forked from jrh13/hol-light
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgrobner.ml
740 lines (671 loc) · 33.3 KB
/
grobner.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
(* ========================================================================= *)
(* Generic Grobner basis algorithm. *)
(* *)
(* Whatever the instantiation, it basically solves the universal theory of *)
(* the complex numbers, or equivalently something like the theory of all *)
(* commutative cancellation semirings with no nilpotent elements and having *)
(* characteristic zero. We could do "all rings" by a more elaborate integer *)
(* version of Grobner bases, but I don't have any useful applications. *)
(* *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "normalizer.ml";;
(* ------------------------------------------------------------------------- *)
(* Type for recording history, i.e. how a polynomial was obtained. *)
(* ------------------------------------------------------------------------- *)
type history =
Start of int
| Mmul of (num * (int list)) * history
| Add of history * history;;
(* ------------------------------------------------------------------------- *)
(* Overall function; everything else is local. *)
(* ------------------------------------------------------------------------- *)
let RING_AND_IDEAL_CONV =
(* ----------------------------------------------------------------------- *)
(* Monomial ordering. *)
(* ----------------------------------------------------------------------- *)
let morder_lt =
let rec lexorder l1 l2 =
match (l1,l2) with
[],[] -> false
| (x1::o1,x2::o2) -> x1 > x2 || x1 = x2 && lexorder o1 o2
| _ -> failwith "morder: inconsistent monomial lengths" in
fun m1 m2 -> let n1 = itlist (+) m1 0
and n2 = itlist (+) m2 0 in
n1 < n2 || n1 = n2 && lexorder m1 m2 in
(* ----------------------------------------------------------------------- *)
(* Arithmetic on canonical polynomials. *)
(* ----------------------------------------------------------------------- *)
let grob_neg = map (fun (c,m) -> (minus_num c,m)) in
let rec grob_add l1 l2 =
match (l1,l2) with
([],l2) -> l2
| (l1,[]) -> l1
| ((c1,m1)::o1,(c2,m2)::o2) ->
if m1 = m2 then
let c = c1+/c2 and rest = grob_add o1 o2 in
if c =/ num_0 then rest else (c,m1)::rest
else if morder_lt m2 m1 then (c1,m1)::(grob_add o1 l2)
else (c2,m2)::(grob_add l1 o2) in
let grob_sub l1 l2 = grob_add l1 (grob_neg l2) in
let grob_mmul (c1,m1) (c2,m2) = (c1*/c2,map2 (+) m1 m2) in
let rec grob_cmul cm pol = map (grob_mmul cm) pol in
let rec grob_mul l1 l2 =
match l1 with
[] -> []
| (h1::t1) -> grob_add (grob_cmul h1 l2) (grob_mul t1 l2) in
let grob_inv l =
match l with
[c,vs] when forall (fun x -> x = 0) vs ->
if c =/ num_0 then failwith "grob_inv: division by zero"
else [num_1 // c,vs]
| _ -> failwith "grob_inv: non-constant divisor polynomial" in
let grob_div l1 l2 =
match l2 with
[c,l] when forall (fun x -> x = 0) l ->
if c =/ num_0 then failwith "grob_div: division by zero"
else grob_cmul (num_1 // c,l) l1
| _ -> failwith "grob_div: non-constant divisor polynomial" in
let rec grob_pow vars l n =
if n < 0 then failwith "grob_pow: negative power"
else if n = 0 then [num_1,map (fun v -> 0) vars]
else grob_mul l (grob_pow vars l (n - 1)) in
(* ----------------------------------------------------------------------- *)
(* Monomial division operation. *)
(* ----------------------------------------------------------------------- *)
let mdiv (c1,m1) (c2,m2) =
(c1//c2,
map2 (fun n1 n2 -> if n1 < n2 then failwith "mdiv" else n1-n2) m1 m2) in
(* ----------------------------------------------------------------------- *)
(* Lowest common multiple of two monomials. *)
(* ----------------------------------------------------------------------- *)
let mlcm (c1,m1) (c2,m2) = (num_1,map2 max m1 m2) in
(* ----------------------------------------------------------------------- *)
(* Reduce monomial cm by polynomial pol, returning replacement for cm. *)
(* ----------------------------------------------------------------------- *)
let reduce1 cm (pol,hpol) =
match pol with
[] -> failwith "reduce1"
| cm1::cms -> try let (c,m) = mdiv cm cm1 in
(grob_cmul (minus_num c,m) cms,
Mmul((minus_num c,m),hpol))
with Failure _ -> failwith "reduce1" in
(* ----------------------------------------------------------------------- *)
(* Try this for all polynomials in a basis. *)
