-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathgraph_generator.py
171 lines (152 loc) · 6.38 KB
/
graph_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright (c) 2020-present, Royal Bank of Canada.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import dgl
import torch.nn as nn
from layers import Diag
from utils import *
class FullParam(nn.Module):
def __init__(self, features, non_linearity, k, knn_metric, i, sparse):
super(FullParam, self).__init__()
self.non_linearity = non_linearity
self.k = k
self.knn_metric = knn_metric
self.i = i
self.sparse = sparse
if self.non_linearity == "exp":
self.Adj = nn.Parameter(
torch.from_numpy(nearest_neighbors_pre_exp(features, self.k, self.knn_metric, self.i)))
elif self.non_linearity == "elu":
self.Adj = nn.Parameter(
torch.from_numpy(nearest_neighbors_pre_elu(features, self.k, self.knn_metric, self.i)))
elif self.non_linearity == 'none':
self.Adj = nn.Parameter(torch.from_numpy(nearest_neighbors(features, self.k, self.knn_metric)))
else:
raise NameError('No non-linearity has been specified')
def forward(self, h):
if not self.sparse:
if self.non_linearity == "exp":
Adj = torch.exp(self.Adj)
elif self.non_linearity == "elu":
Adj = F.elu(self.Adj) + 1
elif self.non_linearity == "none":
Adj = self.Adj
else:
if self.non_linearity == 'exp':
Adj = self.Adj.coalesce()
Adj.values = torch.exp(Adj.values())
elif self.non_linearity == 'elu':
Adj = self.Adj.coalesce()
Adj.values = F.elu(Adj.values()) + 1
elif self.non_linearity == "none":
Adj = self.Adj
else:
raise NameError('Non-linearity is not supported in the sparse setup')
return Adj
class MLP_Diag(nn.Module):
def __init__(self, nlayers, isize, k, knn_metric, non_linearity, i, sparse, mlp_act):
super(MLP_Diag, self).__init__()
self.i = i
self.layers = nn.ModuleList()
for _ in range(nlayers):
self.layers.append(Diag(isize))
self.k = k
self.knn_metric = knn_metric
self.non_linearity = non_linearity
self.sparse = sparse
self.mlp_act = mlp_act
def internal_forward(self, h):
for i, layer in enumerate(self.layers):
h = layer(h)
if i != (len(self.layers) - 1):
if self.mlp_act == "relu":
h = F.relu(h)
elif self.mlp_act == "tanh":
h = F.tanh(h)
return h
def forward(self, features):
if self.sparse:
embeddings = self.internal_forward(features)
rows, cols, values = knn_fast(embeddings, self.k, 1000)
rows_ = torch.cat((rows, cols))
cols_ = torch.cat((cols, rows))
values_ = torch.cat((values, values))
values_ = apply_non_linearity(values_, self.non_linearity, self.i)
adj = dgl.graph((rows_, cols_), num_nodes=features.shape[0], device='cuda')
adj.edata['w'] = values_
return adj
else:
embeddings = self.internal_forward(features)
embeddings = F.normalize(embeddings, dim=1, p=2)
similarities = cal_similarity_graph(embeddings)
similarities = top_k(similarities, self.k + 1)
similarities = apply_non_linearity(similarities, self.non_linearity, self.i)
return similarities
class MLP(nn.Module):
def __init__(self, nlayers, isize, hsize, osize, mlp_epochs, k, knn_metric, non_linearity, i, sparse, mlp_act):
super(MLP, self).__init__()
self.layers = nn.ModuleList()
if nlayers == 1:
self.layers.append(nn.Linear(isize, hsize))
else:
self.layers.append(nn.Linear(isize, hsize))
for _ in range(nlayers - 2):
self.layers.append(nn.Linear(hsize, hsize))
self.layers.append(nn.Linear(hsize, osize))
self.input_dim = isize
self.output_dim = osize
self.mlp_epochs = mlp_epochs
self.k = k
self.knn_metric = knn_metric
self.non_linearity = non_linearity
self.mlp_knn_init()
self.i = i
self.sparse = sparse
self.mlp_act = mlp_act
def internal_forward(self, h):
for i, layer in enumerate(self.layers):
h = layer(h)
if i != (len(self.layers) - 1):
if self.mlp_act == "relu":
h = F.relu(h)
elif self.mlp_act == "tanh":
h = F.tanh(h)
return h
def mlp_knn_init(self):
if self.input_dim == self.output_dim:
print("MLP full")
for layer in self.layers:
layer.weight = nn.Parameter(torch.eye(self.input_dim))
else:
optimizer = torch.optim.Adam(self.parameters(), 0.01)
labels = torch.from_numpy(nearest_neighbors(self.features.cpu(), self.k, self.knn_metric)).cuda()
for epoch in range(1, self.mlp_epochs):
self.train()
logits = self.forward()
loss = F.mse_loss(logits, labels, reduction='sum')
if epoch % 10 == 0:
print("MLP loss", loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
def forward(self, features):
if self.sparse:
embeddings = self.internal_forward(features)
rows, cols, values = knn_fast(embeddings, self.k, 1000)
rows_ = torch.cat((rows, cols))
cols_ = torch.cat((cols, rows))
values_ = torch.cat((values, values))
values_ = apply_non_linearity(values_, self.non_linearity, self.i)
adj = dgl.graph((rows_, cols_), num_nodes=features.shape[0], device='cuda')
adj.edata['w'] = values_
return adj
else:
embeddings = self.internal_forward(features)
embeddings = F.normalize(embeddings, dim=1, p=2)
similarities = cal_similarity_graph(embeddings)
similarities = top_k(similarities, self.k + 1)
similarities = apply_non_linearity(similarities, self.non_linearity, self.i)
return similarities