-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathaudio_processing.py
108 lines (77 loc) · 2.42 KB
/
audio_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import sys
import warnings
import librosa
import numpy as np
import os
if not sys.warnoptions:
warnings.simplefilter("ignore")
input_length = 16000 * 30
n_mels = 128
def pre_process_audio_mel_t(audio, sample_rate=16000):
mel_spec = librosa.feature.melspectrogram(y=audio, sr=sample_rate, n_mels=n_mels)
mel_db = (librosa.power_to_db(mel_spec, ref=np.max) + 40) / 40
return mel_db.T
def load_audio_file(file_path, input_length=input_length):
try:
data = librosa.core.load(file_path, sr=16000)[0] # , sr=16000
except ZeroDivisionError:
data = []
if len(data) > input_length:
max_offset = len(data) - input_length
offset = np.random.randint(max_offset)
data = data[offset : (input_length + offset)]
else:
if input_length > len(data):
max_offset = input_length - len(data)
offset = np.random.randint(max_offset)
else:
offset = 0
data = np.pad(data, (offset, input_length - len(data) - offset), "constant")
data = pre_process_audio_mel_t(data)
return data
def random_crop(data, crop_size=128):
start = np.random.randint(0, data.shape[0] - crop_size)
return data[start : (start + crop_size), :]
def random_mask(data):
new_data = data.copy()
prev_zero = False
for i in range(new_data.shape[0]):
if np.random.uniform(0, 1) < 0.1 or (
prev_zero and np.random.uniform(0, 1) < 0.5
):
prev_zero = True
new_data[i, :] = 0
else:
prev_zero = False
return new_data
def save(path):
data = load_audio_file(path)
np.save(path.replace(".mp3", ".npy"), data)
return True
if __name__ == "__main__":
import matplotlib.pyplot as plt
from tqdm import tqdm
from glob import glob
from multiprocessing import Pool
base_path = "/media/ml/data_ml/fma_large"
files = sorted(list(glob(base_path + "/*/*.mp3")))
print(len(files))
p = Pool(8)
for i, _ in tqdm(enumerate(p.imap(save, files))):
if i % 1000 == 0:
print(i)
# data = load_audio_file("/media/ml/data_ml/fma_medium/008/008081.mp3", input_length=16000 * 30)
#
# print(data.shape)
#
# new_data =random_mask(data)
#
# plt.figure()
# plt.imshow(data.T)
# plt.show()
#
# plt.figure()
# plt.imshow(new_data.T)
# plt.show()
#
# print(np.min(data), np.max(data))