forked from bardiadoosti/HOPE
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGraph.py
executable file
·161 lines (119 loc) · 5.16 KB
/
Graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.autograd import Variable
from torch.utils.data import DataLoader
from utils.dataset import Dataset
from utils.model import select_model
from utils.options import parse_args_function
def main():
args = parse_args_function()
"""# Load Dataset"""
root = args.input_file
transform = transforms.Compose([transforms.Resize((224, 224)),
transforms.ToTensor()])
if args.train:
print("Loading training files...")
trainset = Dataset(root=root, load_set='train', transform=transform)
trainloader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=10)
print('Training files loaded')
if args.val:
print("Loading validation files...")
valset = Dataset(root=root, load_set='val', transform=transform)
valloader = DataLoader(valset, batch_size=args.batch_size, shuffle=False, num_workers=8)
print('Validation files loaded')
if args.test:
print("Loading test files...")
testset = Dataset(root=root, load_set='test', transform=transform)
testloader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, num_workers=8)
print('Test files loaded')
"""# Model"""
model = select_model(args.model_def)
model = nn.DataParallel(model)
"""# Load Snapshot"""
if args.pretrained_model != '':
model.load_state_dict(torch.load(args.pretrained_model, map_location=torch.device('cpu')))
losses = np.load(args.pretrained_model[:-4] + '-losses.npy').tolist()
start = len(losses)
else:
losses = []
start = 0
"""# Optimizer"""
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step, gamma=args.lr_step_gamma)
scheduler.last_epoch = start
"""# Train"""
if args.train:
print('Begin training the network...')
print(f"Looping {args.num_iterations} times...")
print(f"Starting with epoch {start}...")
for epoch in range(start, args.num_iterations): # loop over the dataset multiple times
print(f"Running epoch {epoch}...")
model.train()
running_loss = 0.0
train_loss = 0.0
for i, tr_data in enumerate(trainloader):
# get the inputs
_, labels2d, labels3d = tr_data
# wrap them in Variable
labels2d = Variable(labels2d)
labels3d = Variable(labels3d)
labels2d = labels2d.float()
labels3d = labels3d.float()
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs3d = model(labels2d)
loss = criterion(outputs3d, labels3d)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.data
train_loss += loss.data
if (i + 1) % args.log_batch == 0: # print every log_iter mini-batches
print(f'[{epoch + 1:d}, {i + 1:5d}] loss: {running_loss / args.log_batch:.5f}')
running_loss = 0.0
if args.val and (epoch + 1) % args.val_epoch == 0:
model.eval()
val_loss = 0.0
for v, val_data in enumerate(valloader):
# get the inputs
_, labels2d, labels3d = val_data
# wrap them in Variable
labels2d = Variable(labels2d)
labels3d = Variable(labels3d)
labels2d = labels2d.float()
labels3d = labels3d.float()
outputs3d = model(labels2d)
loss = criterion(outputs3d, labels3d)
val_loss += loss.data
print(f'val error: {val_loss / (v + 1):.5f}')
losses.append((train_loss / (i + 1)).cpu().numpy())
if (epoch + 1) % args.snapshot_epoch == 0:
torch.save(model.state_dict(), args.output_file + str(epoch + 1) + '.pkl')
np.save(args.output_file + str(epoch + 1) + '-losses.npy', np.array(losses))
# Decay Learning Rate
scheduler.step()
print('Finished Training')
"""# Test"""
if args.test:
print('Begin testing the network...')
model.eval()
running_loss = 0.0
for i, ts_data in enumerate(testloader):
# get the inputs
_, labels2d, labels3d = ts_data
# wrap them in Variable
labels2d = Variable(labels2d)
labels3d = Variable(labels3d)
labels2d = labels2d.float()
labels3d = labels3d.float()
outputs3d = model(labels2d)
loss = criterion(outputs3d, labels3d)
running_loss += loss.data
print(f'test error: {running_loss / (i + 1):.5f}')
if __name__ == "__main__":
main()