inputs( impinging_signals: Sequence[Sequence[Signal]], cache: bool = True, trigger_realizations: Sequence[TriggerRealization] | None = None, - ) -> List[ProcessedSimulatedDeviceInput]: ... # pragma: no cover + ) -> list[ProcessedSimulatedDeviceInput]: ... # pragma: no cover def process_inputs( self, impinging_signals: Sequence[DeviceInput] | Sequence[Signal] | Sequence[Sequence[Signal]], cache: bool = True, trigger_realizations: Sequence[TriggerRealization] | None = None, - ) -> List[ProcessedSimulatedDeviceInput]: + ) -> list[ProcessedSimulatedDeviceInput]: """Process input signals impinging onto the scenario's devices. Args: impinging_signals (Sequence[DeviceInput | Signal | Sequence[Signal]] | Sequence[Sequence[Signal]]): - List of signals impinging onto the devices. + list of signals impinging onto the devices. cache (bool, optional): Cache the operator inputs at the registered receive operators for further processing. @@ -625,7 +589,7 @@ def process_inputs( Sequence of trigger realizations. If not specified, ideal triggerings are assumed for all devices. - Returns: List of the processed device input information. + Returns: list of the processed device input information. Raises: @@ -689,8 +653,8 @@ def receive_devices( Args: - impinging_signals (List[Union[DeviceInput, Signal, Iterable[Signal]]]): - List of signals impinging onto the devices. + impinging_signals (list[Union[DeviceInput, Signal, Iterable[Signal]]]): + list of signals impinging onto the devices. cache (bool, optional): Cache the operator inputs at the registered receive operators for further processing. @@ -700,7 +664,7 @@ def receive_devices( Sequence of trigger realizations. If not specified, ideal triggerings are assumed for all devices. - Returns: List of the processed device input information. + Returns: list of the processed device input information. Raises: diff --git a/hermespy/simulation/simulated_device.py b/hermespy/simulation/simulated_device.py index 051bacb3..a74594ab 100644 --- a/hermespy/simulation/simulated_device.py +++ b/hermespy/simulation/simulated_device.py @@ -931,7 +931,11 @@ def antennas(self) -> AntennaArrayState: class SimulatedDevice(Device, Moveable, Serializable): - """Representation of an entity capable of emitting and receiving electromagnetic waves.""" + """Representation of an entity capable of emitting and receiving electromagnetic waves. + + A simulation scenario consists of a collection of devices, + interconnected by a network of channel models. + """ yaml_tag = "SimulatedDevice" property_blacklist = { diff --git a/hermespy/simulation/simulation.py b/hermespy/simulation/simulation.py index 3279bf2b..25eb7b00 100644 --- a/hermespy/simulation/simulation.py +++ b/hermespy/simulation/simulation.py @@ -2,6 +2,7 @@ from __future__ import annotations from collections.abc import Sequence +from itertools import product from sys import maxsize from typing import Any, Callable, Dict, List, Mapping, Type @@ -344,7 +345,7 @@ def run(self) -> MonteCarloResult: return result def set_channel( - self, alpha: int | SimulatedDevice, beta: int | SimulatedDevice, channel: Channel | None + self, alpha: SimulatedDevice, beta: SimulatedDevice, channel: Channel | None ) -> None: """Specify a channel within the channel matrix. @@ -354,10 +355,10 @@ def set_channel( Args: - receiver (int | SimulatedDevice): + receiver (SimulatedDevice): Index of the receiver within the channel matrix. - transmitter (int | SimulatedDevice): + transmitter (SimulatedDevice): Index of the transmitter within the channel matrix. channel (Channel | None): @@ -400,6 +401,13 @@ def to_yaml( dimension_fields.append(dimension_map) + # Collection channel models + channels = [] + for device_alpha, device_beta in product(node.scenario.devices, node.scenario.devices): + channel = node.scenario.channel(device_alpha, device_beta) + if channel is not None: + channels.append((device_alpha, device_beta, channel)) + additional_fields = { "noise_model": node.scenario.noise_model, "noise_level": node.scenario.noise_level, @@ -408,7 +416,7 @@ def to_yaml( "Operators": node.scenario.operators, "Evaluators": node.evaluators, "Dimensions": dimension_fields, - "Channels": node.scenario.channels.flatten().tolist(), + "Channels": channels, } return node._mapping_serialization_wrapper(representer, additional_fields=additional_fields) @@ -433,7 +441,7 @@ def from_yaml(cls: Type[Simulation], constructor: SafeConstructor, node: Node) - # Pop configuration sections for "special" treatment devices: List[SimulatedDevice] = state.pop("Devices", []) - channels: List[Channel] = state.pop("Channels", []) + channels: list[tuple[SimulatedDevice, SimulatedDevice, Channel]] = state.pop("Channels", []) _: List[Operator] = state.pop("Operators", []) evaluators: List[Evaluator] = state.pop("Evaluators", []) dimensions: Dict[str, Any] | List[Mapping[str, Any]] = state.pop("Dimensions", {}) @@ -449,18 +457,8 @@ def from_yaml(cls: Type[Simulation], constructor: SafeConstructor, node: Node) - simulation.scenario.add_device(device) # Assign channel models - for channel in channels: - # If the scenario features just a single device, we can infer the transmitter and receiver easily - if channel.alpha_device is None or channel.beta_device is None: - if simulation.scenario.num_devices > 1: - raise RuntimeError( - "Please specifiy the transmitting and receiving device of each channel in a multi-device scenario" - ) - - channel.alpha_device = simulation.scenario.devices[0] - channel.beta_device = simulation.scenario.devices[0] - - simulation.scenario.set_channel(channel.alpha_device, channel.beta_device, channel) + for device_alpha, device_beta, channel in channels: + simulation.scenario.set_channel(device_alpha, device_beta, channel) # Register evaluators for evaluator in evaluators: diff --git a/tests/integration_tests/test_fmcw_radar.py b/tests/integration_tests/test_fmcw_radar.py index 2089eb39..8e703b20 100644 --- a/tests/integration_tests/test_fmcw_radar.py +++ b/tests/integration_tests/test_fmcw_radar.py @@ -13,7 +13,7 @@ from hermespy.channel import MultiTargetRadarChannel, VirtualRadarTarget, FixedCrossSection from hermespy.radar.radar import Radar from hermespy.radar.fmcw import FMCW -from hermespy.simulation import SimulationScenario, SimulatedIdealAntenna, SimulatedUniformArray, StaticTrajectory +from hermespy.simulation import SimulatedDevice, SimulatedIdealAntenna, SimulatedUniformArray, StaticTrajectory from scipy.constants import speed_of_light __author__ = "Jan Adler" @@ -28,8 +28,7 @@ class FMCWRadarSimulation(TestCase): def setUp(self) -> None: - self.scenario = SimulationScenario() - self.device = self.scenario.new_device() + self.device = SimulatedDevice() self.device.carrier_frequency = 1e8 self.device.antennas = SimulatedUniformArray(SimulatedIdealAntenna, 0.5 * speed_of_light / self.device.carrier_frequency, (5, 5)) @@ -50,8 +49,6 @@ def setUp(self) -> None: self.virtual_target = VirtualRadarTarget(FixedCrossSection(1.0), trajectory=StaticTrajectory(Transformation.From_Translation(np.array([0, 0, self.target_range])))) self.channel.add_target(self.virtual_target) - self.scenario.set_channel(self.device, self.device, self.channel) - def test_beamforming(self) -> None: """The radar channel target located should be estimated correctly by the beamformer""" @@ -62,7 +59,7 @@ def test_beamforming(self) -> None: self.virtual_target.trajectory = StaticTrajectory(Transformation.From_Translation(Direction.From_Spherical(azimuth, zenith) * self.target_range)) # Generate the radar cube - propagation = self.channel.propagate(self.device.transmit()) + propagation = self.channel.propagate(self.device.transmit(), self.device, self.device) self.device.process_input(propagation) reception = self.radar.receive() @@ -72,7 +69,7 @@ def test_beamforming(self) -> None: def test_detection(self) -> None: """Test FMCW detection""" - propagation = self.channel.propagate(self.device.transmit()) + propagation = self.channel.propagate(self.device.transmit(), self.device, self.device) self.device.process_input(propagation) reception = self.radar.receive() @@ -93,7 +90,7 @@ def test_doppler(self) -> None: for expected_bin_index, target_velocity in zip(expected_bin_indices, velocity_candidates): self.virtual_target.trajectory = StaticTrajectory(self.virtual_target.trajectory.pose, np.array([0, 0, target_velocity], dtype=np.float_)) - propagation = self.channel.propagate(self.device.transmit()) + propagation = self.channel.propagate(self.device.transmit(), self.device, self.device) self.device.process_input(propagation) reception = self.radar.receive() diff --git a/tests/integration_tests/test_links.py b/tests/integration_tests/test_links.py index 15f3c9ff..45f62c0c 100644 --- a/tests/integration_tests/test_links.py +++ b/tests/integration_tests/test_links.py @@ -282,7 +282,7 @@ def __configure_COST259_channel(self) -> Cost259: Returns: The configured channel. """ - channel = Cost259(alpha_device=self.tx_device, beta_device=self.rx_device, gain=0.9, doppler_frequency=self._doppler_frequency) + channel = Cost259(gain=0.9, doppler_frequency=self._doppler_frequency) return channel def __configure_5GTDL_channel(self) -> TDL: @@ -291,7 +291,7 @@ def __configure_5GTDL_channel(self) -> TDL: Returns: The configured channel. """ - channel = TDL(alpha_device=self.tx_device, beta_device=self.rx_device, gain=0.9, model_type=TDLType.B, doppler_frequency=self._doppler_frequency, rms_delay=1e-8) + channel = TDL(gain=0.9, model_type=TDLType.B, doppler_frequency=self._doppler_frequency, rms_delay=1e-8) return channel def __configure_CDL_channel(self) -> UrbanMicrocells: @@ -300,7 +300,7 @@ def __configure_CDL_channel(self) -> UrbanMicrocells: Returns: The configured channel. """ - channel = UrbanMicrocells(self.tx_device, self.rx_device, 0.9) + channel = UrbanMicrocells(gain=0.9) return channel def __configure_delay_channel(self) -> RandomDelayChannel: @@ -311,7 +311,7 @@ def __configure_delay_channel(self) -> RandomDelayChannel: min_delay = 0.0 max_delay = 1e-3 - channel = RandomDelayChannel((min_delay, max_delay), alpha_device=self.tx_device, beta_device=self.rx_device, model_propagation_loss=True) + channel = RandomDelayChannel((min_delay, max_delay), model_propagation_loss=True) return channel # ======================= @@ -326,13 +326,13 @@ def test_ideal_channel_chirp_fsk(self) -> None: """Verify a valid SISO link over an ideal channel with chirp frequency shift keying modulation""" self.__configure_chirp_fsk_waveform() - self.__propagate(IdealChannel(self.tx_device, self.rx_device)) + self.__propagate(IdealChannel()) self.__assert_link() def test_ideal_channel_single_carrier(self) -> None: """Verify a valid SISO link over an ideal channel with single carrier modulation""" - channel = IdealChannel(self.tx_device, self.rx_device) + channel = IdealChannel() self.__configure_single_carrier_waveform(channel) self.__propagate(channel) self.__assert_link() @@ -341,7 +341,7 @@ def test_ideal_channel_ocdm_ls_zf(self) -> None: """Verify a valid SISO link over an ideal channel with OCDM modulation, least-squares channel estimation and zero-forcing equalization""" - channel = IdealChannel(self.tx_device, self.rx_device) + channel = IdealChannel() self.__configure_ocdm_waveform(channel) self.__propagate(channel) self.__assert_link() @@ -349,7 +349,7 @@ def test_ideal_channel_ocdm_ls_zf(self) -> None: def test_ideal_channel_ofdm(self) -> None: """Verify a valid SISO link over an ideal channel OFDM modulation""" - channel = IdealChannel(self.tx_device, self.rx_device) + channel = IdealChannel() self.__configure_ofdm_waveform(channel) self.__propagate(channel) self.__assert_link() @@ -358,7 +358,7 @@ def test_ideal_channel_ofdm_ls_zf(self) -> None: """Verify a valid SISO link over an ideal channel with OFDM modulation, least-squares channel estimation and zero-forcing equalization""" - channel = IdealChannel(self.tx_device, self.rx_device) + channel = IdealChannel() waveform = self.__configure_ofdm_waveform(channel) waveform.channel_estimation = OrthogonalLeastSquaresChannelEstimation() waveform.channel_equalization = OrthogonalZeroForcingChannelEqualization() @@ -370,7 +370,7 @@ def test_ideal_channel_ofdm_schmidl_cox(self) -> None: """Verify a valid link over an AWGN channel with OFDM modluation, Schmidl-Cox synchronization, least-squares channel estimation and zero-forcing equalization""" - channel = IdealChannel(self.tx_device, self.rx_device) + channel = IdealChannel() waveform = self.__configure_ofdm_waveform(channel) waveform.pilot_section = SchmidlCoxPilotSection() waveform.synchronization = SchmidlCoxSynchronization() @@ -383,7 +383,7 @@ def test_ideal_channel_ofdm_schmidl_cox(self) -> None: def test_ideal_channel_otfs_ls_zf(self) -> None: """Verify a valid SISO link over an ideal channel with OTFS modulation""" - channel = IdealChannel(self.tx_device, self.rx_device) + channel = IdealChannel() self.__configure_otfs_waveform(channel) self.__propagate(channel) self.__assert_link() diff --git a/tests/integration_tests/test_matched_filter_jcas.py b/tests/integration_tests/test_matched_filter_jcas.py index 392e1d48..be7946fd 100644 --- a/tests/integration_tests/test_matched_filter_jcas.py +++ b/tests/integration_tests/test_matched_filter_jcas.py @@ -32,7 +32,7 @@ def setUp(self) -> None: self.target_range = 5 self.max_range = 10 - self.channel = SingleTargetRadarChannel(target_range=self.target_range, alpha_device=self.device, beta_device=self.device, radar_cross_section=1.0) + self.channel = SingleTargetRadarChannel(target_range=self.target_range, radar_cross_section=1.0) self.oversampling_factor = 16 @@ -52,7 +52,7 @@ def test_jcas(self) -> None: transmission = self.device.transmit() # Propagate signal over the radar channel - propagation = self.channel.propagate(transmission) + propagation = self.channel.propagate(transmission, self.device, self.device) # Receive signal self.device.receive(propagation) diff --git a/tests/integration_tests/test_mimo.py b/tests/integration_tests/test_mimo.py index 247d9fab..2fb05c35 100644 --- a/tests/integration_tests/test_mimo.py +++ b/tests/integration_tests/test_mimo.py @@ -78,8 +78,6 @@ def setUp(self) -> None: antennas=SimulatedUniformArray(SimulatedIdealAntenna(), 0.5 * self.wavelength, [3, 3]), ) self.channel = UrbanMacrocells( - alpha_device=self.tx_device, - beta_device=self.rx_device, delay_normalization=DelayNormalization.ZERO, expected_state=O2IState.LOS, seed=42, diff --git a/tests/integration_tests/test_polarization.py b/tests/integration_tests/test_polarization.py index ad197674..e637c87d 100644 --- a/tests/integration_tests/test_polarization.py +++ b/tests/integration_tests/test_polarization.py @@ -45,7 +45,7 @@ def setUp(self) -> None: self.device_alpha = scenario.new_device(carrier_frequency=1e9, antennas=SimulatedUniformArray(HorizontallyPolarizedAntenna, 1.0, [1, 1, 1])) self.device_beta = scenario.new_device(carrier_frequency=1e9, antennas=SimulatedUniformArray(HorizontallyPolarizedAntenna, 1.0, [1, 1, 1])) - self.channel = SpatialDelayChannel(model_propagation_loss=False, alpha_device=self.device_alpha, beta_device=self.device_beta, seed=42) + self.channel = SpatialDelayChannel(model_propagation_loss=False, seed=42) scenario.set_channel(self.device_beta, self.device_alpha, self.channel) self.orientation_candidates = np.pi * np.array([[0.0, 0.0, 0.0], [0.5, 0.0, 0.0], [-0.5, 0.0, 0.0], [1, 0.0, 0.0], [-1, 0.0, 0.0], [0.0, 0.5, 0.0], [0.0, -0.5, 0.