-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpreprint_impact_queries.Rmd
161 lines (131 loc) · 4.29 KB
/
preprint_impact_queries.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
title: "Preprint Impact Queries"
output: html_notebook
---
This is a notebook that collects commonly used preprint impact queries that need to be run from time to time outside of specific reports/larger analyses.
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
#loading libraries
library(httr)
library(tidyverse)
library(here)
library(jsonlite)
library(lubridate)
library(reticulate)
url <- 'https://api.osf.io/_/metrics/preprints/'
osf_auth <- Sys.getenv("osf_preprintimpact_auth")
auth_header <- httr::add_headers('Authorization' = paste('Bearer', osf_auth))
use_condaenv(condaenv = "myenv", conda = "/Users/courtneysoderberg/opt/anaconda3/bin/python")
```
```{python}
# intitial python setup of tokens and post URL, which needs to be included with any of the python queries below
import requests
METRICS_BASE = r.url
TOKEN = r.osf_auth
headers = {
'Content-Type': 'application/vnd.api+json',
'Authorization': 'Bearer {}'.format(TOKEN)
}
post_url = '{}views/'.format(METRICS_BASE) # can change to '{}downloads' as well
```
# Queries related to total/by provider views/downloads per unit of time
```{python}
# Preprint views, by provider per month, for 2020
query = {
"aggs" : {
"preprints_from_2020": {
"filter": {
"range" : {
"timestamp" : {
"gte" : "2020-01-01",
"lt" : "2020-03-24"
}
}
},
"aggs": {
"provider" : {
"terms" : {
"field" : "provider_id",
"size" : 30, # set size higher than total number of providers to get all
},
"aggs": {
"views_per_month" : {
"date_histogram" :{
"field":"timestamp",
"interval":"month",
"format": "yyyy-MM-dd HH:mm"
}
}
}
}
}
}
}
}
payload = {
'data': {
'type': 'preprint_metrics',
'attributes': {
'query': query
}
}
}
res = requests.post(post_url, headers=headers, json=payload)
providerviews_permonth = res.json()['aggregations']['preprints_from_2020']['provider']['buckets']
```
### R scripts to clean data from queries above
```{r}
# formatting Preprint views, by provider per month, for 2020 output into dataframe
providerviews_permonth_df <- bind_rows(py$providerviews_permonth) %>% unnest(views_per_month)
providerviews_permonth_df <- providerviews_permonth_df %>%
mutate(date = map_chr(views_per_month, 'key_as_string'),
views = map_dbl(views_per_month, 'doc_count')) %>%
rename(provider_id = key) %>%
select(-c(doc_count,views_per_month))
```
# Queries related to total/by users views/downloads per unit of time
```{python}
# views by user in the month of march
query = {
"query": {
"exists" : { "field" : "user_id" }
},
"aggs" : {
"preprints_from_2020": {
"filter": {
"range" : {
"timestamp" : {
"gte" : "2020-03-01",
"lt" : "2020-03-24"
}
}
},
"aggs": {
"users" : {
"terms" : {
"field" : "user_id",
"size" : 5000
}
}
}
}
}
}
payload = {
'data': {
'type': 'preprint_metrics',
'attributes': {
'query': query
}
}
}
res = requests.post(post_url, headers=headers, json=payload)
views_byuser = res.json()['aggregations']['preprints_from_2020']['users']['buckets']
```
### R scripts to clean data from queries above
```{r}
# formatting 'Preprint views, by provider per month, for 2020' output into dataframe
views_byuser_df <- bind_rows(py$views_byuser) %>%
rename(user_id = key,
views = doc_count)
```