(* ----------------------------------------------------------------------- *)
let reduceb cm basis = tryfind (fun p -> reduce1 cm p) basis in
(* ----------------------------------------------------------------------- *)
(* Reduction of a polynomial (always picking largest monomial possible). *)
(* ----------------------------------------------------------------------- *)
let rec reduce basis (pol,hist) =
match pol with
[] -> (pol,hist)
| cm::ptl -> try let q,hnew = reduceb cm basis in
reduce basis (grob_add q ptl,Add(hnew,hist))
with Failure _ ->
let q,hist' = reduce basis (ptl,hist) in
cm::q,hist' in
(* ----------------------------------------------------------------------- *)
(* Check for orthogonality w.r.t. LCM. *)
(* ----------------------------------------------------------------------- *)
let orthogonal l p1 p2 =
snd l = snd(grob_mmul (hd p1) (hd p2)) in
(* ----------------------------------------------------------------------- *)
(* Compute S-polynomial of two polynomials. *)
(* ----------------------------------------------------------------------- *)
let spoly cm ph1 ph2 =
match (ph1,ph2) with
([],h),p -> ([],h)
| p,([],h) -> ([],h)
| (cm1::ptl1,his1),(cm2::ptl2,his2) ->
(grob_sub (grob_cmul (mdiv cm cm1) ptl1)
(grob_cmul (mdiv cm cm2) ptl2),
Add(Mmul(mdiv cm cm1,his1),
Mmul(mdiv (minus_num(fst cm),snd cm) cm2,his2))) in
(* ----------------------------------------------------------------------- *)
(* Make a polynomial monic. *)
(* ----------------------------------------------------------------------- *)
let monic (pol,hist) =
if pol = [] then (pol,hist) else
let c',m' = hd pol in
(map (fun (c,m) -> (c//c',m)) pol,
Mmul((num_1 // c',map (K 0) m'),hist)) in
(* ----------------------------------------------------------------------- *)
(* The most popular heuristic is to order critical pairs by LCM monomial. *)
(* ----------------------------------------------------------------------- *)
let forder ((c1,m1),_) ((c2,m2),_) = morder_lt m1 m2 in
(* ----------------------------------------------------------------------- *)
(* Stupid stuff forced on us by lack of equality test on num type. *)
(* ----------------------------------------------------------------------- *)
let rec poly_lt p q =
match (p,q) with
p,[] -> false
| [],q -> true
| (c1,m1)::o1,(c2,m2)::o2 ->
c1 </ c2 ||
c1 =/ c2 && (List.compare Int.compare m1 m2 = Less ||
m1 = m2 && poly_lt o1 o2) in
let align ((p,hp),(q,hq)) =
if poly_lt p q then ((p,hp),(q,hq)) else ((q,hq),(p,hp)) in
let poly_eq p1 p2 =
forall2 (fun (c1,m1) (c2,m2) -> c1 =/ c2 && m1 = m2) p1 p2 in
let memx ((p1,h1),(p2,h2)) ppairs =
not (exists (fun ((q1,_),(q2,_)) -> poly_eq p1 q1 && poly_eq p2 q2)
ppairs) in
(* ----------------------------------------------------------------------- *)
(* Buchberger's second criterion. *)
(* ----------------------------------------------------------------------- *)
let criterion2 basis (lcm,((p1,h1),(p2,h2))) opairs =
exists (fun g -> not(poly_eq (fst g) p1) && not(poly_eq (fst g) p2) &&
can (mdiv lcm) (hd(fst g)) &&
not(memx (align(g,(p1,h1))) (map snd opairs)) &&
not(memx (align(g,(p2,h2))) (map snd opairs))) basis in
(* ----------------------------------------------------------------------- *)
(* Test for hitting constant polynomial. *)
(* ----------------------------------------------------------------------- *)
let constant_poly p =
length p = 1 && forall ((=) 0) (snd(hd p)) in
(* ----------------------------------------------------------------------- *)
(* Grobner basis algorithm. *)
(* ----------------------------------------------------------------------- *)
let rec grobner_basis basis pairs =
print(string_of_int(length basis)^" basis elements and "^
string_of_int(length pairs)^" critical pairs");
print "\n";
match pairs with
[] -> basis
| (l,(p1,p2))::opairs ->
let (sp,hist as sph) = monic (reduce basis (spoly l p1 p2)) in
if sp = [] || criterion2 basis (l,(p1,p2)) opairs
then grobner_basis basis opairs else
if constant_poly sp then grobner_basis (sph::basis) [] else
let rawcps =
map (fun p -> mlcm (hd(fst p)) (hd sp),align(p,sph)) basis in
let newcps = filter
(fun (l,(p,q)) -> not(orthogonal l (fst p) (fst q))) rawcps in
grobner_basis (sph::basis)
(merge forder opairs (mergesort forder newcps)) in
(* ----------------------------------------------------------------------- *)
(* Interreduce initial polynomials. *)
