-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathHashBuckets.cpp
153 lines (133 loc) · 5.38 KB
/
HashBuckets.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#include "HashBuckets.h"
using namespace std;
using namespace cv;
static double PI = 3.141592653;
const double HashBuckets::sigma = 2.0f;
HashBuckets::HashBuckets(Mat src, unsigned scale, unsigned patchLen) {
if (patchLen % 2 == 0)
throw invalid_argument("patch size must be an odd number!");
this->scale = scale;
this->img = move(src);
this->scale = scale;
this->patchLen = patchLen;
spatialGradient(img, imgGx, imgGy);
imgGx.convertTo(imgGx, CV_64F);
imgGy.convertTo(imgGy, CV_64F);
Mat k = getGaussianKernel( patchLen, sigma, CV_64F);
Mat W = k * k.t(); // n x n
this->W = W.reshape(0, 1); // convert to 1 x n^2 array
memset(bucketCnt, 0, sizeof(bucketCnt));
}
// Get the hash value of the patch centered at (r, c)
// rot: 0, 1, 2 for rotate 90/180/270 degrees, any other number will keep the original patch
// mirror: true for mirrored patch
// This allows us to get 8x training examples
array<int, 3> HashBuckets::hash(int r, int c, int rot, bool mirror) {
// number of channels remains the same, reshape to n^2 x 1 matrix
// need to clone() for ROI does not have consecutive memory
Mat patchGx = imgGx(Range(r - patchLen/2, r + patchLen/2 + 1),
Range(c - patchLen/2, c + patchLen/2 + 1)).clone();
Mat patchGy = imgGy(Range(r - patchLen/2, r + patchLen/2 + 1),
Range(c - patchLen/2, c + patchLen/2 + 1)).clone();
// Note the gradient of the rotated image is not the same as the rotated gradient,
// so we first use geometric relationship to get the new coordinate of the point (r, c).
// Also, as long as the center of the patch is determined, flip and transpose will not
// change the result of GTWG. (i.e. the commented section)
if (mirror) {
flip(patchGx, patchGx, 1);
flip(patchGy, patchGy, 1);
patchGx *= -1;
}
if (rot == ROTATE_90_CLOCKWISE) {
swap(patchGx, patchGy);
// transpose(patchGx, patchGx);
// flip(patchGx, patchGx, 1);
patchGx *= -1;
// transpose(patchGy, patchGy);
// flip(patchGy, patchGy, 1);
} else if (rot == ROTATE_90_COUNTERCLOCKWISE) {
swap(patchGx, patchGy);
// transpose(patchGx, patchGx);
// flip(patchGx, patchGx, 0);
patchGy *= -1;
// transpose(patchGy, patchGy);
// flip(patchGy, patchGy, 0);
} else if (rot == ROTATE_180) {
// flip(patchGx, patchGx, 1);
// flip(patchGx, patchGx, 0);
// patchGx *= -1;
// flip(patchGy, patchGy, 1);
// flip(patchGy, patchGy, 0);
// patchGy *= -1;
}
//debugMat(patchGx);
patchGx = patchGx.reshape(0, patchLen * patchLen);
patchGy = patchGy.reshape(0, patchLen * patchLen);
Mat patchGrad;
hconcat(patchGx, patchGy, patchGrad); // n^2 x 2 matrix
Mat patchGradT = patchGrad.t(); // equivalent to multiplication by diagonal weight matrix
patchGradT.row(0) = patchGradT.row(0).mul(W);
patchGradT.row(1) = patchGradT.row(1).mul(W);
Mat GTWG = patchGradT * patchGrad; // 2 x 2 gradient matrix of pixel
// debugMat(patchGradT);
/* Consider the eigenvalues and eigenvectors of
* | a b |
* | c d |
* */
double m_a = GTWG.at<double>(0, 0);
double m_b = GTWG.at<double>(0, 1);
double m_c = GTWG.at<double>(1, 0);
double m_d = GTWG.at<double>(1, 1);
double T = m_a + m_d;
double D = m_a * m_d - m_b * m_c;
double L1 = T/2 + sqrt( (T * T)/4 - D );
double L2 = T/2 - sqrt( (T * T)/4 - D );
double angle = 0;
if (m_b != 0) {
angle = atan2(L1 - m_d, m_c);
} else if (c != 0) {
angle = atan2(m_b, L1 - m_a);
} else if (m_b == 0 && m_c == 0) {
angle = atan2(1, 0);
} else {
assert(false);
}
if (angle < 0) angle += PI;
double coherence = ( sqrt(L1) - sqrt(L2) ) / ( sqrt(L1) + sqrt(L2) );
double strength = sqrt(L1);
auto angleIdx = int(angle / ( PI / 24 ));
angleIdx = angleIdx > 23 ? numOfAngle-1 : (angleIdx < 0 ? 0 : angleIdx);
int strengthIdx = strength > 45 ? numOfStrength-1 : (strength > 30 ? 1 : 0);
int coherenceIdx = coherence > 0.37 ? numOfStrength-1 : (coherence > 0.21 ? 1 : 0);
return {angleIdx, coherenceIdx, strengthIdx};
}
// consider the n x n neighbors of each pixel, and cluster them
void HashBuckets::breakImg(int rot, bool mirror) {
array<int, 3> t;
for (int r = patchLen/2; r + patchLen/2 < img.rows; r++) {
for (int c = patchLen/2; c + patchLen/2 < img.cols; c++) {
for (bool b: { false, true }) {
t = this->hash(r, c, ROTATE_90_CLOCKWISE, b);
bucketCnt[t[0]][t[1]][t[2]]++;
t = this->hash(r, c, ROTATE_90_COUNTERCLOCKWISE, b);
bucketCnt[t[0]][t[1]][t[2]]++;
t = this->hash(r, c, ROTATE_180, b);
bucketCnt[t[0]][t[1]][t[2]]++;
t = this->hash(r, c, -1, b);
bucketCnt[t[0]][t[1]][t[2]]++;
}
}
}
for (int c = 0; c < 3; c++) {
int cohereCnt = 0;
for (int s = 0; s < 3; s++) {
int strCnt = 0;
for (int a = 0; a < 24; a++) {
cohereCnt += bucketCnt[a][c][s]; strCnt += bucketCnt[a][c][s];
printf("%d\t", bucketCnt[a][c][s]);
}
printf("\n%d\n", strCnt);
}
printf("\n%d\n\n", cohereCnt);
}
}