-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtrain.py
494 lines (383 loc) · 16.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
# -*- coding: utf-8 -*-
"""
Copy of GAN with Generator: LSTM, Discriminator: Convolutional NN with ECG Data
Introduction
------------
The aim of this script is to use a convolutional neural network with
a max pooling layer in the discrimiantor.
This was found to work well with the Physionet ECG data in a paper.
They used two convolutional NN so we will compare the difference between the
images generated using a single layer of CNN in the discriminator and 2 CNN layers
to see if this improves the quality of series generated.
"""
"""
Bringing in required dependencies as defined in the GitHub repo:
https://github.com/josipd/torch-two-sample/blob/master/torch_two_sample/permutation_test.pyx"""
from __future__ import division
import torch
from tqdm import tqdm
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from torchvision import transforms
from torch.autograd.variable import Variable
sns.set(rc={'figure.figsize':(11, 4)})
import datetime
from datetime import date
today = date.today()
import random
import json as js
import pickle
import os
from data import ECGData, PD_to_Tensor
from Model import Generator, Discriminator
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
if device == 'cuda:0':
print('Using GPU : ')
print(torch.cuda.get_device_name(device))
else :
print('Using CPU')
"""#MMD Evaluation Metric Definition
Using MMD to determine the similarity between distributions
PDIST code comes from torch-two-sample utils code:
https://github.com/josipd/torch-two-sample/blob/master/torch_two_sample/util.py
"""
def pdist(sample_1, sample_2, norm=2, eps=1e-5):
r"""Compute the matrix of all squared pairwise distances.
Arguments
---------
sample_1 : torch.Tensor or Variable
The first sample, should be of shape ``(n_1, d)``.
sample_2 : torch.Tensor or Variable
The second sample, should be of shape ``(n_2, d)``.
norm : float
The l_p norm to be used.
Returns
-------
torch.Tensor or Variable
Matrix of shape (n_1, n_2). The [i, j]-th entry is equal to
``|| sample_1[i, :] - sample_2[j, :] ||_p``."""
n_1, n_2 = sample_1.size(0), sample_2.size(0)
norm = float(norm)
if norm == 2.:
norms_1 = torch.sum(sample_1**2, dim=1, keepdim=True)
norms_2 = torch.sum(sample_2**2, dim=1, keepdim=True)
norms = (norms_1.expand(n_1, n_2) +
norms_2.transpose(0, 1).expand(n_1, n_2))
distances_squared = norms - 2 * sample_1.mm(sample_2.t())
return torch.sqrt(eps + torch.abs(distances_squared))
else:
dim = sample_1.size(1)
expanded_1 = sample_1.unsqueeze(1).expand(n_1, n_2, dim)
expanded_2 = sample_2.unsqueeze(0).expand(n_1, n_2, dim)
differences = torch.abs(expanded_1 - expanded_2) ** norm
inner = torch.sum(differences, dim=2, keepdim=False)
return (eps + inner) ** (1. / norm)
def permutation_test_mat(matrix,
n_1, n_2, n_permutations,
a00=1, a11=1, a01=0):
"""Compute the p-value of the following statistic (rejects when high)
\sum_{i,j} a_{\pi(i), \pi(j)} matrix[i, j].
"""
n = n_1 + n_2
pi = np.zeros(n, dtype=np.int8)
pi[n_1:] = 1
larger = 0.
count = 0
for sample_n in range(1 + n_permutations):
count = 0.
for i in range(n):
for j in range(i, n):
mij = matrix[i, j] + matrix[j, i]
if pi[i] == pi[j] == 0:
count += a00 * mij
elif pi[i] == pi[j] == 1:
count += a11 * mij
else:
count += a01 * mij
if sample_n == 0:
statistic = count
elif statistic <= count:
larger += 1
np.random.shuffle(pi)
return larger / n_permutations
"""Code from Torch-Two-Samples at https://torch-two-sample.readthedocs.io/en/latest/#"""
class MMDStatistic:
r"""The *unbiased* MMD test of :cite:`gretton2012kernel`.
The kernel used is equal to:
.. math ::
k(x, x') = \sum_{j=1}^k e^{-\alpha_j\|x - x'\|^2},
for the :math:`\alpha_j` proved in :py:meth:`~.MMDStatistic.__call__`.