(* ----------------------------------------------------------------------- *)
let rec grobner_interreduce rpols ipols =
match ipols with
[] -> map monic (rev rpols)
| p::ps -> let p' = reduce (rpols @ ps) p in
if fst p' = [] then grobner_interreduce rpols ps
else grobner_interreduce (p'::rpols) ps in
(* ----------------------------------------------------------------------- *)
(* Overall function. *)
(* ----------------------------------------------------------------------- *)
let grobner pols =
let npols = map2 (fun p n -> p,Start n) pols (0--(length pols - 1)) in
let phists = filter (fun (p,_) -> p <> []) npols in
let bas = grobner_interreduce [] (map monic phists) in
let prs0 = allpairs (fun x y -> x,y) bas bas in
let prs1 = filter (fun ((x,_),(y,_)) -> poly_lt x y) prs0 in
let prs2 = map (fun (p,q) -> mlcm (hd(fst p)) (hd(fst q)),(p,q)) prs1 in
let prs3 =
filter (fun (l,(p,q)) -> not(orthogonal l (fst p) (fst q))) prs2 in
grobner_basis bas (mergesort forder prs3) in
(* ----------------------------------------------------------------------- *)
(* Get proof of contradiction from Grobner basis. *)
(* ----------------------------------------------------------------------- *)
let grobner_refute pols =
let gb = grobner pols in
snd(find (fun (p,h) -> length p = 1 && forall ((=)0) (snd(hd p))) gb) in
(* ----------------------------------------------------------------------- *)
(* Turn proof into a certificate as sum of multipliers. *)
(* *)
(* In principle this is very inefficient: in a heavily shared proof it may *)
(* make the same calculation many times. Could add a cache or something. *)
(* ----------------------------------------------------------------------- *)
let rec resolve_proof vars prf =
match prf with
Start m -> if m = -1 then [] else [m,[num_1,map (K 0) vars]]
| Mmul(pol,lin) ->
let lis = resolve_proof vars lin in
map (fun (n,p) -> n,grob_cmul pol p) lis
| Add(lin1,lin2) ->
let lis1 = resolve_proof vars lin1
and lis2 = resolve_proof vars lin2 in
let dom = setify (<) (union (map fst lis1) (map fst lis2)) in
map (fun n -> let a = try assoc n lis1 with Failure _ -> []
and b = try assoc n lis2 with Failure _ -> [] in
n,grob_add a b) dom in
(* ----------------------------------------------------------------------- *)
(* Run the procedure and produce Weak Nullstellensatz certificate. *)
(* ----------------------------------------------------------------------- *)
let grobner_weak vars pols =
let cert = resolve_proof vars (grobner_refute pols) in
let l =
itlist (itlist (lcm_num o denominator o fst) o snd) cert (num_1) in
l,map (fun (i,p) -> i,map (fun (d,m) -> (l*/d,m)) p) cert in
(* ----------------------------------------------------------------------- *)
(* Prove polynomial is in ideal generated by others, using Grobner basis. *)
(* ----------------------------------------------------------------------- *)
let grobner_ideal vars pols pol =
let pol',h = reduce (grobner pols) (grob_neg pol,Start(-1)) in
if pol' <> [] then failwith "grobner_ideal: not in the ideal" else
resolve_proof vars h in
(* ----------------------------------------------------------------------- *)
(* Produce Strong Nullstellensatz certificate for a power of pol. *)
(* ----------------------------------------------------------------------- *)
let grobner_strong vars pols pol =
if pol = [] then 1,num_1,[] else
let vars' = (concl TRUTH)::vars in
let grob_z = [num_1,1::(map (fun x -> 0) vars)]
and grob_1 = [num_1,(map (fun x -> 0) vars')]
and augment = map (fun (c,m) -> (c,0::m)) in
let pols' = map augment pols
and pol' = augment pol in
let allpols = (grob_sub (grob_mul grob_z pol') grob_1)::pols' in
let l,cert = grobner_weak vars' allpols in
let d = itlist (itlist (max o hd o snd) o snd) cert 0 in
let transform_monomial (c,m) =
grob_cmul (c,tl m) (grob_pow vars pol (d - hd m)) in
let transform_polynomial q = itlist (grob_add o transform_monomial) q [] in
let cert' = map (fun (c,q) -> c-1,transform_polynomial q)
(filter (fun (k,_) -> k <> 0) cert) in
d,l,cert' in
(* ----------------------------------------------------------------------- *)
(* Overall parametrized universal procedure for (semi)rings. *)
(* We return an IDEAL_CONV and the actual ring prover. *)
(* ----------------------------------------------------------------------- *)
let pth_step = prove
(`!(add:A->A->A) (mul:A->A->A) (n0:A).