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, 0.5], [0.0, 0.0, -0.5], [0.0, 0.0, 1.0], [0.0, 0.0, -1.0]], dtype=float) @@ -63,7 +63,7 @@ def test_translation(self) -> None: powers = np.empty(position_candidates.shape[0], dtype=float) for p, position in enumerate(position_candidates): self.device_beta.trajectory = StaticTrajectory(Transformation.From_Translation(position)) - propagation = self.channel.propagate(self.test_signal) + propagation = self.channel.propagate(self.test_signal, self.device_alpha, self.device_beta) powers[p] = propagation.power @@ -73,7 +73,7 @@ def __assert_rotation_power(self, beta_translation: np.ndarray, expected_powers: powers = np.empty(self.orientation_candidates.shape[0], dtype=float) for o, orientation in enumerate(self.orientation_candidates): self.device_beta.trajectory = StaticTrajectory(Transformation.From_RPY(orientation, beta_translation)) - propagation = self.channel.propagate(self.test_signal) + propagation = self.channel.propagate(self.test_signal, self.device_alpha, self.device_beta) powers[o] = propagation.power diff --git a/tests/unit_tests/channel/test_cdl.py b/tests/unit_tests/channel/test_cdl.py index 888f59e5..986feabe 100644 --- a/tests/unit_tests/channel/test_cdl.py +++ b/tests/unit_tests/channel/test_cdl.py @@ -238,8 +238,6 @@ def _large_scale_states(self) -> list: def test_init(self) -> None: """Initialization parameters should be properly stored as class attributes""" - self.assertIs(self.alpha_device, self.model.alpha_device) - self.assertIs(self.beta_device, self.model.beta_device) self.assertEqual(self.gain, self.model.gain) self.assertEqual(self.delay_normalization, self.model.delay_normalization) self.assertEqual(self.oxygen_absorption, self.model.oxygen_absorption) @@ -360,7 +358,7 @@ def test_hdf_serialization(self) -> None: class TestIndoorFactory(TestClusterDelayLine): def _init_model(self) -> IndoorFactory: - return IndoorFactory(2000, 3000, FactoryType.HH, 1.0, self.alpha_device, self.beta_device, self.gain, delay_normalization=self.delay_normalization, oxygen_absorption=self.oxygen_absorption) + return IndoorFactory(2000, 3000, FactoryType.HH, 1.0, self.gain, delay_normalization=self.delay_normalization, oxygen_absorption=self.oxygen_absorption) def _large_scale_states(self) -> list: return list(LOSState) @@ -442,7 +440,7 @@ def test_hdf_serialization_expected_state(self) -> None: class TestIndoorOffice(TestClusterDelayLine): def _init_model(self) -> IndoorOffice: - return IndoorOffice(self.alpha_device, self.beta_device, self.gain, self.delay_normalization, self.oxygen_absorption) + return IndoorOffice(gain=self.gain, delay_normalization=self.delay_normalization, oxygen_absorption=self.oxygen_absorption) def _large_scale_states(self) -> list: return list(LOSState) @@ -484,7 +482,7 @@ def test_hdf_serialization_expected_state(self) -> None: class TestRuralMacrocells(TestClusterDelayLine): def _init_model(self) -> RuralMacrocells: - return RuralMacrocells(self.alpha_device, self.beta_device, self.gain, self.delay_normalization, self.oxygen_absorption) + return RuralMacrocells(self.gain, self.delay_normalization, self.oxygen_absorption) def _large_scale_states(self) -> list: return list(O2IState) @@ -511,7 +509,7 @@ def test_hdf_serialization_expected_state(self) -> None: class TestUrbanMacrocells(TestClusterDelayLine): def _init_model(self) -> UrbanMacrocells: - return UrbanMacrocells(self.alpha_device, self.beta_device, self.gain, self.delay_normalization, self.oxygen_absorption) + return UrbanMacrocells(self.gain, self.delay_normalization, self.oxygen_absorption) def _large_scale_states(self) -> list: return list(O2IState) @@ -538,7 +536,7 @@ def test_hdf_serialization_expected_state(self) -> None: class TestUrbanMicrocells(TestClusterDelayLine): def _init_model(self) -> UrbanMicrocells: - return UrbanMicrocells(self.alpha_device, self.beta_device, self.gain, self.delay_normalization, self.oxygen_absorption) + return UrbanMicrocells(self.gain, self.delay_normalization, self.oxygen_absorption) def _large_scale_states(self) -> list: return list(O2IState) @@ -574,7 +572,7 @@ def setUp(self) -> None: self.bandwidth = 1e8 self.gain = 0.98 - self.model = CDL(CDLType.E, 1e-8, 0.123, 29, alpha_device=self.alpha_device, beta_device=self.beta_device, gain=self.gain) + self.model = CDL(CDLType.E, 1e-8, 0.123, 29, gain=self.gain) def test_init(self) -> None: @@ -584,8 +582,6 @@ def test_init(self) -> None: self.assertEqual(1e-8, self.model.rms_delay) self.assertEqual(0.123, self.model.rayleigh_factor) self.assertEqual(29, self.model.decorrelation_distance) - self.assertIs(self.alpha_device, self.model.alpha_device) - self.assertIs(self.beta_device, self.model.beta_device) def test_rms_delay_setget(self) -> None: """RMS delay getter should return setter argument""" @@ -627,7 +623,7 @@ def test_realize(self) -> None: """Test a random realization""" for type in CDLType: - model = CDL(type, 1e-8, 0.123, 29, alpha_device=self.alpha_device, beta_device=self.beta_device, gain=self.gain) + model = CDL(type, 1e-8, 0.123, 29, gain=self.gain) realization = model.realize() sample = realization.sample(self.alpha_device, self.beta_device, self.carrier_frequency, self.bandwidth) diff --git a/tests/unit_tests/channel/test_channel.py b/tests/unit_tests/channel/test_channel.py index a8034ca1..ba986a78 100644 --- a/tests/unit_tests/channel/test_channel.py +++ b/tests/unit_tests/channel/test_channel.py @@ -220,21 +220,7 @@ def setUp(self) -> None: self.beta_device = SimulatedDevice() self.gain = 0.8 - self.channel = ChannelMock(self.alpha_device, self.beta_device, 0.8) - - def test_devices_init_validation(self) -> None: - """Specifying transmitter / receiver and devices is forbidden""" - - with self.assertRaises(ValueError): - ChannelMock(self.alpha_device, self.beta_device, devices=(Mock(), Mock())) - - def test_devices_init(self) -> None: - """Specifiying devices insteand of transmitter / receiver should properly initialize channel""" - - self.channel = ChannelMock(devices=(self.alpha_device, self.beta_device)) - - self.assertIs(self.alpha_device, self.channel.alpha_device) - self.assertIs(self.beta_device, self.channel.beta_device) + self.channel = ChannelMock(0.8) def test_alpha_device_setget(self) -> None: """Alpha device property getter should return setter argument""" @@ -305,7 +291,7 @@ def test_propagate_validation(self) -> None: signal = Signal.Create(self.rng.random((3, 10)), 1.0) with self.assertRaises(ValueError): - self.channel.propagate(signal) + self.channel.propagate(signal, self.alpha_device, self.beta_device) def test_add_sample_hook(self) -> None: """Adding a sample hook should properly store it""" diff --git