forked from DefinitelyTyped/DefinitelyTyped
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgoogle-apps-script.optimization.d.ts
228 lines (219 loc) · 8.6 KB
/
google-apps-script.optimization.d.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
// Type definitions for Google Apps Script 2015-11-12
// Project: https://developers.google.com/apps-script/
// Definitions by: motemen <https://github.com/motemen/>
// Definitions: https://github.com/DefinitelyTyped/DefinitelyTyped
/// <reference path="google-apps-script.types.d.ts" />
declare module GoogleAppsScript {
export module Optimization {
/**
* Object storing a linear constraint of the form lowerBound ≤ Sum(a(i) x(i)) ≤ upperBound
* where lowerBound and upperBound are constants, a(i) are constant
* coefficients and x(i) are variables (unknowns).
*
* The example below creates one variable x with values between 0 and 5 and
* creates the constraint 0 ≤ 2 * x ≤ 5. This is done by first creating a constraint with
* the lower bound 5 and upper bound 5. Then the coefficient for variable x
* in this constraint is set to 2.
*
* var engine = LinearOptimizationService.createEngine();
* // Create a variable so we can add it to the constraint
* engine.addVariable('x', 0, 5);
* // Create a linear constraint with the bounds 0 and 10
* var constraint = engine.addConstraint(0, 10);
* // Set the coefficient of the variable in the constraint. The constraint is now:
* // 0 <= 2 * x <= 5
* constraint.setCoefficient('x', 2);
*/
export interface LinearOptimizationConstraint {
setCoefficient(variableName: string, coefficient: Number): LinearOptimizationConstraint;
}
/**
* The engine used to model and solve a linear program. The example below solves the following
* linear program:
*
* Two variables, x and y:
*
* 0 ≤ x ≤ 10
*
* 0 ≤ y ≤ 5
*
* Constraints:
*
* 0 ≤ 2 * x + 5 * y ≤ 10
*
* 0 ≤ 10 * x + 3 * y ≤ 20
*
* Objective:
* Maximize x + y
*
* var engine = LinearOptimizationService.createEngine();
*
* // Add variables, constraints and define the objective with addVariable(), addConstraint(), etc
* // Add two variables, 0 <= x <= 10 and 0 <= y <= 5
* engine.addVariable('x', 0, 10);
* engine.addVariable('y', 0, 5);
*
* // Create the constraint: 0 <= 2 * x + 5 * y <= 10
* var constraint = engine.addConstraint(0, 10);
* constraint.setCoefficient('x', 2);
* constraint.setCoefficient('y', 5);
*
* // Create the constraint: 0 <= 10 * x + 3 * y <= 20
* var constraint = engine.addConstraint(0, 20);
* constraint.setCoefficient('x', 10);
* constraint.setCoefficient('y', 3);
*
* // Set the objective to be x + y
* engine.setObjectiveCoefficient('x', 1);
* engine.setObjectiveCoefficient('y', 1);
*
* // Engine should maximize the objective
* engine.setMaximization();
*
* // Solve the linear program
* var solution = engine.solve();
* if (!solution.isValid()) {
* Logger.log('No solution ' + solution.getStatus());
* } else {
* Logger.log('Value of x: ' + solution.getVariableValue('x'));
* Logger.log('Value of y: ' + solution.getVariableValue('y'));
* }
*/
export interface LinearOptimizationEngine {
addConstraint(lowerBound: Number, upperBound: Number): LinearOptimizationConstraint;
addVariable(name: string, lowerBound: Number, upperBound: Number): LinearOptimizationEngine;
addVariable(name: string, lowerBound: Number, upperBound: Number, type: VariableType): LinearOptimizationEngine;
setMaximization(): LinearOptimizationEngine;
setMinimization(): LinearOptimizationEngine;
setObjectiveCoefficient(variableName: string, coefficient: Number): LinearOptimizationEngine;
solve(): LinearOptimizationSolution;
solve(seconds: Number): LinearOptimizationSolution;
}
/**
* The linear optimization service, used to model and solve linear and mixed-integer linear
* programs. The example below solves the following linear program:
*
* Two variables, x and y:
*
* 0 ≤ x ≤ 10
*
* 0 ≤ y ≤ 5
*
* Constraints:
*
* 0 ≤ 2 * x + 5 * y ≤ 10
*
* 0 ≤ 10 * x + 3 * y ≤ 20
*
* Objective:
* Maximize x + y
*
* var engine = LinearOptimizationService.createEngine();
*
* // Add variables, constraints and define the objective using addVariable(), addConstraint(), etc.