(!x. mul n0 x = n0) /\
(!x y z. (add x y = add x z) <=> (y = z)) /\
(!w x y z. (add (mul w y) (mul x z) = add (mul w z) (mul x y)) <=>
(w = x) \/ (y = z))
==> (!a b c d. ~(a = b) /\ ~(c = d) <=>
~(add (mul a c) (mul b d) =
add (mul a d) (mul b c))) /\
(!n a b c d. ~(n = n0)
==> (a = b) /\ ~(c = d)
==> ~(add a (mul n c) = add b (mul n d)))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
ASM_REWRITE_TAC[GSYM DE_MORGAN_THM] THEN
REPEAT GEN_TAC THEN DISCH_TAC THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`n0:A`; `n:A`; `d:A`; `c:A`]) THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN ASM_SIMP_TAC[])
and FINAL_RULE = MATCH_MP(TAUT `(p ==> F) ==> (~q = p) ==> q`)
and false_tm = `F` in
let rec refute_disj rfn tm =
match tm with
Comb(Comb(Const("\\/",_),l),r) ->
DISJ_CASES (ASSUME tm) (refute_disj rfn l) (refute_disj rfn r)
| _ -> rfn tm in
fun (ring_dest_const,ring_mk_const,RING_EQ_CONV,
ring_neg_tm,ring_add_tm,ring_sub_tm,
ring_inv_tm,ring_mul_tm,ring_div_tm,ring_pow_tm,
RING_INTEGRAL,RABINOWITSCH_THM,RING_NORMALIZE_CONV) ->
let INITIAL_CONV =
TOP_DEPTH_CONV BETA_CONV THENC
PRESIMP_CONV THENC
CONDS_ELIM_CONV THENC
NNF_CONV THENC
(if is_iff(snd(strip_forall(concl RABINOWITSCH_THM)))
then GEN_REWRITE_CONV ONCE_DEPTH_CONV [RABINOWITSCH_THM]
else ALL_CONV) THENC
GEN_REWRITE_CONV REDEPTH_CONV
[AND_FORALL_THM;
LEFT_AND_FORALL_THM;
RIGHT_AND_FORALL_THM;
LEFT_OR_FORALL_THM;
RIGHT_OR_FORALL_THM;
OR_EXISTS_THM;
LEFT_OR_EXISTS_THM;
RIGHT_OR_EXISTS_THM;
LEFT_AND_EXISTS_THM;
RIGHT_AND_EXISTS_THM] in
let ring_dest_neg t =
let l,r = dest_comb t in
if l = ring_neg_tm then r else failwith "ring_dest_neg"
and ring_dest_inv t =
let l,r = dest_comb t in
if l = ring_inv_tm then r else failwith "ring_dest_inv"
and ring_dest_add = dest_binop ring_add_tm
and ring_mk_add = mk_binop ring_add_tm
and ring_dest_sub = dest_binop ring_sub_tm
and ring_dest_mul = dest_binop ring_mul_tm
and ring_mk_mul = mk_binop ring_mul_tm
and ring_dest_div = dest_binop ring_div_tm
and ring_dest_pow = dest_binop ring_pow_tm
and ring_mk_pow = mk_binop ring_pow_tm in
let rec grobvars tm acc =
if can ring_dest_const tm then acc
else if can ring_dest_neg tm then grobvars (rand tm) acc
else if can ring_dest_pow tm && is_numeral (rand tm)
then grobvars (lhand tm) acc
else if can ring_dest_add tm || can ring_dest_sub tm
|| can ring_dest_mul tm
then grobvars (lhand tm) (grobvars (rand tm) acc)
else if can ring_dest_inv tm then
let gvs = grobvars (rand tm) [] in
if gvs = [] then acc else tm::acc
else if can ring_dest_div tm then
let lvs = grobvars (lhand tm) acc
and gvs = grobvars (rand tm) [] in
if gvs = [] then lvs else tm::acc
else tm::acc in
let rec grobify_term vars tm =
try if not(mem tm vars) then failwith "" else
[num_1,map (fun i -> if i = tm then 1 else 0) vars]
with Failure _ -> try
let x = ring_dest_const tm in
if x =/ num_0 then [] else [x,map (fun v -> 0) vars]
with Failure _ -> try
grob_neg(grobify_term vars (ring_dest_neg tm))
with Failure _ -> try
grob_inv(grobify_term vars (ring_dest_inv tm))
with Failure _ -> try
let l,r = ring_dest_add tm in
grob_add (grobify_term vars l) (grobify_term vars r)
