-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtaxonomic_represantation.R
62 lines (50 loc) · 2.28 KB
/
taxonomic_represantation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
library(dplyr)
library(biogram)
library(readxl)
library(tidyr)
library(ggplot2)
plot_tax_rep <- function(dat, set) {
p <- ggplot(dat, aes(x = Organism, y = count)) +
geom_col(color = "black", size = 0.3, fill = "#7fba70") +
geom_text(aes(x = Organism, y = count, label = count),
position = position_dodge(width = 1), hjust = -0.25, size = 3) +
coord_flip() +
theme_bw() +
ggtitle(set)
ggsave(filename = paste0("results/Tax_rep_plots/Tax_rep_", set, ".png"), plot = p, width = 10, height = nrow(dat)/4, limitsize = FALSE)
}
df <- read_xlsx("/media/kasia/Data/Dropbox/Projekty/BioNgramProjects/PlastoGram/Dataset_annotations_references.xlsx")
# Dropbox link to the file: https://www.dropbox.com/s/wuewgtk6c0mnwrd/Dataset_annotations_references.xlsx
tax_rep <- df %>%
filter(!(Final_dataset %in% c("-", "P_TL_SEC"))) %>%
group_by(Final_dataset, Organism) %>%
summarise(count = n())
tax_rep_df <- tax_rep %>%
pivot_wider(names_from = Final_dataset, values_from = count)
tax_rep %>%
group_by(Final_dataset) %>%
summarise(n_org = n())
tax_rep_to_plot <- df %>%
filter(!(Final_dataset %in% c("-", "P_TL_SEC"))) %>%
group_by(Final_dataset, Organism) %>%
summarise(count = n()) %>%
mutate(Organism = ifelse(count == 1, "Other (organisms with 1 protein)", Organism)) %>%
group_by(Final_dataset, Organism) %>%
summarise(count = ifelse(n() == 1, count, n()))
lapply(unique(filter(tax_rep_to_plot, Final_dataset %in% c("N_OM", "N_IM", "N_TM", "N_S", "N_TL_SEC", "N_TL_TAT", "P_IM"))[["Final_dataset"]]), function(ith_set) {
filter(tax_rep_to_plot, Final_dataset == ith_set) %>%
plot_tax_rep(ith_set)
})
tax_rep_to_plot_p <- df %>%
filter(!(Final_dataset %in% c("-", "P_TL_SEC"))) %>%
group_by(Final_dataset, Organism) %>%
summarise(count = n()) %>%
mutate(Organism = case_when(count == 1 ~ "Organisms with 1 protein",
count == 2 ~ "Organisms with 2 proteins",
count > 2 ~ Organism)) %>%
group_by(Final_dataset, Organism) %>%
summarise(count = ifelse(n() == 1, count, n()))
lapply(unique(filter(tax_rep_to_plot, Final_dataset %in% c("P_TM", "P_S"))[["Final_dataset"]]), function(ith_set) {
filter(tax_rep_to_plot_p, Final_dataset == ith_set) %>%
plot_tax_rep(ith_set)
})