Arguments
---------
n_1: int
The number of points in the first sample.
n_2: int
The number of points in the second sample."""
def __init__(self, n_1, n_2):
self.n_1 = n_1
self.n_2 = n_2
# The three constants used in the test.
self.a00 = 1. / (n_1 * (n_1 - 1))
self.a11 = 1. / (n_2 * (n_2 - 1))
self.a01 = - 1. / (n_1 * n_2)
def __call__(self, sample_1, sample_2, alphas, ret_matrix=False):
r"""Evaluate the statistic.
The kernel used is
.. math::
k(x, x') = \sum_{j=1}^k e^{-\alpha_j \|x - x'\|^2},
for the provided ``alphas``.
Arguments
---------
sample_1: :class:`torch:torch.autograd.Variable`
The first sample, of size ``(n_1, d)``.
sample_2: variable of shape (n_2, d)
The second sample, of size ``(n_2, d)``.
alphas : list of :class:`float`
The kernel parameters.
ret_matrix: bool
If set, the call with also return a second variable.
This variable can be then used to compute a p-value using
:py:meth:`~.MMDStatistic.pval`.
Returns
-------
:class:`float`
The test statistic.
:class:`torch:torch.autograd.Variable`
Returned only if ``ret_matrix`` was set to true."""
sample_12 = torch.cat((sample_1, sample_2), 0)
distances = pdist(sample_12, sample_12, norm=2)
kernels = None
for alpha in alphas:
kernels_a = torch.exp(- alpha * distances ** 2)
if kernels is None:
kernels = kernels_a
else:
kernels = kernels + kernels_a
k_1 = kernels[:self.n_1, :self.n_1]
k_2 = kernels[self.n_1:, self.n_1:]
k_12 = kernels[:self.n_1, self.n_1:]
mmd = (2 * self.a01 * k_12.sum() +
self.a00 * (k_1.sum() - torch.trace(k_1)) +
self.a11 * (k_2.sum() - torch.trace(k_2)))
if ret_matrix:
return mmd, kernels
else:
return mmd
def pval(self, distances, n_permutations=1000):
r"""Compute a p-value using a permutation test.
Arguments
---------
matrix: :class:`torch:torch.autograd.Variable`
The matrix computed using :py:meth:`~.MMDStatistic.__call__`.
n_permutations: int
The number of random draws from the permutation null.
Returns
-------
float
The estimated p-value."""
if isinstance(distances, Variable):
distances = distances.data
return permutation_test_mat(distances.cpu().numpy(),
self.n_1, self.n_2,
n_permutations,
a00=self.a00, a11=self.a11, a01=self.a01)
"""
This paper
https://arxiv.org/pdf/1611.04488.pdf says that the most common way to
calculate sigma is to use the median pairwise distances between the joint data.
"""
def pairwisedistances(X,Y,norm=2):
dist = pdist(X,Y,norm)
return np.median(dist.numpy())
"""
Function for loading ECG Data
"""
def GetECGData(source_file,class_id):
compose = transforms.Compose(
[PD_to_Tensor()
])
return ECGData(source_file ,class_id = class_id, transform = compose)
"""
Creating the training set of sine/ECG signals
"""
#Taking normal ECG data for now
source_filename = './mitbih_train.csv'
ecg_data = GetECGData(source_file = source_filename,class_id = 0)
sample_size = 119 #batch size needed for Data Loader and the noise creator function.
