-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcollect_data.py
113 lines (85 loc) · 2.85 KB
/
collect_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# create_training_data.py
import time
from threading import Thread
import cv2
import numpy as np
from cv2 import cv2
from sentdex.getkeys import key_check
BOX = (10, 25, 645, 510)
# VERTICES = np.array([[10,500],[10,300], [300,200], [500,200], [800,300], [800,500]], np.int32)
VERTICES = np.array([[0, 400], [0, 150], [400, 150], [400, 400]], np.int32)
def keys_to_output(keys):
output = [0, 0, 0]
if 'A' in keys:
output[0] = 1
elif 'D' in keys:
output[2] = 1
else:
output[1] = 1
return output
def main():
file_name = 'training_data-1.npy'
starting_value = 1
training_data = []
wait_countdown()
paused = False
while True:
if not paused:
from sentdex.grabscreen import grab_screen
screen = grab_screen(region=BOX)
from training_data_mods.data_transform import process_img
img = process_img(screen)
cv2.imshow('window', cv2.resize(img, (300, 300)))
keys = key_check()
output = keys_to_output(keys)
training_data.append([img, output])
if len(training_data) % 100 == 0:
display_stats(training_data)
if len(training_data) % 250 == 0:
display_stats(training_data)
print(len(training_data))
Thread(target=save_data,
kwargs={'file_name': file_name,
'training_data': training_data}).start()
print('Saved', file_name)
training_data = []
starting_value += 1
file_name = 'training_data-{}.npy'.format(starting_value)
if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break
keys = key_check()
if 't' in keys:
if paused:
paused = False
print('Un-Paused!')
time.sleep(1)
else:
print('Pausing!')
paused = True
time.sleep(1)
def save_data(file_name, training_data):
np.save('F:\Training Data/' + file_name, training_data)
def wait_countdown():
for i in list(range(4))[::-1]:
print(i + 1)
time.sleep(1)
def display_stats(training_data):
lefts = []
rights = []
forwards = []
for data in training_data:
img = data[0]
choice = data[1]
if choice == [1, 0, 0]:
lefts.append([img, choice])
elif choice == [0, 1, 0]:
forwards.append([img, choice])
elif choice == [0, 0, 1]:
rights.append([img, choice])
print('Number of Frames', str(len(training_data)))
print('Forwards : ' + str(len(forwards)))
print('Lefts :' + str(len(lefts)))
print('Rights :' + str(len(rights)))
if __name__ == "__main__":
main()