-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
102 lines (87 loc) · 3.57 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import argparse
from json import loads
from os import listdir
from os.path import exists, isdir, join
from shutil import rmtree
import albumentations as A
import cv2
from ultralytics import YOLO
from src.config import *
from src.data import MOT20Dataset, MOT20ExtDataset, MOT20Object
from src.data.preparing import (
check_train_test_differs,
extract_mot20_ext_test,
restore_annotations,
restore_dataset
)
from src.data.preparing import run as run_mot20_extracting
from src.tracker import run as run_tracker
from src.train.utils import get_experiments, get_model as get_saved_model
from src.config import MOT20_EXT_MEAN
from src.transforms import get_norm_transform, get_resize_transform
def get_model():
df = get_experiments().sort_values('best_val_acc', ascending=False)
best = df[df['datetime'] == '2023-05-16 21:04:15.317697']
model = get_saved_model(best)
threshold = 9
return model, threshold
def prepare_image(mat, transform):
return transform(image=cv2.cvtColor(mat, cv2.COLOR_BGR2RGB))[
'image'].unsqueeze(0)
def get_model_predict(model, threshold, a, b):
"""Возвращает boolean - являются ли два объекта одинаковыми"""
resize_transform = get_resize_transform(
(MOT20_EXT_FIRST_AXIS_MEAN, MOT20_EXT_SECOND_AXIS_MEAN))
norm_transform = get_norm_transform()
transform = A.Compose([resize_transform, norm_transform])
predict = model(
prepare_image(a, transform),
prepare_image(b, transform)
)
return predict < threshold
def parse(file_name):
with open(file_name) as f:
return loads(f.read())
def main(args):
if (args.create_dataset):
if (args.create_dataset == 'mot20'):
mot20_path = join(DATA_PATH, 'MOT20')
if not (exists(mot20_path) and isdir(mot20_path)):
raise ValueError(
'MOT20 data directory is not exists. Load MOT20 dataset first')
# run_mot20_extracting(data_path=DATA_PATH)
# if (DEBUG):
# rmtree(join(DATA_PATH, 'MOT20_ext'), )
# extract_mot20_ext_test(data_path=DATA_PATH, proportion=0.25)
check_train_test_differs(data_path=DATA_PATH)
# restore_dataset(DATA_PATH)
# restore_annotations(DATA_PATH)
# if (args.track_video):
if True:
# path = args.track_video
path = join(DATA_PATH, 'wisenet_dataset')
video_path = join(path, 'video_sets', 'set_3')
calibration_path = join(path, 'network_enviroment',
'camera_calibration', '1280_720')
calibration_data = list(
map(lambda f: (parse(join(calibration_path, f)), f), listdir(calibration_path)))
calibration_data.sort(key=lambda x: x[1])
detector = YOLO('yolov8n.pt')
model, threshold = get_model()
captures = list(map(lambda n: (cv2.VideoCapture(
join(video_path, n)), n), listdir(video_path)))
captures.sort(key=lambda x: x[1])
run_tracker(captures, calibration_data, detector, lambda a,
b: get_model_predict(model, threshold, a, b))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'-c', '--create-dataset',
help="Создает датасет с указанным именем. Доступные значения: mot20"
)
parser.add_argument(
'-tv', '--track-video',
help='Запускает трекинг для видео по заданному пути'
)
args = parser.parse_args()
main(args)