# Create loader with data, so that we can iterate over it
data_loader = torch.utils.data.DataLoader(ecg_data, batch_size=sample_size, shuffle=True)
# Num batches
num_batches = len(data_loader)
print(num_batches)
"""Creating the Test Set"""
test_filename = './mitbih_test.csv'
ecg_data_test = GetECGData(source_file = test_filename,class_id = 0)
data_loader_test = torch.utils.data.DataLoader(ecg_data_test[:18088], batch_size=sample_size, shuffle=True)
"""##Defining the noise creation function"""
def noise(batch_size, features):
noise_vec = torch.randn(batch_size, features).to(device)
return noise_vec
"""#Initialising Parameters"""
seq_length = ecg_data[0].size()[0] #Number of features
#Params for the generator
hidden_nodes_g = 50
layers = 2
tanh_layer = False
#No. of training rounds per epoch
D_rounds = 3
G_rounds = 1
num_epoch = 35
learning_rate = 0.0002
#Params for the Discriminator
minibatch_layer = 0
minibatch_normal_init_ = True
num_cvs = 2
cv1_out= 10
cv1_k = 3
cv1_s = 1
p1_k = 3
p1_s = 2
cv2_out = 10
cv2_k = 3
cv2_s = 1
p2_k = 3
p2_s = 2
"""# Evaluation of GAN with 2 CNN Layer in Discriminator
##Generator and Discriminator training phase
"""
minibatch_out = [0,3,5,8,10]
for minibatch_layer in minibatch_out:
path = ".../your_path/Run_"+str(today.strftime("%d_%m_%Y"))+"_"+ str(datetime.datetime.now().time()).split('.')[0]
os.mkdir(path)
dict = {'data' : source_filename,
'sample_size' : sample_size,
'seq_length' : seq_length,
'num_layers': layers,
'tanh_layer': tanh_layer,
'hidden_dims_generator': hidden_nodes_g,
'minibatch_layer': minibatch_layer,
'minibatch_normal_init_' : minibatch_normal_init_,
'num_cvs':num_cvs,
'cv1_out':cv1_out,
'cv1_k':cv1_k,
'cv1_s':cv1_s,
'p1_k':p1_k,
'p1_s':p1_s,
'cv2_out':cv2_out,
'cv2_k':cv2_k,
'cv2_s':cv2_s,
'p2_k':p2_k,
'p2_s':p2_s,
'num_epoch':num_epoch,
'D_rounds': D_rounds,
'G_rounds': G_rounds,
'learning_rate' : learning_rate
}
json = js.dumps(dict)
f = open(path+"/settings.json","w")
f.write(json)
f.close()
generator_1 = Generator(seq_length,sample_size,hidden_dim = hidden_nodes_g, tanh_output = tanh_layer).to(device)
discriminator_1 = Discriminator(seq_length, sample_size ,minibatch_normal_init = minibatch_normal_init_, minibatch = minibatch_layer,num_cv = num_cvs, cv1_out = cv1_out,cv1_k = cv1_k, cv1_s = cv1_s, p1_k = p1_k, p1_s = p1_s, cv2_out= cv2_out, cv2_k = cv2_k, cv2_s = cv2_s, p2_k = p2_k, p2_s = p2_s).to(device)
#Loss function
loss_1 = torch.nn.BCELoss()
generator_1.train()
discriminator_1.train()
d_optimizer_1 = torch.optim.Adam(discriminator_1.parameters(),lr = learning_rate)
g_optimizer_1 = torch.optim.Adam(generator_1.parameters(),lr = learning_rate)
G_losses = []
D_losses = []
mmd_list = []
series_list = np.zeros((1,seq_length))
for n in tqdm(range(num_epoch)):
# for k in range(1):
for n_batch, sample_data in enumerate(data_loader):
### TRAIN DISCRIMINATOR ON FAKE DATA
for d in range(D_rounds):
discriminator_1.zero_grad()
h_g = generator_1.init_hidden()
#Generating the noise and label data
noise_sample = Variable(noise(len(sample_data),seq_length))
#Use this line if generator outputs hidden states: dis_fake_data, (h_g_n,c_g_n) = generator.forward(noise_sample,h_g)
dis_fake_data = generator_1.forward(noise_sample,h_g).detach()
y_pred_fake = discriminator_1(dis_fake_data)
loss_fake = loss_1(y_pred_fake,torch.zeros([len(sample_data),1]).to(device))
loss_fake.backward()
#Train discriminator on real data
real_data = Variable(sample_data.float()).to(device)
y_pred_real = discriminator_1.forward(real_data)
loss_real = loss_1(y_pred_real,torch.ones([len(sample_data),1]).to(device))
loss_real.backward()
d_optimizer_1.step() #Updating the weights based on the predictions for both real and fake calculations.
