forked from choyingw/SynergyNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_building.py
executable file
·162 lines (131 loc) · 5.98 KB
/
model_building.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch
import torch.nn as nn
import numpy as np
from torchvision import transforms as T
import scipy.io as sio
# All data parameters import
from utils.params import ParamsPack
param_pack = ParamsPack()
from backbone_nets import resnet_backbone
from backbone_nets import mobilenetv1_backbone
from backbone_nets import mobilenetv2_backbone
from backbone_nets import ghostnet_backbone
from backbone_nets.pointnet_backbone import MLP_for, MLP_rev
from loss_definition import ParamLoss, WingLoss
import time
def parse_param_62(param):
"""Work for only tensor"""
p_ = param[:, :12].reshape(-1, 3, 4)
p = p_[:, :, :3]
offset = p_[:, :, -1].reshape(-1, 3, 1)
alpha_shp = param[:, 12:52].reshape(-1, 40, 1)
alpha_exp = param[:, 52:62].reshape(-1, 10, 1)
return p, offset, alpha_shp, alpha_exp
# Image-to-parameter
class I2P(nn.Module):
def __init__(self, args):
super(I2P, self).__init__()
self.args = args
# backbone definition
if 'mobilenet_v2' in self.args.arch:
self.backbone = getattr(mobilenetv2_backbone, args.arch)(pretrained=False)
elif 'mobilenet' in self.args.arch:
self.backbone = getattr(mobilenetv1_backbone, args.arch)()
elif 'resnet' in self.args.arch:
self.backbone = getattr(resnet_backbone, args.arch)(pretrained=False)
elif 'ghostnet' in self.args.arch:
self.backbone = getattr(ghostnet_backbone, args.arch)()
else:
raise RuntimeError("Please choose [mobilenet_v2, mobilenet_1, resnet50, or ghostnet]")
def forward(self,input, target):
"""Training time forward"""
_3D_attr, avgpool = self.backbone(input)
_3D_attr_GT = target.type(torch.cuda.FloatTensor)
return _3D_attr, _3D_attr_GT, avgpool
def forward_test(self, input):
""" Testing time forward."""
_3D_attr, avgpool = self.backbone(input)
return _3D_attr, avgpool
# Main model SynergyNet definition
class SynergyNet(nn.Module):
def __init__(self, args):
super(SynergyNet, self).__init__()
self.triangles = sio.loadmat('./3dmm_data/tri.mat')['tri'] -1
self.triangles = torch.Tensor(self.triangles.astype(np.int)).long().cuda()
self.img_size = args.img_size
# Image-to-parameter
self.I2P = I2P(args)
# Forward
self.forwardDirection = MLP_for(68)
# Reverse
self.reverseDirection = MLP_rev(68)
self.LMKLoss_3D = WingLoss()
self.ParamLoss = ParamLoss()
self.loss = {'loss_LMK_f0':0.0,
'loss_LMK_pointNet': 0.0,
'loss_Param_In':0.0,
'loss_Param_S2': 0.0,
'loss_Param_S1S2': 0.0,
}
self.register_buffer('param_mean', torch.Tensor(param_pack.param_mean).cuda(non_blocking=True))
self.register_buffer('param_std', torch.Tensor(param_pack.param_std).cuda(non_blocking=True))
self.register_buffer('w_shp', torch.Tensor(param_pack.w_shp).cuda(non_blocking=True))
self.register_buffer('u', torch.Tensor(param_pack.u).cuda(non_blocking=True))
self.register_buffer('w_exp', torch.Tensor(param_pack.w_exp).cuda(non_blocking=True))
# If doing only offline evaluation, use these
# self.u_base = torch.Tensor(param_pack.u_base).cuda(non_blocking=True)
# self.w_shp_base = torch.Tensor(param_pack.w_shp_base).cuda(non_blocking=True)
# self.w_exp_base = torch.Tensor(param_pack.w_exp_base).cuda(non_blocking=True)
# Online training needs these to parallel
self.register_buffer('u_base', torch.Tensor(param_pack.u_base).cuda(non_blocking=True))
self.register_buffer('w_shp_base', torch.Tensor(param_pack.w_shp_base).cuda(non_blocking=True))
self.register_buffer('w_exp_base', torch.Tensor(param_pack.w_exp_base).cuda(non_blocking=True))
self.keypoints = torch.Tensor(param_pack.keypoints).long()
self.data_param = [self.param_mean, self.param_std, self.w_shp_base, self.u_base, self.w_exp_base]
def reconstruct_vertex_62(self, param, whitening=True, dense=False, transform=True, lmk_pts=68):
"""
Whitening param -> 3d vertex, based on the 3dmm param: u_base, w_shp, w_exp
dense: if True, return dense vertex, else return 68 sparse landmarks. All dense or sparse vertex is transformed to
image coordinate space, but without alignment caused by face cropping.
transform: whether transform to image space
Working with batched tensors. Using Fortan-type reshape.
"""
if whitening:
if param.shape[1] == 62:
param_ = param * self.param_std[:62] + self.param_mean[:62]
else:
raise RuntimeError('length of params mismatch')
p, offset, alpha_shp, alpha_exp = parse_param_62(param_)
if dense:
vertex = p @ (self.u + self.w_shp @ alpha_shp + self.w_exp @ alpha_exp).contiguous().view(-1, 53215, 3).transpose(1,2) + offset
if transform:
# transform to image coordinate space
vertex[:, 1, :] = param_pack.std_size + 1 - vertex[:, 1, :]
else:
"""For 68 pts"""
vertex = p @ (self.u_base + self.w_shp_base @ alpha_shp + self.w_exp_base @ alpha_exp).contiguous().view(-1, lmk_pts, 3).transpose(1,2) + offset
if transform:
# transform to image coordinate space
vertex[:, 1, :] = param_pack.std_size + 1 - vertex[:, 1, :]
return vertex
def forward(self, input, target):
_3D_attr, _3D_attr_GT, avgpool = self.I2P(input, target)
vertex_lmk = self.reconstruct_vertex_62(_3D_attr, dense=False)
vertex_GT_lmk = self.reconstruct_vertex_62(_3D_attr_GT, dense=False)
self.loss['loss_LMK_f0'] = 0.05 *self.LMKLoss_3D(vertex_lmk, vertex_GT_lmk, kp=True)
self.loss['loss_Param_In'] = 0.02 * self.ParamLoss(_3D_attr, _3D_attr_GT)
point_residual = self.forwardDirection(vertex_lmk, avgpool, _3D_attr[:,12:52], _3D_attr[:,52:62])
vertex_lmk = vertex_lmk + 0.05 * point_residual
self.loss['loss_LMK_pointNet'] = 0.05 * self.LMKLoss_3D(vertex_lmk, vertex_GT_lmk, kp=True)
_3D_attr_S2 = self.reverseDirection(vertex_lmk)
self.loss['loss_Param_S2'] = 0.02 * self.ParamLoss(_3D_attr_S2, _3D_attr_GT, mode='only_3dmm')
self.loss['loss_Param_S1S2'] = 0.001 * self.ParamLoss(_3D_attr_S2, _3D_attr, mode='only_3dmm')
return self.loss
def forward_test(self, input):
"""test time forward"""
_3D_attr, _ = self.I2P.forward_test(input)
return _3D_attr
def get_losses(self):
return self.loss.keys()
if __name__ == '__main__':
pass