with Failure _ -> try
let l,r = ring_dest_sub tm in
grob_sub (grobify_term vars l) (grobify_term vars r)
with Failure _ -> try
let l,r = ring_dest_mul tm in
grob_mul (grobify_term vars l) (grobify_term vars r)
with Failure _ -> try
let l,r = ring_dest_div tm in
grob_div (grobify_term vars l) (grobify_term vars r)
with Failure _ -> try
let l,r = ring_dest_pow tm in
grob_pow vars (grobify_term vars l) (dest_small_numeral r)
with Failure _ ->
failwith "grobify_term: unknown or invalid term" in
let grobify_equation vars tm =
let l,r = dest_eq tm in
grob_sub (grobify_term vars l) (grobify_term vars r) in
let grobify_equations tm =
let cjs = conjuncts tm in
let rawvars =
itlist (fun eq a -> grobvars (lhand eq) (grobvars (rand eq) a))
cjs [] in
let vars = sort Term.(<) (setify Term.(<) rawvars) in
vars,map (grobify_equation vars) cjs in
let holify_polynomial =
let holify_varpow (v,n) =
if n = 1 then v else ring_mk_pow v (mk_small_numeral n) in
let holify_monomial vars (c,m) =
let xps = map holify_varpow
(filter (fun (_,n) -> n <> 0) (zip vars m)) in
end_itlist ring_mk_mul (ring_mk_const c :: xps) in
let holify_polynomial vars p =
if p = [] then ring_mk_const (num_0)
else end_itlist ring_mk_add (map (holify_monomial vars) p) in
holify_polynomial in
let (pth_idom,pth_ine) = CONJ_PAIR(MATCH_MP pth_step RING_INTEGRAL) in
let IDOM_RULE = CONV_RULE(REWR_CONV pth_idom) in
let PROVE_NZ n = EQF_ELIM(RING_EQ_CONV
(mk_eq(ring_mk_const n,ring_mk_const(num_0)))) in
let NOT_EQ_01 = PROVE_NZ (num_1)
and INE_RULE n = MATCH_MP(MATCH_MP pth_ine (PROVE_NZ n))
and MK_ADD th1 th2 = MK_COMB(AP_TERM ring_add_tm th1,th2) in
let execute_proof vars eths prf =
let x,th1 = SPEC_VAR(CONJUNCT1(CONJUNCT2 RING_INTEGRAL)) in
let y,th2 = SPEC_VAR th1 in
let z,th3 = SPEC_VAR th2 in
let SUB_EQ_RULE = GEN_REWRITE_RULE I
[SYM(INST [mk_comb(ring_neg_tm,z),x] th3)] in
let initpols = map (CONV_RULE(BINOP_CONV RING_NORMALIZE_CONV) o
SUB_EQ_RULE) eths in
let ADD_RULE th1 th2 =
CONV_RULE (BINOP_CONV RING_NORMALIZE_CONV)
(MK_COMB(AP_TERM ring_add_tm th1,th2))
and MUL_RULE vars m th =
CONV_RULE (BINOP_CONV RING_NORMALIZE_CONV)
(AP_TERM (mk_comb(ring_mul_tm,holify_polynomial vars [m]))
th) in
(* OA Lack of pointer equality makes this useless in Candle,
and lack of let polymorphism gets type checking to fail
on this definition. *)
(* let rec assoceq a l =
match l with
[] -> failwith "assoceq"
| (x,y)::t -> if x==a then y else assoceq a t in *)
let run_proof =
if is_iff(snd(strip_forall(concl RABINOWITSCH_THM))) then
(print "Generating HOL version of proof";
print "\n";
let execache = ref [] in
let memoize prf x = (execache := (prf,x)::(!execache)); x in
let rec run_proof vars prf =
(* try assoceq prf (!execache) with Failure _ -> *)
(match prf with
Start m -> el m initpols
| Add(p1,p2) ->
memoize prf (ADD_RULE (run_proof vars p1) (run_proof vars p2))
| Mmul(m,p2) ->
memoize prf (MUL_RULE vars m (run_proof vars p2))) in
fun vars prf ->
let ans = run_proof vars prf in
(execache := []; ans))
else
(print "Generating HOL version of scaled proof";
print "\n";
let km = map (fun x -> 0) vars in
