-
Notifications
You must be signed in to change notification settings - Fork 185
/
ResultMerge_multi_process.py
267 lines (237 loc) · 8.58 KB
/
ResultMerge_multi_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
"""
To use the code, users should to config detpath, annopath and imagesetfile
detpath is the path for 15 result files, for the format, you can refer to "http://captain.whu.edu.cn/DOTAweb/tasks.html"
search for PATH_TO_BE_CONFIGURED to config the paths
Note, the evaluation is on the large scale images
"""
import os
import numpy as np
import re
import time
import sys
sys.path.insert(0,'..')
try:
import dota_utils as util
except:
import dota_kit.dota_utils as util
import polyiou
import pdb
import math
from multiprocessing import Pool
from functools import partial
## the thresh for nms when merge image
nms_thresh = 0.1
def py_cpu_nms_poly(dets, thresh):
scores = dets[:, 8]
polys = []
areas = []
for i in range(len(dets)):
tm_polygon = polyiou.VectorDouble([dets[i][0], dets[i][1],
dets[i][2], dets[i][3],
dets[i][4], dets[i][5],
dets[i][6], dets[i][7]])
polys.append(tm_polygon)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
ovr = []
i = order[0]
keep.append(i)
for j in range(order.size - 1):
iou = polyiou.iou_poly(polys[i], polys[order[j + 1]])
ovr.append(iou)
ovr = np.array(ovr)
# print('ovr: ', ovr)
# print('thresh: ', thresh)
try:
if math.isnan(ovr[0]):
pdb.set_trace()
except:
pass
inds = np.where(ovr <= thresh)[0]
# print('inds: ', inds)
order = order[inds + 1]
return keep
def py_cpu_nms_poly_fast(dets, thresh):
obbs = dets[:, 0:-1]
x1 = np.min(obbs[:, 0::2], axis=1)
y1 = np.min(obbs[:, 1::2], axis=1)
x2 = np.max(obbs[:, 0::2], axis=1)
y2 = np.max(obbs[:, 1::2], axis=1)
scores = dets[:, 8]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
polys = []
for i in range(len(dets)):
tm_polygon = polyiou.VectorDouble([dets[i][0], dets[i][1],
dets[i][2], dets[i][3],
dets[i][4], dets[i][5],
dets[i][6], dets[i][7]])
polys.append(tm_polygon)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
ovr = []
i = order[0]
keep.append(i)
# if order.size == 0:
# break
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
# w = np.maximum(0.0, xx2 - xx1 + 1)
# h = np.maximum(0.0, yy2 - yy1 + 1)
w = np.maximum(0.0, xx2 - xx1)
h = np.maximum(0.0, yy2 - yy1)
hbb_inter = w * h
hbb_ovr = hbb_inter / (areas[i] + areas[order[1:]] - hbb_inter)
# h_keep_inds = np.where(hbb_ovr == 0)[0]
h_inds = np.where(hbb_ovr > 0)[0]
tmp_order = order[h_inds + 1]
for j in range(tmp_order.size):
iou = polyiou.iou_poly(polys[i], polys[tmp_order[j]])
hbb_ovr[h_inds[j]] = iou
# ovr.append(iou)
# ovr_index.append(tmp_order[j])
# ovr = np.array(ovr)
# ovr_index = np.array(ovr_index)
# print('ovr: ', ovr)
# print('thresh: ', thresh)
try:
if math.isnan(ovr[0]):
pdb.set_trace()
except:
pass
inds = np.where(hbb_ovr <= thresh)[0]
# order_obb = ovr_index[inds]
# print('inds: ', inds)
# order_hbb = order[h_keep_inds + 1]
order = order[inds + 1]
# pdb.set_trace()
# order = np.concatenate((order_obb, order_hbb), axis=0).astype(np.int)
return keep
def py_cpu_nms(dets, thresh):
"""Pure Python NMS baseline."""