a/tests/unit_tests/channel/test_delay.py b/tests/unit_tests/channel/test_delay.py index c00d9fd5..d5d9cc36 100644 --- a/tests/unit_tests/channel/test_delay.py +++ b/tests/unit_tests/channel/test_delay.py @@ -64,13 +64,7 @@ def setUp(self) -> None: self.alpha_device = SimulatedDevice(sampling_rate=self.sampling_rate, carrier_frequency=self.carrier_frequency, pose=Transformation.From_Translation(np.array([0, 0, 0]))) self.beta_device = SimulatedDevice(sampling_rate=self.sampling_rate, carrier_frequency=self.carrier_frequency, pose=Transformation.From_Translation(np.array([0, 0, 10]))) - self.channel = self._init_channel(alpha_device=self.alpha_device, beta_device=self.beta_device) - - def test_properties(self) -> None: - """Properties should be properly initialized""" - - self.assertIs(self.alpha_device, self.channel.alpha_device) - self.assertIs(self.beta_device, self.channel.beta_device) + self.channel = self._init_channel() def test_realize(self) -> None: """Test channel realization""" @@ -86,7 +80,7 @@ def test_propagate_validation(self) -> None: self.channel.model_propagation_loss = True with self.assertRaises(RuntimeError): - self.channel.propagate(DenseSignal(np.zeros((self.alpha_device.num_antennas, 10)), self.alpha_device.sampling_rate)) + self.channel.propagate(DenseSignal(np.zeros((self.alpha_device.num_antennas, 10)), self.alpha_device.sampling_rate), self.alpha_device, self.beta_device) def test_propagate_state(self) -> None: """Propagation and channel state should match""" @@ -117,9 +111,7 @@ def test_recall_realization(self) -> None: def test_serialization(self) -> None: """Test YAML serialization""" - with patch("hermespy.channel.Channel.alpha_device", new_callable=PropertyMock) as transmitter_mock, patch("hermespy.channel.Channel.beta_device", new_callable=PropertyMock) as receiver_mock, patch("hermespy.channel.Channel.random_mother", new_callable=PropertyMock) as random_mock: - transmitter_mock.return_value = None - receiver_mock.return_value = None + with patch("hermespy.channel.Channel.random_mother", new_callable=PropertyMock) as random_mock: random_mock.return_value = None test_yaml_roundtrip_serialization(self, self.channel) @@ -165,7 +157,7 @@ def test_power_loss(self) -> None: # Assert no power loss (flag disabled) self.channel.model_propagation_loss = False - propagation = self.channel.propagate(power_signal) + propagation = self.channel.propagate(power_signal, self.alpha_device, self.beta_device) self.assertAlmostEqual(initial_energy, np.mean(propagation.energy)) diff --git a/tests/unit_tests/channel/test_fading.py b/tests/unit_tests/channel/test_fading.py index 42625c62..21fb9e45 100644 --- a/tests/unit_tests/channel/test_fading.py +++ b/tests/unit_tests/channel/test_fading.py @@ -4,21 +4,20 @@ import unittest from copy import deepcopy from itertools import product -from unittest.mock import Mock, patch, PropertyMock +from unittest.mock import Mock import numpy as np import numpy.random as rand -import numpy.testing as npt from h5py import File from numpy import exp from numpy.testing import assert_array_almost_equal, assert_array_equal from scipy import stats from scipy.constants import pi -from hermespy.channel import DeviceType, MultipathFadingChannel, AntennaCorrelation, CustomAntennaCorrelation, TDL, Exponential, Cost259, StandardAntennaCorrelation, CorrelationType, Cost259Type, TDLType +from hermespy.channel import MultipathFadingChannel, AntennaCorrelation, CustomAntennaCorrelation, TDL, Exponential, Cost259, StandardAntennaCorrelation, CorrelationType, Cost259Type, TDLType from hermespy.channel.channel import LinkState from hermespy.channel.fading.fading import MultipathFadingSample -from hermespy.core import Signal, FloatingError +from hermespy.core import AntennaMode, Signal, FloatingError from hermespy.simulation import SimulatedDevice, SimulatedIdealAntenna, SimulatedUniformArray from unit_tests.core.test_factory import test_yaml_roundtrip_serialization from unit_tests.utils import SimulationTestContext @@ -69,12 +68,11 @@ class TestCustomAntennaCorrelation(unittest.TestCase): """Test custom antenna correlation model""" def setUp(self) -> None: - self.device = Mock() - self.device.num_antennas = 2 + self.device = SimulatedDevice() + self.device.antennas = SimulatedUniformArray(SimulatedIdealAntenna, 1e-2, (2, 1, 1)) self.covariance = np.identity(2, dtype=complex) self.correlation = CustomAntennaCorrelation(covariance=self.covariance) - self.correlation.device = self.device def test_init(self) -> None: """Initialization parameters should be properly stored as class attributes""" @@ -101,10 +99,10 @@ def test_covariance_set_validation(self) -> None: def test_covariance_get_validation(self) -> None: """Covariance property should raise a RuntimeError if the number of device antennas does not match""" - self.device.num_antennas = 4 + self.device.antennas = SimulatedUniformArray(SimulatedIdealAntenna, 1e-2, (4, 1, 1)) - with self.assertRaises(RuntimeError): - _ = self.correlation.covariance + with self.assertRaises(ValueError): + _ = self.correlation.sample_covariance(self.device.state(0).antennas, AntennaMode.TX) class TestMultipathFadingSample(unittest.TestCase): @@ -198,7 +196,7 @@ def setUp(self) -> None: self.alpha_device = SimulatedDevice(sampling_rate=self.sampling_rate) self.beta_device = SimulatedDevice(sampling_rate=self.sampling_rate) - self.channel_params = {"gain": self.gain, "delays": self.delays, "power_profile": self.power_profile, "rice_factors": self.rice_factors, "alpha_device": self.alpha_device, "beta_device": self.beta_device, "num_sinusoids": self.num_sinusoids, "los_angle": None, "doppler_frequency": self.doppler_frequency, "los_doppler_frequency": self.los_doppler_frequency, "seed": 42} + self.channel_params = {"gain": self.gain, "delays": self.delays, "power_profile": self.power_profile, "rice_factors": self.rice_factors, "num_sinusoids": self.num_sinusoids, "los_angle": None, "doppler_frequency": self.doppler_frequency, "los_doppler_frequency": self.los_doppler_frequency, "seed": 42} self.num_samples = 100 @@ -213,8 +211,6 @@ def test_init(self) -> None: channel = MultipathFadingChannel(**self.channel_params) - self.assertIs(self.alpha_device, channel.alpha_device, "Unexpected transmitter parameter initialization") - self.assertIs(self.beta_device, channel.beta_device, "Unexpected receiver parameter initialization") self.assertEqual(self.gain, channel.gain, "Unexpected gain parameter initialization") self.assertEqual(self.num_sinusoids, channel.num_sinusoids) self.assertEqual(self.doppler_frequency, channel.doppler_frequency) @@ -399,7 +395,7 @@ def test_propagation_siso_no_fading(self) -> None: timestamps = np.arange(self.num_samples) / self.sampling_rate transmission = exp(1j * timestamps * self.transmit_frequency).reshape(1, self.num_samples) - propagation = channel.propagate(Signal.Create(transmission, self.sampling_rate)) + propagation = channel.propagate(Signal.Create(transmission, self.sampling_rate), self.alpha_device, self.beta_device) self.assertEqual(10, propagation.num_samples - self.num_samples, "Propagation impulse response has unexpected length") @@ -423,10 +419,10 @@ def test_propagation_fading(self) -> None: delayed_channel = MultipathFadingChannel(**delayed_params) reference_channel.seed = d - reference_propagation = reference_channel.propagate(transmit_signal) + reference_propagation = reference_channel.propagate(transmit_signal, self.alpha_device, self.beta_device) delayed_channel.seed = d - delayed_propagation = delayed_channel.propagate(transmit_signal) + delayed_propagation = delayed_channel.propagate(transmit_signal, self.alpha_device, self.beta_device) zero_pads = int(self.sampling_rate * float(delay)) assert_array_almost_equal(reference_propagation[:, :], delayed_propagation[:, zero_pads:]) @@ -572,10 +568,10 @@ def test_channel_gain(self) -> None: tx_signal = Signal.Create(tx_samples, self.sampling_rate) channel_no_gain._rng = np.random.default_rng(42) # Reset random number rng - propagation_no_gain = channel_no_gain.propagate(tx_signal) + propagation_no_gain = channel_no_gain.propagate(tx_signal, self.alpha_device, self.beta_device) channel_gain._rng = np.random.default_rng(42) # Reset random number rng - propagation_gain = channel_gain.propagate(tx_signal) + propagation_gain = channel_gain.propagate(tx_signal, self.alpha_device, self.beta_device) assert_array_almost_equal(propagation_no_gain[:, :] * gain**0.5, propagation_gain[:, :]) @@ -587,9 +583,7 @@ def test_antenna_correlation(self) -> None: uncorrelated_channel = MultipathFadingChannel(**self.channel_params) - self.channel_params["alpha_correlation"] = MockAntennaCorrelation() - self.channel_params["beta_correlation"] = MockAntennaCorrelation() - + self.channel_params["antenna_correlation"] = MockAntennaCorrelation() correlated_channel = MultipathFadingChannel(**self.channel_params) uncorrelated_realization = uncorrelated_channel.realize() @@ -613,7 +607,6 @@ def test_alpha_correlation_setget(self) -> None: channel.alpha_correlation = expected_correlation self.assertIs(expected_correlation, channel.alpha_correlation) - self.assertIs(self.alpha_device, channel.alpha_correlation.device) def test_beta_correlation_setget(self) -> None: """Beta correlation property getter should return setter argument""" @@ -624,31 +617,6 @@ def test_beta_correlation_setget(self) -> None: channel.beta_correlation = expected_correlation self.assertIs(expected_correlation, channel.beta_correlation) - self.assertIs(self.beta_device, channel.beta_correlation.device) - - def test_alpha_device_setget(self) -> None: - """Setting the alpha_device property should update the correlation configuration""" - - channel = MultipathFadingChannel(**self.channel_params) - channel.alpha_correlation = Mock() - expected_device = Mock() - - channel.alpha_device = expected_device - - self.assertIs(expected_device, channel.alpha_device) - self.assertIs(expected_device, channel.alpha_correlation.device) - - def test_beta_device_setget(self) -> None: - """Setting the beta device property should update the correlation configuration""" - - channel = MultipathFadingChannel(**self.channel_params) - channel.beta_correlation = Mock() - expected_device = Mock() - - channel.beta_device = expected_device - - self.assertIs(expected_device, channel.beta_device) - self.assertIs(expected_device, channel.beta_correlation.device) def test_realization_reciprocal_sample(self) -> None: """Test reciprocal channel realization""" @@ -680,27 +648,18 @@ def test_recall_realization(self) -> None: def test_serialization(self) -> None: """Test YAML serialization""" - with patch("hermespy.channel.fading.fading.MultipathFadingChannel.alpha_device", new=PropertyMock) as transmitter, patch("hermespy.channel.fading.fading.MultipathFadingChannel.beta_device", new=PropertyMock) as receiver: - transmitter.return_value = None - receiver.return_value = None - - test_yaml_roundtrip_serialization(self, MultipathFadingChannel(**self.channel_params), {"num_outputs", "num_inputs"}) + test_yaml_roundtrip_serialization(self, MultipathFadingChannel(**self.channel_params), {"num_outputs", "num_inputs"}) class TestStandardAntennaCorrelation(unittest.TestCase): """Test standard antenna correlation models""" def setUp(self) -> None: - self.device = Mock() + self.device = SimulatedDevice() self.num_antennas = [1, 2, 4] - self.correlation = StandardAntennaCorrelation(0, CorrelationType.LOW, device=self.device) + self.correlation = StandardAntennaCorrelation(CorrelationType.LOW) - def test_device_type_setget(self) -> None: - """Device type property getter should return setter argument""" - - self.correlation.device_type = DeviceType.BASE_STATION - self.assertIs(DeviceType.BASE_STATION, self.correlation.device_type) def test_correlation_setget(self) -> None: """Correlation type property getter should return setter argument""" @@ -711,15 +670,14 @@ def test_correlation_setget(self) -> None: self.correlation.correlation = CorrelationType.MEDIUM self.assertIs(CorrelationType.MEDIUM, self.correlation.correlation) - def test_covariance(self) -> None: + def test_sample_covariance(self) -> None: """Test covariance matrix generation""" - for device_type, correlation_type, num_antennas in product(DeviceType, CorrelationType, self.num_antennas): - self.device.num_antennas = num_antennas - self.correlation.device_type = device_type + for correlation_type, num_antennas in product(CorrelationType, self.num_antennas): + self.device.antennas = SimulatedUniformArray(SimulatedIdealAntenna, 1e-2, (num_antennas, 1, 1)) self.correlation.correlation = correlation_type - covariance = self.correlation.covariance + covariance = self.correlation.sample_covariance(self.device, AntennaMode.TX) self.assertCountEqual([num_antennas, num_antennas], covariance.shape) self.assertTrue(np.allclose(covariance, covariance.T.conj())) # Hermitian check @@ -728,12 +686,8 @@ def test_covariance_validation(self) -> None: """Covariance matrix generation should exceptions on invalid parameters""" with self.assertRaises(RuntimeError): - self.device.num_antennas = 5 - _ = self.correlation.covariance - - with self.assertRaises(FloatingError): - self.correlation.device = None - _ = self.correlation.covariance + self.device.antennas = SimulatedUniformArray(SimulatedIdealAntenna, 1e-2, (5, 1, 1)) + _ = self.correlation.sample_covariance(self.device, AntennaMode.TX) class TestCost259(unittest.TestCase): @@ -753,10 +707,8 @@ def test_init(self) -> None: """Test the template initializations.""" for model_type in Cost259Type: - channel = Cost259(model_type=model_type, alpha_device=self.alpha_device, beta_device=self.beta_device) - - self.assertIs(self.alpha_device, channel.alpha_device) - self.assertIs(self.beta_device, channel.beta_device) + channel = Cost259(model_type=model_type) + self.assertIs(model_type, channel.model_type) def test_init_validation(self) -> None: """Template initialization should raise ValueError on invalid model type.""" @@ -777,11 +729,7 @@ def test_model_type(self) -> None: def test_serialization(self) -> None: """Test YAML serialization""" - with patch("hermespy.channel.fading.cost259.Cost259.alpha_device", new=PropertyMock) as alpha_device, patch("hermespy.channel.fading.cost259.Cost259.beta_device", new=PropertyMock) as beta_device: - alpha_device.return_value = self.alpha_device - beta_device.return_value = self.beta_device - - test_yaml_roundtrip_serialization(self, Cost259(Cost259Type.HILLY), {"num_outputs", "num_inputs"}) + test_yaml_roundtrip_serialization(self, Cost259(Cost259Type.HILLY), {"num_outputs", "num_inputs"}) class Test5GTDL(unittest.TestCase): @@ -802,10 +750,8 @@ def test_init(self) -> None: """Test the template initializations.""" for model_type in TDLType: - channel = TDL(model_type=model_type, alpha_device=self.alpha_device, beta_device=self.beta_device) - - self.assertIs(self.alpha_device, channel.alpha_device) - self.assertIs(self.beta_device, channel.beta_device) + channel = TDL(model_type=model_type) + self.assertIs(model_type, channel.model_type) def test_init_validation(self) -> None: """Template initialization should raise ValueError on invalid model type.""" @@ -832,13 +778,8 @@ def test_model_type(self) -> None: def test_serialization(self) -> None: """Test YAML serialization""" - channel = TDL(model_type=TDLType.B, alpha_device=self.alpha_device, beta_device=self.beta_device) - - with patch("hermespy.channel.fading.tdl.TDL.alpha_device", new=PropertyMock) as alpha_device, patch("hermespy.channel.fading.tdl.TDL.beta_device", new=PropertyMock) as beta_device: - alpha_device.return_value = self.alpha_device - beta_device.return_value = self.beta_device - - test_yaml_roundtrip_serialization(self, channel, {"num_outputs", "num_inputs"}) + channel = TDL(model_type=TDLType.B) + test_yaml_roundtrip_serialization(self, channel, {"num_outputs", "num_inputs"}) class TestExponential(unittest.TestCase): diff --git a/tests/unit_tests/channel/test_ideal.py b/tests/unit_tests/channel/test_ideal.py index 79e067e0..569b9c64 100644 --- a/tests/unit_tests/channel/test_ideal.py +++ b/tests/unit_tests/channel/test_ideal.py @@ -37,7 +37,7 @@ def setUp(self) -> None: self.sampling_rate = 1e3 self.alpha_device = SimulatedDevice(sampling_rate=self.sampling_rate) self.beta_device = SimulatedDevice(sampling_rate=self.sampling_rate) - self.channel = IdealChannel(self.alpha_device, self.beta_device, self.gain) + self.channel = IdealChannel(self.gain) self.channel.random_mother = self.random_node # Number of discrete-time samples generated for baseband_signal propagation testing @@ -52,26 +52,8 @@ def setUp(self) -> None: def test_init(self) -> None: """Test that the init properly stores all parameters""" - self.assertIs(self.alpha_device, self.channel.alpha_device, "Unexpected transmitter parameter initialization") - self.assertIs(self.beta_device, self.channel.beta_device, "Unexpected receiver parameter initialization") self.assertEqual(self.gain, self.channel.gain, "Unexpected gain parameter initialization") - def test_transmitter_setget(self) -> None: - """Transmitter property getter must return setter parameter""" - - channel = IdealChannel() - channel.alpha_device = self.alpha_device - - self.assertIs(self.alpha_device, channel.alpha_device, "Transmitter property set/get produced unexpected result") - - def test_receiver_setget(self) -> None: - """Receiver property getter must return setter parameter""" - - channel = IdealChannel() - channel.beta_device = self.beta_device - - self.assertIs(self.beta_device, channel.beta_device, "Receiver property set/get produced unexpected result") - def test_propagate_SISO(self) -> None: """Test valid propagation for the Single-Input-Single-Output channel""" @@ -248,9 +230,7 @@ def test_recall_realization(self) -> None: def test_serialization(self) -> None: """Test YAML serialization""" - with patch("hermespy.channel.Channel.alpha_device", new_callable=PropertyMock) as transmitter_mock, patch("hermespy.channel.Channel.beta_device", new_callable=PropertyMock) as receiver_mock, patch("hermespy.channel.Channel.random_mother", new_callable=PropertyMock) as random_mock: - transmitter_mock.return_value = None - receiver_mock.return_value = None + with patch("hermespy.channel.Channel.random_mother", new_callable=PropertyMock) as random_mock: random_mock.return_value = None test_yaml_roundtrip_serialization(self, self.channel) diff --git a/tests/unit_tests/channel/test_quadriga.py b/tests/unit_tests/channel/test_quadriga.py index 2c6b6936..51e3a1df 100644 --- a/tests/unit_tests/channel/test_quadriga.py +++ b/tests/unit_tests/channel/test_quadriga.py @@ -235,7 +235,7 @@ def test_run_quadriga(self) -> None: transmitter = SimulatedDevice(pose=Transformation.From_Translation(np.array([1, 2, 3]))) receiver = SimulatedDevice(pose=Transformation.From_Translation(np.array([4, 5, 6]))) - channel = QuadrigaChannel(interface=self.interface, alpha_device=transmitter, beta_device=receiver) + channel = QuadrigaChannel(interface=self.interface) realization = channel.realize() self.assertIsInstance(realization, QuadrigaChannelRealization) @@ -279,7 +279,7 @@ def test_run_quadriga(self) -> None: transmitter = SimulatedDevice(pose=Transformation.From_Translation(np.array([1, 2, 3]))) receiver = SimulatedDevice(pose=Transformation.From_Translation(np.array([4, 5, 6]))) - channel = QuadrigaChannel(interface=self.interface, alpha_device=transmitter, beta_device=receiver) + channel = QuadrigaChannel(interface=self.interface) realization = channel.realize() self.assertIsInstance(realization, QuadrigaChannelRealization) diff --git a/tests/unit_tests/channel/test_radar_channel.py b/tests/unit_tests/channel/test_radar_channel.py index c4cf054d..ee58fac1 100644 --- a/tests/unit_tests/channel/test_radar_channel.py +++ b/tests/unit_tests/channel/test_radar_channel.py @@ -284,12 +284,6 @@ def setUp(self) -> None: self.channel = self._init_channel() self.channel.random_mother = self.random_root - def test_properties(self) -> None: - """Class properties should return initialization arguments""" - - self.assertIs(self.alpha_device, self.channel.alpha_device) - self.assertIs(self.beta_device, self.channel.beta_device) - def test_attenuate_setget(self) -> None: """Attenuate property getter should return setter argument""" @@ -299,9 +293,7 @@ def test_attenuate_setget(self) -> None: def test_yaml_serialization(self) -> None: """Test YAML serialization""" - with patch("hermespy.channel.Channel.alpha_device", new_callable=PropertyMock) as alpha_mock, patch("hermespy.channel.Channel.beta_device", new_callable=PropertyMock) as beta_mock, patch("hermespy.channel.Channel.random_mother", new_callable=PropertyMock) as random_mock: - alpha_mock.return_value = None - beta_mock.return_value = None + with patch("hermespy.channel.Channel.random_mother", new_callable=PropertyMock) as random_mock: random_mock.return_value = None test_yaml_roundtrip_serialization(self, self.channel) @@ -337,7 +329,7 @@ def test_propagate_state(self) -> None: class TestSingleTargetRadarChannel(_TestRadarChannelBase[SingleTargetRadarChannel]): def _init_channel(self) -> SingleTargetRadarChannel: - return SingleTargetRadarChannel(self.range, self.radar_cross_section, alpha_device=self.alpha_device, beta_device=self.beta_device) + return SingleTargetRadarChannel(self.range, self.radar_cross_section) def setUp(self) -> None: self.range = 100.0 @@ -503,7 +495,7 @@ def test_propagation_delay_integer_num_samples(self) -> None: self.channel.target_range = expected_range - propagation = self.channel.propagate(Signal.Create(input_signal, self.sampling_rate, self.carrier_frequency)) + propagation = self.channel.propagate(Signal.Create(input_signal, self.sampling_rate, self.carrier_frequency), self.alpha_device, self.beta_device) expected_output = np.hstack((np.zeros((1, delay_in_samples)), input_signal)) * expected_amplitude assert_array_almost_equal(abs(expected_output), np.abs(propagation[:, :expected_output.size])) @@ -524,7 +516,7 @@ def test_propagation_delay_noninteger_num_samples(self) -> None: self.channel.target_range = expected_range - propagation = self.channel.propagate(Signal.Create(input_signal, self.sampling_rate, self.carrier_frequency)) + propagation = self.channel.propagate(Signal.Create(input_signal, self.sampling_rate, self.carrier_frequency), self.alpha_device, self.beta_device) straddle_loss = np.sinc(0.5) peaks = np.abs(propagation[:, delay_in_samples : input_signal.size : samples_per_symbol]) @@ -560,7 +552,7 @@ def test_propagation_delay_doppler(self) -> None: self.channel.target_range = expected_range self.channel.target_velocity = velocity - propagation = self.channel.propagate(Signal.Create(input_signal, self.sampling_rate, self.carrier_frequency)) + propagation = self.channel.propagate(Signal.Create(input_signal, self.sampling_rate, self.carrier_frequency), self.alpha_device, self.beta_device) assert_array_almost_equal(np.abs(propagation[:, :][0, peaks_in_samples].flatten()), expected_straddle_amplitude) @@ -593,7 +585,7 @@ def test_doppler_shift(self) -> None: time = np.arange(num_samples) / self.sampling_rate input_signal = np.sin(2 * np.pi * sinewave_frequency * time) - propagation = self.channel.propagate(Signal.Create(input_signal[np.newaxis, :], self.sampling_rate, self.carrier_frequency)) + propagation = self.channel.propagate(Signal.Create(input_signal[np.newaxis, :], self.sampling_rate, self.carrier_frequency), self.alpha_device, self.beta_device) input_freq = np.fft.fft(input_signal) output_freq = np.fft.fft(propagation[0, :].flatten()[-num_samples:]) @@ -614,7 +606,7 @@ def test_no_echo(self) -> None: input_signal = self._create_impulse_train(samples_per_symbol, num_pulses) self.channel.target_exists = False - propagation = self.channel.propagate(Signal.Create(input_signal, self.sampling_rate)) + propagation = self.channel.propagate(Signal.Create(input_signal, self.sampling_rate), self.alpha_device, self.beta_device) assert_array_almost_equal(propagation[:, :], np.zeros_like(input_signal)) @@ -625,7 +617,7 @@ def test_no_attenuation(self) -> None: self.channel.target_range = 10.0 input_signal = Signal.Create(self._create_impulse_train(500, 15), self.sampling_rate) - propagation = self.channel.propagate(input_signal) + propagation = self.channel.propagate(input_signal, self.alpha_device, self.beta_device) assert_array_almost_equal(input_signal.energy, propagation.energy, 1) @@ -634,7 +626,7 @@ class TestMultiTargetRadarChannel(_TestRadarChannelBase[MultiTargetRadarChannel] """Test the multi target radar channel class""" def _init_channel(self) -> MultiTargetRadarChannel: - return MultiTargetRadarChannel(alpha_device=self.alpha_device, beta_device=self.beta_device) + return MultiTargetRadarChannel() def setUp(self) -> None: super().setUp() diff --git a/tests/unit_tests/radar/test_evaluators.py b/tests/unit_tests/radar/test_evaluators.py index 459bfdcc..b9b7019c 100644 --- a/tests/unit_tests/radar/test_evaluators.py +++ b/tests/unit_tests/radar/test_evaluators.py @@ -52,49 +52,34 @@ def setUp(self) -> None: radar.device = device channel = SingleTargetRadarChannel(1.0, 1.0) - channel.alpha_device = device - channel.beta_device = device - self.evaluator = RadarEvaluatorMock(radar, channel) + self.evaluator = RadarEvaluatorMock(radar, radar, channel) def test_init_validation(self) -> None: """Initialization parameters should be properly validated""" channel = SingleTargetRadarChannel(1.0, 1.0) - radar = Radar() + transmitting_radar = Radar() + receiving_radar = Radar() with self.assertRaises(ValueError): - RadarEvaluatorMock(radar, channel) + RadarEvaluatorMock(transmitting_radar, receiving_radar, channel) - channel.alpha_device = SimulatedDevice() - channel.beta_device = SimulatedDevice() + transmitting_radar.device = Mock() with self.assertRaises(ValueError): - RadarEvaluatorMock(radar, channel) + RadarEvaluatorMock(transmitting_radar, receiving_radar, channel) def test_device_inference(self) -> None: - alpha_device = SimulatedDevice() - beta_device = SimulatedDevice() - - channel = SingleTargetRadarChannel(1.0, 1.0, alpha_device=alpha_device, beta_device=beta_device) - - radar = Radar() - radar.device = beta_device - evaluator = RadarEvaluatorMock(radar, channel) - self.assertIs(beta_device, evaluator.receiving_device) - self.assertIs(alpha_device, evaluator.transmitting_device) - - def test_device_inference_validation(self) -> None: - alpha_device = SimulatedDevice() - beta_device = SimulatedDevice() - - channel = SingleTargetRadarChannel(1.0, 1.0, alpha_device=alpha_device, beta_device=beta_device) + + expected_device = SimulatedDevice() + channel = SingleTargetRadarChannel(1.0, 1.0) radar = Radar() - radar.device = SimulatedDevice() - - with self.assertRaises(ValueError): - RadarEvaluatorMock(radar, channel) + radar.device = expected_device + evaluator = RadarEvaluatorMock(radar, radar, channel) + self.assertIs(expected_device, evaluator.receiving_device) + self.assertIs(expected_device, evaluator.transmitting_device) def test_generate_result(self) -> None: """Result generation should be properly handled""" @@ -240,21 +225,13 @@ def setUp(self) -> None: self.evaluator = ReceiverOperatingCharacteristic(self.radar, self.channel) - def test_init_validation(self) -> None: - """Initialization parameters should be properly validated""" - - channel = SingleTargetRadarChannel(1.0, 1.0) - - with self.assertRaises(ValueError): - ReceiverOperatingCharacteristic(self.radar, channel) - def _generate_evaluation(self) -> RocEvaluation: """Helper class to generate an evaluation. Returns: The evaluation. """ - propagation = self.channel.propagate(self.device.transmit()) + propagation = self.channel.propagate(self.device.transmit(), self.device, self.device) self.device.receive(propagation) return self.evaluator.evaluate() @@ -268,7 +245,7 @@ def test_evaluate_validation(self) -> None: evaluator.evaluate() # Prepare channel states - propagation = self.channel.propagate(self.device.transmit()) + propagation = self.channel.propagate(self.device.transmit(), self.device, self.device) self.device.receive(propagation) with patch("hermespy.simulation.simulated_device.SimulatedDevice.output", new_callable=PropertyMock) as output_mock: @@ -391,7 +368,7 @@ def test_from_scenarios(self) -> None: mock_h0_scenario.num_drops = 1 mock_h1_scenario.num_drops = 1 - forwards_propagation = self.channel.propagate(self.device.transmit()) + forwards_propagation = self.channel.propagate(self.device.transmit(), self.device, self.device) self.device.process_input(forwards_propagation) reception = self.radar.receive() @@ -492,7 +469,7 @@ def setUp(self) -> None: self.radar.device = self.device self.radar.detector = ThresholdDetector(0.1) - self.evaluator = RootMeanSquareError(self.radar, self.channel) + self.evaluator = RootMeanSquareError(self.radar, self.radar, self.channel) def test_properties(self) -> None: """Properties should be properly handled""" @@ -524,7 +501,7 @@ def test_evaluate(self) -> None: """Evaluate routine should generate the corret evaluation""" # Prepare the scenario state for evaluation - propagation = self.channel.propagate(self.device.transmit()) + propagation = self.channel.propagate(self.device.transmit(), self.device, self.device) self.device.receive(propagation) evaluation = self.evaluator.evaluate() @@ -533,7 +510,7 @@ def test_evaluate(self) -> None: def test_generate_result(self) -> None: """Result generation should be properly handled""" - propagation = self.channel.propagate(self.device.transmit()) + propagation = self.channel.propagate(self.device.transmit(), self.device, self.device) self.device.receive(propagation) artifact = self.evaluator.evaluate().artifact() diff --git a/tests/unit_tests/simulation/modem/test_channel_estimation.py b/tests/unit_tests/simulation/modem/test_channel_estimation.py index 53990fbd..407da4b5 100644 --- a/tests/unit_tests/simulation/modem/test_channel_estimation.py +++ b/tests/unit_tests/simulation/modem/test_channel_estimation.py @@ -84,7 +84,7 @@ def setUp(self) -> None: self.alpha_device = SimulatedDevice(carrier_frequency=self.carrier_frequency) self.beta_device = SimulatedDevice(carrier_frequency=self.carrier_frequency) - self.channel = Cost259(Cost259Type.URBAN, self.alpha_device, self.beta_device) + self.channel = Cost259(Cost259Type.URBAN) self.channel.seed = 42 self.link = SimplexLink(self.alpha_device, self.beta_device) diff --git a/tests/unit_tests/simulation/test_drop.py b/tests/unit_tests/simulation/test_drop.py index 2eeda635..81ad61cd 100644 --- a/tests/unit_tests/simulation/test_drop.py +++ b/tests/unit_tests/simulation/test_drop.py @@ -30,7 +30,7 @@ def setUp(self) -> None: def test_channel_realizations(self) -> None: """Channel realizations property should return the correct realizations""" - self.assertEqual(3, len(self.drop.channel_realizations)) + self.assertEqual(1, len(self.drop.channel_realizations)) def test_hdf_serialization_validation(self) -> None: """HDF serialization should raise ValueError on invalid scenario arguments""" diff --git a/tests/unit_tests/simulation/test_scenario.py b/tests/unit_tests/simulation/test_scenario.py index 832ae297..d76d37e4 100644 --- a/tests/unit_tests/simulation/test_scenario.py +++ b/tests/unit_tests/simulation/test_scenario.py @@ -47,17 +47,6 @@ def test_add_device(self) -> None: self.assertTrue(self.scenario.device_registered(device)) self.assertIs(self.scenario, device.scenario) - def test_channels_symmetry(self) -> None: - """Channel matrix should be symmetric""" - - num_added_devices = 3 - for _ in range(num_added_devices): - self.scenario.add_device(Mock()) - - for m in range(self.scenario.num_devices): - for n in range(self.scenario.num_devices - m): - self.assertIs(self.scenario.channels[m, n], self.scenario.channels[n, m]) - def test_channel_validation(self) -> None: """Querying a channel instance should raise ValueErrors for invalid devices""" @@ -67,46 +56,6 @@ def test_channel_validation(self) -> None: with self.assertRaises(ValueError): _ = self.scenario.channel(Mock(), self.device_beta) - def test_channel(self) -> None: - """Querying a channel instance should return the correct channel""" - - channel = self.scenario.channel(self.device_alpha, self.device_beta) - self.assertIs(self.scenario.channels[0, 1], channel) - - def test_departing_channels_validation(self) -> None: - """Departing channels should raise a ValueError for invalid devices""" - - with self.assertRaises(ValueError): - _ = self.scenario.departing_channels(Mock()) - - def test_departing_channels(self) -> None: - """Departing channels should contain the correct channel slice""" - - device = Mock() - self.scenario.add_device(device) - self.scenario.channels[0, 2].gain = 0.0 - - departing_channels = self.scenario.departing_channels(device, active_only=True) - expected_departing_channels = self.scenario.channels[1:, 2] - self.assertCountEqual(expected_departing_channels, departing_channels) - - def test_arriving_channels_validation(self) -> None: - """Arriving channels should raise a ValueError for invalid devices""" - - with self.assertRaises(ValueError): - _ = self.scenario.arriving_channels(Mock()) - - def test_arriving_channels(self) -> None: - """Arriving channels should contain the correct channel slice""" - - device = Mock() - self.scenario.add_device(device) - self.scenario.channels[2, 0].gain = 0.0 - - arriving_channels = self.scenario.arriving_channels(device, active_only=True) - expected_arriving_channels = self.scenario.channels[2, 1:] - self.assertCountEqual(expected_arriving_channels, arriving_channels) - def test_set_channel_validation(self) -> None: """Setting a channel should raise a ValueError for invalid device indices""" @@ -122,12 +71,12 @@ def test_set_channel(self): device_alpha = self.scenario.new_device() device_beta = self.scenario.new_device() - channel = Mock() - self.scenario.set_channel(device_alpha, device_beta, channel) - - self.assertIs(channel, self.scenario.channels[2, 3]) - self.assertIs(channel, self.scenario.channels[3, 2]) - self.assertIs(self.scenario, channel.scenario) + expected_channel = Mock() + self.scenario.set_channel(device_alpha, device_beta, expected_channel) + + self.assertIn(expected_channel, self.scenario.channels) + self.assertIs(expected_channel, self.scenario.channel(device_alpha, device_beta)) + self.assertIs(self.scenario, expected_channel.scenario) def test_noise_level_setget(self) -> None: """Noise level property getter should return setter argument""" diff --git a/tests/unit_tests/simulation/test_simulation.py b/tests/unit_tests/simulation/test_simulation.py index 66f4035a..36318b78 100644 --- a/tests/unit_tests/simulation/test_simulation.py +++ b/tests/unit_tests/simulation/test_simulation.py @@ -11,9 +11,10 @@ import ray from rich.console import Console +from hermespy.channel import IdealChannel from hermespy.core import ConsoleMode, Factory, MonteCarloResult, SignalTransmitter, SignalReceiver, Signal from hermespy.modem import DuplexModem, BitErrorEvaluator, RRCWaveform -from hermespy.simulation import StaticTrigger, NoiseLevel, NoiseModel, N0 +from hermespy.simulation import N0 from hermespy.simulation.simulation import SimulatedDevice, Simulation, SimulationActor, SimulationRunner, SimulationScenario from unit_tests.core.test_factory import test_yaml_roundtrip_serialization @@ -226,49 +227,32 @@ def test_set_channel(self) -> None: expected_channel = Mock() self.simulation.set_channel(self.device, self.device, expected_channel) - self.assertIs(expected_channel, self.simulation.scenario.channels[0, 0]) + self.assertIs(expected_channel, self.simulation.scenario.channel(self.device, self.device)) def test_serialization(self) -> None: """Test YAML serialization""" test_yaml_roundtrip_serialization(self, self.simulation) - def test_serialization_validation(self) -> None: - """Test YAML serialization validation""" - - serialization = """ - ! - Devices: - - ! - - ! - - Channels: - - ! - - ! - """ - - factory = Factory() - - with self.assertRaises(RuntimeError): - _ = factory.from_str(serialization) - def test_serialization_channel_device_inference(self) -> None: """Test YAML serialization with channel device inference""" serialization = """ ! Devices: - - ! + - &device ! Channels: - - ! + - [ *device, *device, ! ] """ factory = Factory() - simulation = factory.from_str(serialization) + simulation: Simulation = factory.from_str(serialization) - self.assertIs(simulation.scenario.devices[0], simulation.scenario.channels[0, 0].alpha_device) - self.assertIs(simulation.scenario.devices[0], simulation.scenario.channels[0, 0].beta_device) + self.assertEqual(1, len(simulation.scenario.devices)) + device = simulation.scenario.devices[0] + channel = simulation.scenario.channel(device, device) + self.assertIsInstance(channel, IdealChannel) def test_serialization_dimension_shorthand(self) -> None: """Test YAML serialization with dimension shorthand"""