-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdata_loader.py
47 lines (33 loc) · 1.3 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Copyright (c) 2020-present, Royal Bank of Canada.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import warnings
import torch
from citation_networks import load_citation_network, sample_mask
warnings.simplefilter("ignore")
def load_ogb_data(dataset_str):
from ogb.nodeproppred.dataset_pyg import PygNodePropPredDataset
dataset = PygNodePropPredDataset(dataset_str)
data = dataset[0]
features = data.x
nfeats = data.num_features
nclasses = dataset.num_classes
labels = data.y
split_idx = dataset.get_idx_split()
train_mask = sample_mask(split_idx['train'], data.x.shape[0])
val_mask = sample_mask(split_idx['valid'], data.x.shape[0])
test_mask = sample_mask(split_idx['test'], data.x.shape[0])
features = torch.FloatTensor(features)
labels = torch.LongTensor(labels).view(-1)
train_mask = torch.BoolTensor(train_mask)
val_mask = torch.BoolTensor(val_mask)
test_mask = torch.BoolTensor(test_mask)
return features, nfeats, labels, nclasses, train_mask, val_mask, test_mask
def load_data(args):
dataset_str = args.dataset
if dataset_str.startswith('ogb'):
return load_ogb_data(dataset_str)
return load_citation_network(dataset_str)