-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmerge_16_probs.py
124 lines (111 loc) · 4.77 KB
/
merge_16_probs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import shutil
import h5py
import numpy as np
import skimage
import skimage.io
from read_files_in_folder import read_files_in_folder
def merge_16_probs(folder):
# get variation directories aka directories that start with v
vfolderlist = [
dir_name for dir_name in os.listdir(
os.path.join(
folder,
'')) if os.path.isdir(
os.path.join(
folder,
dir_name)) and dir_name.startswith('v')]
folder_name = os.path.join(folder, vfolderlist[0])
# print(folder_name)
all_files, all_files_length = read_files_in_folder(folder_name)
# print(all_files)
# print(all_files_length)
first_file_name, ext = os.path.splitext(all_files[0])
filebasename = first_file_name[:-1] # drop the last is the digit
for fff in range(
2,
all_files_length -
2): # predictions start with 0; Ignore 0&1 and last two, since they are z-padding
loadfile = filebasename + str(fff) + '.h5'
print('Merging 16 variations of file ', filebasename,
' ... number ', str(fff - 1), ' of ', str(all_files_length - 3))
image = []
for i in range(1, 9): # File 1:8 are 1:100
folder_name = os.path.join(folder, 'v' + str(i))
if os.path.isdir(folder_name):
filename = os.path.join(folder_name, loadfile)
# fileinfo = h5info(filename);
# load_im = h5read(filename, '/data');
load_im = h5py.File(filename, mode='r')
load_im = list(load_im['/data'])
print('H5 Dimensions: ', np.shape(load_im))
# scale = max(max(load_im(:,:,2)));
# inputim = np.transpose(load_im[0][1, :, :])
inputim = load_im[0][1, :, :]
inputim = {
0: inputim,
1: np.flip(inputim, 0),
2: np.flip(inputim, 1),
3: np.rot90(inputim, -1),
4: np.rot90(inputim, 1),
5: np.flip(np.rot90(inputim, -1), 0),
6: np.flip(np.rot90(inputim, -1), 1),
7: np.rot90(inputim, 2)
}.get(i - 1, inputim)
image.append(inputim)
# prob=combinePredicctionSlice_v2(folder_name);
# data{i}=prob;
# Variations 9-16 are inverse organized
loadfile_revert = filebasename + \
str(all_files_length - (fff + 1)) + '.h5'
for i in range(1, 9): # File 9:16 are 100:1
folder_name = os.path.join(folder, 'v' + str(i + 8))
if os.path.isdir(folder_name):
filename = os.path.join(folder_name, loadfile_revert)
# load_im = h5read(filename, '/data');
load_im = h5py.File(filename, mode='r')
load_im = list(load_im['/data'])
# scale = max(max(load_im(:,:,2)));
# inputim = np.transpose(load_im[0][1, :, :])
inputim = load_im[0][1, :, :]
inputim = {
0: inputim,
1: np.flip(inputim, 0),
2: np.flip(inputim, 1),
3: np.rot90(inputim, -1),
4: np.rot90(inputim, 1),
5: np.flip(np.rot90(inputim, -1), 0),
6: np.flip(np.rot90(inputim, -1), 1),
7: np.rot90(inputim, 2)
}.get(i - 1, inputim)
image.append(inputim)
# {
# To check if 16 variations are good uncomment here
# output_filename = os.path.join(folder, "%s_%04d.tiff" % (filebasename, (fff+1)))
# for z in range(1, 17):
# imwrite(sixteen_vars(:,:,z),output_filename,'WriteMode','append');
# print("Saving: %s ... Image #%s \n" %(output_filename, str(z)))
# }
# print(np.shape(image))
# print('Dim2:', np.shape(image))
# if np.shape(image)[0]>1:
image = np.mean(image, 0)
# image2 = mode(sixteen_vars,3) #mode weighting vs mean
# image_stack=de_augment_data(b);
output_filename = os.path.join(
folder, '%s_%04d.png' %
(filebasename, (fff - 2)))
print('write: ', output_filename)
try:
skimage.io.imsave(
output_filename,
skimage.img_as_ubyte(image),
as_grey=True)
except BaseException:
skimage.io.imsave(output_filename, skimage.img_as_ubyte(image))
print('Deleting intermediate .h5 files')
for folder_name in vfolderlist:
removefolders = os.path.join(folder, folder_name)
print('Deleting %s\n' % (removefolders))
shutil.rmtree(removefolders)
return folder