let execache = ref [] in
let memoize prf x = (execache := (prf,x)::(!execache)); x in
let rec run_scaled_proof vars prf =
(* try assoceq prf (!execache) with Failure _ -> *)
(match prf with
Start m -> (num_1,el m initpols)
| Add(p1,p2) ->
let d1,th1 = run_scaled_proof vars p1
and d2,th2 = run_scaled_proof vars p2 in
let d = lcm_num d1 d2 in
memoize prf
(d,ADD_RULE (MUL_RULE vars (d//d1,km) th1)
(MUL_RULE vars (d//d2,km) th2))
| Mmul((c,xs),p2) ->
let e = denominator c in
let d,th = run_scaled_proof vars p2 in
memoize prf ((d */ e),MUL_RULE vars (c */ e,xs) th)) in
fun vars prf ->
let _,ans = run_scaled_proof vars prf in
(execache := []; ans)) in
let th = run_proof vars prf in
CONV_RULE RING_EQ_CONV th in
let REFUTE tm =
if tm = false_tm then ASSUME tm else
let nths0,eths0 = partition (is_neg o concl) (CONJUNCTS(ASSUME tm)) in
let nths = filter (is_eq o rand o concl) nths0
and eths = filter (is_eq o concl) eths0 in
if eths = [] then
let th1 = end_itlist (fun th1 th2 -> IDOM_RULE(CONJ th1 th2)) nths in
let th2 = CONV_RULE(RAND_CONV(BINOP_CONV RING_NORMALIZE_CONV)) th1 in
let l,r = dest_eq(rand(concl th2)) in
EQ_MP (EQF_INTRO th2) (REFL l)
else if nths = [] && not(is_var ring_neg_tm) then
let vars,pols = grobify_equations(list_mk_conj(map concl eths)) in
execute_proof vars eths (grobner_refute pols)
else
let vars,l,cert,noteqth =
if nths = [] then
let vars,pols = grobify_equations(list_mk_conj(map concl eths)) in
let l,cert = grobner_weak vars pols in
vars,l,cert,NOT_EQ_01
else
let nth = end_itlist
(fun th1 th2 -> IDOM_RULE(CONJ th1 th2)) nths in
let vars,pol::pols =
grobify_equations(list_mk_conj(rand(concl nth)::map concl eths)) in
let deg,l,cert = grobner_strong vars pols pol in
let th1 =
CONV_RULE(RAND_CONV(BINOP_CONV RING_NORMALIZE_CONV)) nth in
let th2 = funpow deg (IDOM_RULE o CONJ th1) NOT_EQ_01 in
vars,l,cert,th2 in
print "Translating certificate to HOL inferences";
print "\n";
let cert_pos = map
(fun (i,p) -> i,filter (fun (c,m) -> c >/ num_0) p) cert
and cert_neg = map
(fun (i,p) -> i,map (fun (c,m) -> minus_num c,m)
(filter (fun (c,m) -> c </ num_0) p)) cert in
let herts_pos =
map (fun (i,p) -> i,holify_polynomial vars p) cert_pos
and herts_neg =
map (fun (i,p) -> i,holify_polynomial vars p) cert_neg in
let thm_fn pols =
if pols = [] then REFL(ring_mk_const num_0) else
end_itlist MK_ADD
(map (fun (i,p) -> AP_TERM(mk_comb(ring_mul_tm,p)) (el i eths))
pols) in
let th1 = thm_fn herts_pos and th2 = thm_fn herts_neg in
let th3 = CONJ(MK_ADD (SYM th1) th2) noteqth in
let th4 = CONV_RULE (RAND_CONV(BINOP_CONV RING_NORMALIZE_CONV))
(INE_RULE l th3) in
let l,r = dest_eq(rand(concl th4)) in
EQ_MP (EQF_INTRO th4) (REFL l) in
let ring_ty = snd(dest_fun_ty(snd(dest_fun_ty(type_of ring_add_tm)))) in
let RING tm =
let avs = filter ((=) ring_ty o type_of) (frees tm) in
let tm' = list_mk_forall(avs,tm) in
let th1 = INITIAL_CONV(mk_neg tm') in
let evs,bod = strip_exists(rand(concl th1)) in
if is_forall bod then failwith "RING: non-universal formula" else
let th1a = WEAK_DNF_CONV bod in
let boda = rand(concl th1a) in
let th2a = refute_disj REFUTE boda in