* // Add two variables, 0 <= x <= 10 and 0 <= y <= 5
* engine.addVariable('x', 0, 10);
* engine.addVariable('y', 0, 5);
*
* // Create the constraint: 0 <= 2 * x + 5 * y <= 10
* var constraint = engine.addConstraint(0, 10);
* constraint.setCoefficient('x', 2);
* constraint.setCoefficient('y', 5);
*
* // Create the constraint: 0 <= 10 * x + 3 * y <= 20
* var constraint = engine.addConstraint(0, 20);
* constraint.setCoefficient('x', 10);
* constraint.setCoefficient('y', 3);
*
* // Set the objective to be x + y
* engine.setObjectiveCoefficient('x', 1);
* engine.setObjectiveCoefficient('y', 1);
*
* // Engine should maximize the objective.
* engine.setMaximization();
*
* // Solve the linear program
* var solution = engine.solve();
* if (!solution.isValid()) {
* Logger.log('No solution ' + solution.getStatus());
* } else {
* Logger.log('Value of x: ' + solution.getVariableValue('x'));
* Logger.log('Value of y: ' + solution.getVariableValue('y'));
* }
*/
export interface LinearOptimizationService {
Status: Status
VariableType: VariableType
createEngine(): LinearOptimizationEngine;
}
/**
* The solution of a linear program. The example below solves the following linear program:
*
* Two variables, x and y:
*
* 0 ≤ x ≤ 10
*
* 0 ≤ y ≤ 5
*
* Constraints:
*
* 0 ≤ 2 * x + 5 * y ≤ 10
*
* 0 ≤ 10 * x + 3 * y ≤ 20
*
* Objective:
* Maximize x + y
*
* var engine = LinearOptimizationService.createEngine();
*
* // Add variables, constraints and define the objective with addVariable(), addConstraint(), etc.
* // Add two variables, 0 <= x <= 10 and 0 <= y <= 5
* engine.addVariable('x', 0, 10);
* engine.addVariable('y', 0, 5);
*
* // Create the constraint: 0 <= 2 * x + 5 * y <= 10
* var constraint = engine.addConstraint(0, 10);
* constraint.setCoefficient('x', 2);
* constraint.setCoefficient('y', 5);
*
* // Create the constraint: 0 <= 10 * x + 3 * y <= 20
* var constraint = engine.addConstraint(0, 20);
* constraint.setCoefficient('x', 10);
* constraint.setCoefficient('y', 3);
*
* // Set the objective to be x + y
* engine.setObjectiveCoefficient('x', 1);
* engine.setObjectiveCoefficient('y', 1);
*
* // Engine should maximize the objective
* engine.setMaximization();
*
* // Solve the linear program
* var solution = engine.solve();
* if (!solution.isValid()) {
* Logger.log('No solution ' + solution.getStatus());
* } else {
* Logger.log('Objective value: ' + solution.getObjectiveValue());
* Logger.log('Value of x: ' + solution.getVariableValue('x'));
* Logger.log('Value of y: ' + solution.getVariableValue('y'));
* }
*/
export interface LinearOptimizationSolution {
getObjectiveValue(): Number;
getStatus(): Status;
getVariableValue(variableName: string): Number;
isValid(): boolean;
}
/**
* Status of the solution. Before solving a problem the status will be NOT_SOLVED;
* afterwards it will take any of the other values depending if it successfully found a solution and
* if the solution is optimal.
*/
export enum Status { OPTIMAL, FEASIBLE, INFEASIBLE, UNBOUNDED, ABNORMAL, MODEL_INVALID, NOT_SOLVED }
/**
* Type of variables created by the engine.
*/
export enum VariableType { INTEGER, CONTINUOUS }
}
}
declare var LinearOptimizationService: GoogleAppsScript.Optimization.LinearOptimizationService;