#print('dets:', dets)
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
## index for dets
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def nmsbynamedict(nameboxdict, nms, thresh):
nameboxnmsdict = {x: [] for x in nameboxdict}
for imgname in nameboxdict:
#print('imgname:', imgname)
#keep = py_cpu_nms(np.array(nameboxdict[imgname]), thresh)
#print('type nameboxdict:', type(nameboxnmsdict))
#print('type imgname:', type(imgname))
#print('type nms:', type(nms))
keep = nms(np.array(nameboxdict[imgname]), thresh)
#print('keep:', keep)
outdets = []
#print('nameboxdict[imgname]: ', nameboxnmsdict[imgname])
for index in keep:
# print('index:', index)
outdets.append(nameboxdict[imgname][index])
nameboxnmsdict[imgname] = outdets
return nameboxnmsdict
def poly2origpoly(poly, x, y, rate):
origpoly = []
for i in range(int(len(poly)/2)):
tmp_x = float(poly[i * 2] + x) / float(rate)
tmp_y = float(poly[i * 2 + 1] + y) / float(rate)
origpoly.append(tmp_x)
origpoly.append(tmp_y)
return origpoly
def mergesingle(dstpath, nms, fullname):
name = util.custombasename(fullname)
#print('name:', name)
dstname = os.path.join(dstpath, name + '.txt')
with open(fullname, 'r') as f_in:
nameboxdict = {}
lines = f_in.readlines()
splitlines = [x.strip().split(' ') for x in lines]
for splitline in splitlines:
subname = splitline[0]
splitname = subname.split('__')
oriname = splitname[0]
pattern1 = re.compile(r'__\d+___\d+')
#print('subname:', subname)
x_y = re.findall(pattern1, subname)
x_y_2 = re.findall(r'\d+', x_y[0])
x, y = int(x_y_2[0]), int(x_y_2[1])
pattern2 = re.compile(r'__([\d+\.]+)__\d+___')
rate = re.findall(pattern2, subname)[0]
confidence = splitline[1]
poly = list(map(float, splitline[2:]))
origpoly = poly2origpoly(poly, x, y, rate)
det = origpoly
det.append(confidence)
det = list(map(float, det))
if (oriname not in nameboxdict):
nameboxdict[oriname] = []
nameboxdict[oriname].append(det)
nameboxnmsdict = nmsbynamedict(nameboxdict, nms, nms_thresh)
with open(dstname, 'w') as f_out:
for imgname in nameboxnmsdict:
for det in nameboxnmsdict[imgname]:
#print('det:', det)
confidence = det[-1]
bbox = det[0:-1]
outline = imgname + ' ' + str(confidence) + ' ' + ' '.join(map(str, bbox))
#print('outline:', outline)
f_out.write(outline + '\n')
def mergebase_parallel(srcpath, dstpath, nms):
pool = Pool(16)
filelist = util.GetFileFromThisRootDir(srcpath)
mergesingle_fn = partial(mergesingle, dstpath, nms)
# pdb.set_trace()
pool.map(mergesingle_fn, filelist)
def mergebase(srcpath, dstpath, nms):
filelist = util.GetFileFromThisRootDir(srcpath)
for filename in filelist:
mergesingle(dstpath, nms, filename)
def mergebyrec(srcpath, dstpath):
"""
srcpath: result files before merge and nms
dstpath: result files after merge and nms
"""
# srcpath = r'E:\bod-dataset\results\bod-v3_rfcn_2000000'
# dstpath = r'E:\bod-dataset\results\bod-v3_rfcn_2000000_nms'
mergebase(srcpath,
dstpath,
py_cpu_nms)
def mergebypoly(srcpath, dstpath):
"""
srcpath: result files before merge and nms
dstpath: result files after merge and nms
"""
# srcpath = r'/home/dingjian/evaluation_task1/result/faster-rcnn-59/comp4_test_results'
# dstpath = r'/home/dingjian/evaluation_task1/result/faster-rcnn-59/testtime'
# mergebase(srcpath,
# dstpath,
# py_cpu_nms_poly)
mergebase_parallel(srcpath,
dstpath,
py_cpu_nms_poly_fast)
if __name__ == '__main__':
mergebypoly(r'path_to_configure', r'path_to_configure')
# mergebyrec()