let th2b = TRANS th1a (EQF_INTRO(NOT_INTRO(DISCH boda th2a))) in
let th2 = UNDISCH(NOT_ELIM(EQF_ELIM th2b)) in
let finbod,th3 =
let rec CHOOSES evs (etm,th) =
match evs with
[] -> (etm,th)
| ev::oevs ->
let etm',th' = CHOOSES oevs (etm,th) in
mk_exists(ev,etm'),CHOOSE (ev,ASSUME (mk_exists(ev,etm'))) th' in
CHOOSES evs (bod,th2) in
SPECL avs (MATCH_MP (FINAL_RULE (DISCH finbod th3)) th1)
and ideal tms tm =
let rawvars = itlist grobvars (tm::tms) [] in
let vars = sort Term.(<) (setify Term.(<) rawvars) in
let pols = map (grobify_term vars) tms and pol = grobify_term vars tm in
let cert = grobner_ideal vars pols pol in
map (fun n -> let p = assocd n cert [] in holify_polynomial vars p)
(0--(length pols-1)) in
RING,ideal;;
(* ----------------------------------------------------------------------- *)
(* Separate out the cases. *)
(* ----------------------------------------------------------------------- *)
let RING parms = fst(RING_AND_IDEAL_CONV parms);;
let ideal_cofactors parms = snd(RING_AND_IDEAL_CONV parms);;
(* ------------------------------------------------------------------------- *)
(* Simplify a natural number assertion to eliminate conditionals, DIV, MOD, *)
(* PRE, cutoff subtraction, EVEN and ODD. Try to do it in a way that makes *)
(* new quantifiers universal. At the moment we don't split "<=>" which would *)
(* make this quantifier selection work there too; better to do NNF first if *)
(* you care. This also applies to EVEN and ODD. *)
(* ------------------------------------------------------------------------- *)
let NUM_SIMPLIFY_CONV =
let pre_tm = `PRE`
and div_tm = `(DIV):num->num->num`
and mod_tm = `(MOD):num->num->num`
and p_tm = `P:num->bool` and n_tm = `n:num` and m_tm = `m:num`
and q_tm = `P:num->num->bool` and a_tm = `a:num` and b_tm = `b:num` in
let is_pre tm = is_comb tm && rator tm = pre_tm
and is_sub = is_binop `(-):num->num->num`
and is_divmod =
let is_div = is_binop div_tm and is_mod = is_binop mod_tm in
fun tm -> is_div tm || is_mod tm
and contains_quantifier =
can (find_term (fun t -> is_forall t || is_exists t || is_uexists t))
and BETA2_CONV = RATOR_CONV BETA_CONV THENC BETA_CONV
and PRE_ELIM_THM'' = CONV_RULE (RAND_CONV NNF_CONV) PRE_ELIM_THM
and SUB_ELIM_THM'' = CONV_RULE (RAND_CONV NNF_CONV) SUB_ELIM_THM
and DIVMOD_ELIM_THM'' = CONV_RULE (RAND_CONV NNF_CONV) DIVMOD_ELIM_THM
and pth_evenodd = prove
(`(EVEN(x) <=> (!y. ~(x = SUC(2 * y)))) /\
(ODD(x) <=> (!y. ~(x = 2 * y))) /\
(~EVEN(x) <=> (!y. ~(x = 2 * y))) /\
(~ODD(x) <=> (!y. ~(x = SUC(2 * y))))`,
REWRITE_TAC[GSYM NOT_EXISTS_THM; GSYM EVEN_EXISTS; GSYM ODD_EXISTS] THEN
REWRITE_TAC[NOT_EVEN; NOT_ODD]) in
let rec NUM_MULTIPLY_CONV pos tm =
if is_forall tm || is_exists tm || is_uexists tm then
BINDER_CONV (NUM_MULTIPLY_CONV pos) tm
else if is_imp tm && contains_quantifier tm then
COMB2_CONV (RAND_CONV(NUM_MULTIPLY_CONV(not pos)))
(NUM_MULTIPLY_CONV pos) tm
else if (is_conj tm || is_disj tm || is_iff tm) &&
contains_quantifier tm
then BINOP_CONV (NUM_MULTIPLY_CONV pos) tm
else if is_neg tm && not pos && contains_quantifier tm then
RAND_CONV (NUM_MULTIPLY_CONV (not pos)) tm
