-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtester4.1.py
68 lines (44 loc) · 1.9 KB
/
tester4.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# duplicate of 4.0 with different dataset
from datasets import load_dataset
from transformers import AutoTokenizer, DataCollatorWithPadding
raw_datasets = load_dataset("distrib134/poisoned-spam-detection")
checkpoint = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
def tokenize_function(example):
return tokenizer(example["text"], truncation=True, max_length=200)
str2int = {"spam": 1, "not_spam": 0}
def map_label(example):
return {"labels": str2int[example["labels"]]}
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
tokenized_datasets = tokenized_datasets.remove_columns(['text'])
tokenized_datasets = tokenized_datasets.rename_column(original_column_name='label', new_column_name='labels')
tokenized_datasets = tokenized_datasets.map(map_label)
# print(tokenized_datasets['train'])
# print(tokenized_datasets['train'])
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
from transformers import TrainingArguments
from transformers import AutoModelForSequenceClassification
import numpy as np
import evaluate
import torch
from transformers import Trainer
training_args = TrainingArguments("spam-detecter-poisoned", evaluation_strategy="epoch", push_to_hub=True)
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=20)
device = torch.device("mps") if torch.mps.is_available() else torch.device("cpu")
model.to(device)
def compute_metrics(eval_preds):
metric = evaluate.load("glue", "mrpc")
logits, labels = eval_preds
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
print(tokenized_datasets)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
trainer.train()