#Train Generator
for g in range(G_rounds):
generator_1.zero_grad()
h_g = generator_1.init_hidden()
noise_sample = Variable(noise(len(sample_data), seq_length))
#Use this line if generator outputs hidden states: gen_fake_data, (h_g_n,c_g_n) = generator.forward(noise_sample,h_g)
gen_fake_data = generator_1.forward(noise_sample,h_g)
y_pred_gen = discriminator_1(gen_fake_data)
error_gen = loss_1(y_pred_gen,torch.ones([len(sample_data),1]).to(device))
error_gen.backward()
g_optimizer_1.step()
if n_batch ==( num_batches - 1):
G_losses.append(error_gen.item())
D_losses.append((loss_real+loss_fake).item())
torch.save(generator_1.state_dict(), path+'/generator_state_'+str(n)+'.pt')
torch.save(discriminator_1.state_dict(),path+ '/discriminator_state_'+str(n)+'.pt')
# Check how the generator is doing by saving G's output on fixed_noise
with torch.no_grad():
h_g = generator_1.init_hidden()
fake = generator_1(noise(len(sample_data), seq_length),h_g).detach().cpu()
generated_sample = torch.zeros(1,seq_length).to(device)
for iter in range(0,int(len(ecg_data_test[:18088])/sample_size)):
noise_sample_test = noise(sample_size, seq_length)
h_g = generator_1.init_hidden()
generated_data = generator_1.forward(noise_sample_test,h_g).detach().squeeze()
generated_sample = torch.cat((generated_sample,generated_data),dim = 0)
# Getting the MMD Statistic for each Training Epoch
generated_sample = generated_sample[1:][:]
sigma = [pairwisedistances(ecg_data_test[:18088].type(torch.DoubleTensor),generated_sample.type(torch.DoubleTensor).squeeze())]
mmd = MMDStatistic(len(ecg_data_test[:18088]),generated_sample.size(0))
mmd_eval = mmd(ecg_data_test[:18088].type(torch.DoubleTensor),generated_sample.type(torch.DoubleTensor).squeeze(),sigma, ret_matrix=False)
mmd_list.append(mmd_eval.item())
series_list = np.append(series_list,fake[0].numpy().reshape((1,seq_length)),axis=0)
#Dumping the errors and mmd evaluations for each training epoch.
with open(path+'/generator_losses.txt', 'wb') as fp:
pickle.dump(G_losses, fp)
with open(path+'/discriminator_losses.txt', 'wb') as fp:
pickle.dump(D_losses, fp)
with open(path+'/mmd_list.txt', 'wb') as fp:
pickle.dump(mmd_list, fp)
#Plotting the error graph
plt.plot(G_losses,'-r',label='Generator Error')
plt.plot(D_losses, '-b', label = 'Discriminator Error')
plt.title('GAN Errors in Training')
plt.legend()
plt.savefig(path+'/GAN_errors.png')
plt.close()
#Plot a figure for each training epoch with the MMD value in the title
i = 0
while i < num_epoch:
if i%3==0:
fig, ax = plt.subplots(3,1,constrained_layout=True)
fig.suptitle("Generated fake data")
for j in range(0,3):
ax[j].plot(series_list[i][:])
ax[j].set_title('Epoch '+str(i)+ ', MMD: %.4f' % (mmd_list[i]))
i = i+1
plt.savefig(path+'/Training_Epoch_Samples_MMD_'+str(i)+'.png')
plt.close(fig)
#Checking the diversity of the samples:
generator_1.eval()
h_g = generator_1.init_hidden()
test_noise_sample = noise(sample_size, seq_length)
gen_data= generator_1.forward(test_noise_sample,h_g).detach()
plt.title("Generated ECG Waves")
plt.plot(gen_data[random.randint(0,sample_size-1)].tolist(),'-b')
plt.plot(gen_data[random.randint(0,sample_size-1)].tolist(),'-r')
plt.plot(gen_data[random.randint(0,sample_size-1)].tolist(),'-g')
plt.plot(gen_data[random.randint(0,sample_size-1)].tolist(),'-', color = 'orange')
plt.savefig(path+'/Generated_Data_Sample1.png')
plt.close()