else
try let t = find_term (fun t -> is_pre t && free_in t tm) tm in
let ty = type_of t in
let v = genvar ty in
let p = mk_abs(v,subst [v,t] tm) in
let th0 = if pos then PRE_ELIM_THM'' else PRE_ELIM_THM' in
let th1 = INST [p,p_tm; rand t,n_tm] th0 in
let th2 = CONV_RULE(COMB2_CONV (RAND_CONV BETA_CONV)
(BINDER_CONV(RAND_CONV BETA_CONV))) th1 in
CONV_RULE(RAND_CONV (NUM_MULTIPLY_CONV pos)) th2
with Failure _ -> try
let t = find_term (fun t -> is_sub t && free_in t tm) tm in
let ty = type_of t in
let v = genvar ty in
let p = mk_abs(v,subst [v,t] tm) in
let th0 = if pos then SUB_ELIM_THM'' else SUB_ELIM_THM' in
let th1 = INST [p,p_tm; lhand t,a_tm; rand t,b_tm] th0 in
let th2 = CONV_RULE(COMB2_CONV (RAND_CONV BETA_CONV)
(BINDER_CONV(RAND_CONV BETA_CONV))) th1 in
CONV_RULE(RAND_CONV (NUM_MULTIPLY_CONV pos)) th2
with Failure _ -> try
let t = find_term (fun t -> is_divmod t && free_in t tm) tm in
let x = lhand t and y = rand t in
let dtm = mk_comb(mk_comb(div_tm,x),y)
and mtm = mk_comb(mk_comb(mod_tm,x),y) in
let vd = genvar(type_of dtm)
and vm = genvar(type_of mtm) in
let p = list_mk_abs([vd;vm],subst[vd,dtm; vm,mtm] tm) in
let th0 = if pos then DIVMOD_ELIM_THM'' else DIVMOD_ELIM_THM' in
let th1 = INST [p,q_tm; x,m_tm; y,n_tm] th0 in
let th2 = CONV_RULE(COMB2_CONV(RAND_CONV BETA2_CONV)
(funpow 2 BINDER_CONV(RAND_CONV BETA2_CONV))) th1 in
CONV_RULE(RAND_CONV (NUM_MULTIPLY_CONV pos)) th2
with Failure _ -> REFL tm in
NUM_REDUCE_CONV THENC
CONDS_CELIM_CONV THENC
NNF_CONV THENC
NUM_MULTIPLY_CONV true THENC
NUM_REDUCE_CONV THENC
GEN_REWRITE_CONV ONCE_DEPTH_CONV [pth_evenodd];;
(* ----------------------------------------------------------------------- *)
(* Natural number version of ring procedure with this normalization. *)
(* ----------------------------------------------------------------------- *)
let NUM_RING =
let NUM_INTEGRAL_LEMMA = prove
(`(w = x + d) /\ (y = z + e)
==> ((w * y + x * z = w * z + x * y) <=> (w = x) \/ (y = z))`,
DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; GSYM ADD_ASSOC] THEN
ONCE_REWRITE_TAC[AC ADD_AC
`a + b + c + d + e = a + c + e + b + d`] THEN
REWRITE_TAC[EQ_ADD_LCANCEL; EQ_ADD_LCANCEL_0; MULT_EQ_0]) in
let NUM_INTEGRAL = prove
(`(!x. 0 * x = 0) /\
(!x y z. (x + y = x + z) <=> (y = z)) /\
(!w x y z. (w * y + x * z = w * z + x * y) <=> (w = x) \/ (y = z))`,
REWRITE_TAC[MULT_CLAUSES; EQ_ADD_LCANCEL] THEN
REPEAT GEN_TAC THEN
DISJ_CASES_TAC (SPECL [`w:num`; `x:num`] LE_CASES) THEN
DISJ_CASES_TAC (SPECL [`y:num`; `z:num`] LE_CASES) THEN
REPEAT(FIRST_X_ASSUM
(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[LE_EXISTS])) THEN
ASM_MESON_TAC[NUM_INTEGRAL_LEMMA; ADD_SYM; MULT_SYM]) in
let rawring =
RING(dest_numeral,mk_numeral,NUM_EQ_CONV,
genvar bool_ty,`(+):num->num->num`,genvar bool_ty,
genvar bool_ty,`(*):num->num->num`,genvar bool_ty,
`(EXP):num->num->num`,
NUM_INTEGRAL,TRUTH,NUM_NORMALIZE_CONV) in
let initconv = NUM_SIMPLIFY_CONV THENC GEN_REWRITE_CONV DEPTH_CONV [ADD1]
and t_tm = `T` in
fun tm -> let th = initconv tm in
if rand(concl th) = t_tm then th
else EQ_MP (SYM th) (rawring(rand(concl th)));;