generated from automl/automl_template
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
89 lines (77 loc) · 4.36 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
import yaml
import argparse
from warmstarting.HPOLoop import HPOLoop
from warmstarting.utils.datasets import select_dataset_id
from warmstarting.utils.serialization import load_results
from warmstarting.utils.torch import modules
from warmstarting.visualization.plot import visualize_performance_time_bl, visualize_data_epoch_grid, visualize_performance_subset
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='configuration parser calling the main HPO loop')
parser.add_argument('-c', '--config', nargs='+', help='Config file to run experiments')
args = parser.parse_args()
for config in args.config:
with open(config, "r") as f:
cfg = yaml.safe_load(f)
params = dict()
fidelity_space = []
config_space = []
for topic, data in cfg.items():
for k, v in data.items():
if topic == "fidelity":
fidelity_space.append(k)
if topic == "configuration":
config_space.append(k)
if k == "dataset":
k = "dataset_id"
v = select_dataset_id(v)
params[k] = v
criterion = modules[params["criterion"]]
optimizer = [modules[optim] for optim in params["optimizer"]]
lr = [float(x) for x in params["lr"]]
subset_lower_bound = params["subset_bounds"][0] if params["subset_bounds"] else 0.01
subset_upper_bound = params["subset_bounds"][1] if params["subset_bounds"] else 1
if params["data_subset_ratio"] is not None:
data_subset_ratios = params["data_subset_ratio"]
else:
if params["step_scaling"] == "linear":
data_subset_ratios = np.linspace(subset_lower_bound, subset_upper_bound, params["d_sub"])
elif params["step_scaling"] == "exponential":
data_subset_ratios = np.geomspace(subset_lower_bound, subset_upper_bound, num=params["d_sub"]).round(2)
else:
raise ValueError(f'Step scaling method not implemented: {params["step_scaling"]}')
epochs = params["epoch"]
if not len(params["epoch"]) == len(data_subset_ratios):
if len(params["epoch"]) == 1:
epochs = epochs * len(data_subset_ratios)
else:
raise ValueError('Length of epoch list different to length of subset ratios and != 1')
HPOLoop(params["model"], lr, params["momentum"], optimizer,
params["lr_sched"], criterion, params["epoch_bounds"], [subset_lower_bound, subset_upper_bound],
config_space, fidelity_space, epochs, data_subset_ratios,
params["use_checkpoints"], params["shuffle"], params["only_train_on_new"], params["seed"],
params["dataset_id"], params["results_file_name"])
score = load_results(file_name=params["results_file_name"])
for m in params["vis_method"]:
if m == "time_val":
title = "checkpoints: {}, only_new: {}, shuffle: {}"\
.format(params["use_checkpoints"], params["only_train_on_new"], params["shuffle"])
performance = np.array(score["performance"])
time = np.array(score["full_train_time"])
configs = np.array(score["configs"])
visualize_performance_time_bl(performance, time, configs, title)
elif m == "subset_val":
title = "checkpoints: {}, only_new: {}, shuffle: {}"\
.format(params["use_checkpoints"], params["only_train_on_new"], params["shuffle"])
performance = np.array(score["performance"])
data_subsets = np.array(score["subsets"])
configs = np.array(score["configs"])
visualize_performance_subset(performance, data_subsets, configs, title)
elif m == "grid":
performance = np.array(score["performance"])
epochs = np.array(score["epochs"])
data_subsets = np.array(score["subsets"])
configs = np.array(score["configs"])
visualize_data_epoch_grid(performance, epochs, data_subsets, configs)
else:
raise ValueError('Visualization method "{}" not found!'.format(m))