forked from monologg/KoBERT-nsmc
-
Notifications
You must be signed in to change notification settings - Fork 3
/
utils.py
45 lines (29 loc) · 973 Bytes
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os
import random
import logging
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModel, AutoConfig
def get_label(args):
return [0, 1]
def load_tokenizer(args):
return AutoTokenizer.from_pretrained(args.model_name_or_path)
def init_logger():
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if not args.no_cuda and torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
def compute_metrics(preds, labels):
assert len(preds) == len(labels)
return acc_score(preds, labels)
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def acc_score(preds, labels):
return {
"acc": simple_accuracy(preds, labels),
}